1
|
Li F, Zeng Z, Wu Y, Wang Y, Shen L, Huang X, Wang X, Sun Y. Characteristics of microplastics in typical poultry farms and the association of environment microplastics colonized-microbiota, waterfowl gut microbiota, and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137808. [PMID: 40043390 DOI: 10.1016/j.jhazmat.2025.137808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) pollution is a growing global environmental concern. MPs serve as ecological niches for microbial communities, which may accelerate the spread of antibiotic resistance genes (ARGs), posing risks to the breeding industry. While studies on MPs in aquatic organisms are common, research on farmed poultry is limited. This study investigates MPs in poultry farm environments and waterfowl intestines for the first time. MPs were isolated via density separation and analyzed for characterization in soil, pond water, and waterfowl intestines. Metagenomics was used to investigate the association between environment MPs colonized-microbiota and waterfowl gut microbiota. Our findings reveal that MPs are abundant in soil (6.75 ± 2.78 items/g d.w.), pond water (0.94 ± 0.28 items/g w.w.), and poultry intestines (45.35 ± 19.52 items/g w.w.), primarily appearing as fragmented particles sized 20-50 μm. MPs abundance in intestines correlates with environmental levels. Colonized-microbiota on MPs are linked to poultry intestinal microbiota, with greater diversity and microbial functions. Network analysis reveals that Corynebacterium plays a key role in MPs and poultry intestinal. Polymyxin resistance exhibits high clustering. Procrustes analysis reveals correlations between MPs, bacteria, and ARGs in the farming environment. Overall, MPs in poultry farms may facilitate pathogen and ARGs transmission, posing risks to animal gut health.
Collapse
Affiliation(s)
- Fulin Li
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Ziru Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yixiao Wu
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yefan Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Lingyan Shen
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xingru Huang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xue Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Greenshields J, Anastasi A, Irving AD, Capper A. A systematic review to assess current surface water and sediment microplastic sampling practices in seagrass and mangrove ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66615-66629. [PMID: 39661091 PMCID: PMC11666669 DOI: 10.1007/s11356-024-35690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Global plastic production is estimated to be 400 million tonnes per annum, with ~ 5.25 trillion fragments floating in our oceans. Microplastics (< 5 mm) have the potential to disproportionately accumulate and become trapped in mangroves and seagrass meadows, creating plastic 'sinks'. This is concerning as these ecosystems are of great ecological and economic importance, with microplastics causing harm to inhabiting flora and fauna. However, accurately measuring microplastic abundance, comparing findings, and determining potential impacts are difficult due to a lack of standardised sampling protocols. Therefore, a systematic literature review was completed to review currently adopted microplastic sampling methods in surface water and sediment in seagrass and mangrove ecosystems. These were compared with recommendations from existing governmental and institutional groups as a first step to standardising methods for future sampling procedures in seagrasses and mangroves.
Collapse
Affiliation(s)
- Jack Greenshields
- Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, 4680, Australia.
| | - Amie Anastasi
- Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, 4680, Australia
- Central Queensland Innovation and Research Precinct, Central Queensland University, Rockhampton, 4701, Australia
| | - Andrew D Irving
- Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, 4680, Australia
- Central Queensland Innovation and Research Precinct, Central Queensland University, Rockhampton, 4701, Australia
| | - Angela Capper
- Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone, 4680, Australia
| |
Collapse
|
3
|
Hou X, Li C, Zhao Y, He Y, Li W, Wang X, Liu X. Distinct impacts of microplastics on the carbon sequestration capacity of coastal blue carbon ecosystems: A case of seagrass beds. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106793. [PMID: 39437480 DOI: 10.1016/j.marenvres.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Seagrass beds, as an important coastal blue carbon ecosystem, are excellent at storing organic carbon and mitigating the impacts of global climate change. However, seagrass beds are under threat due to increased human activities and ubiquitous presence of microplastics (MPs) in marine environments. Bibliometric analysis shows that the distribution and accumulation of microplastics in seagrass beds has been widely documented worldwide, but their impacts on seagrass beds, particularly on carbon sequestration capacity, have not been given sufficient attention. This review aims to outline the potential impacts of MPs on the carbon sequestration capacity of seagrass ecosystems across five key aspects: (1) MPs act as sources of organic carbon, contributing to direct pollution in seagrass ecosystems; (2) Impacts of MPs on seagrasses and their epiphytic algae, affecting plant growth and net primary productivity; (3) Impacts of MPs on microorganisms, influencing production of recalcitrant dissolved organic carbon and greenhouse gas; (4) Impacts of MPs on seagrass sediments, altering the quality, structure, properties and decomposition processes of plant litters; (5) Other complex impacts on the seagrass ecosystems, depending on different behaviors of MPs. Latest progress in these fields are summarized and recommendations for future work are discussed. This review can provide valuable insights to facilitate future multidisciplinary investigations and encourage society-wide implementation of effective conservation measures to enhance the carbon sequestration capacity of seagrass beds.
Collapse
Affiliation(s)
- Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Changjun Li
- School of Oceanography, Yantai University, Yantai, 265500, China
| | - Yong Zhao
- 3rd Construction Co., Ltd of China Construction 5th Engineering Bureau, Changsha, 410021, China
| | - Yike He
- Marine Geological Resources Survey Center of Hebei Province, Qinhuangdao, 066000, China
| | - Wentao Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266000, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264000, China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China.
| |
Collapse
|
4
|
Souza AMC, Ferreira GVB, de Los Santos CB, Frédou FL, Magalhães KM. Anthropogenic microparticles accumulation in small-bodied seagrass meadows: The case of tropical estuarine species in Brazil. MARINE POLLUTION BULLETIN 2024; 207:116799. [PMID: 39178521 DOI: 10.1016/j.marpolbul.2024.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Seagrass meadows have recently been highlighted as potential hotspots for microplastic and anthropogenic microparticles (APs). This study assessed AP accumulation in shallow sediments vegetated by small-bodied seagrass species (Halodule wrightii, Halophila decipiens, and H. baillonii) and in the adjacent unvegetated area in a tropical estuary on the East Coast of South America, Brazil, over the seasonal cycle. Anthropogenic microparticles were detected in 80 % of the samples, with a mean abundance of 142 ± 140 particles kg-1 dw (N = 80). Particles were predominantly blue (51 %), fiber (73 %), and smaller than 1 mm (80 %). We observed that seagrass sediments retained APs, although no significant variation was observed between seagrass and the unvegetated area, nor between the dry and rainy seasons. A positive correlation was found between sediment grain size and AP abundance. This study represents the first record of AP contamination in seagrasses from the Tropical Southwestern Atlantic bioregion.
Collapse
Affiliation(s)
- Ana M C Souza
- Programa de Pós-Graduação em Biodiversidade (PPGBio), Universidade Federal Rural de Pernambuco - UFRPE, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE CEP 52171-900, Brazil.
| | - Guilherme V B Ferreira
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Avenida São José do Barreto, 764, Macaé, RJ 27965-045, Brazil; Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (DEPAQ/UFRPE), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil.
| | - Carmen B de Los Santos
- Centre a of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal.
| | - Flávia L Frédou
- Programa de Pós-Graduação em Biodiversidade (PPGBio), Universidade Federal Rural de Pernambuco - UFRPE, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE CEP 52171-900, Brazil; Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (DEPAQ/UFRPE), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil.
| | - Karine M Magalhães
- Programa de Pós-Graduação em Biodiversidade (PPGBio), Universidade Federal Rural de Pernambuco - UFRPE, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE CEP 52171-900, Brazil; Departamento de Biologia, Universidade Federal Rural de Pernambuco - DB/UFRPE, Campus Sede, Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil.
| |
Collapse
|
5
|
Martinez M, Minetti R, La Marca EC, Montalto V, Rinaldi A, Costa E, Badalamenti F, Garaventa F, Mirto S, Ape F. The power of Posidonia oceanica meadows to retain microplastics and the consequences on associated macrofaunal benthic communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123814. [PMID: 38499170 DOI: 10.1016/j.envpol.2024.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
In the coastal environment, a large amount of microplastics (MPs) can accumulate in the sediments of seagrass beds. However, the potential impact these pollutants have on seagrasses and associated organisms is currently unknown. In this study, we investigated the differences in MPs abundance and composition (i.e., shape, colour and polymer type) in marine sediments collected at different depths (-5 m, -15 m, -20 m) at two sites characterized by the presence of Posidonia oceanica meadows and at one unvegetated site. In the vegetated sites, sediment samples were collected respectively above and below the upper and lower limits of the meadow (-5 m and -20 m), out of the P. oceanica meadow, and in the central portion of the meadow (-15 m). By focusing on the central part of the meadow, we investigated if the structural features (i.e. shoots density and leaf surface) can affect the amount of MPs retained within the underlying sediment and if these, in turn, can affect the associated benthic communities. Results showed that the number of MPs retained by P. oceanica meadows was higher than that found at the unvegetated site, showing also a different composition. In particular, at vegetated sites, we observed that MPs particles were more abundant within the meadow (at - 15 m), compared to the other depths, on unvegetated sediment, with a dominance of transparent fragments of polypropylene (PP). We observed that MPs entrapment by P. oceanica was accentuated by the higher shoots density, while the seagrass leaf surface did not appear to have any effect. Both the abundance and richness of macrofauna associated with P. oceanica rhizomes appear to be negatively influenced by the MPs abundance in the sediment. Overall, this study increases knowledge of the potential risks of MPs accumulation in important coastal habitats such as the Posidonia oceanica meadows.
Collapse
Affiliation(s)
- Marco Martinez
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy.
| | - Roberta Minetti
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy
| | - Emanuela Claudia La Marca
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Valeria Montalto
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Alessandro Rinaldi
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Elisa Costa
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy
| | - Fabio Badalamenti
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Francesca Garaventa
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Simone Mirto
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Francesca Ape
- Institute of Marine Sciences, National Research Council (ISMAR-CNR) Via Gobetti, 101, 40129, Bologna, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
6
|
Ledet J, Tan C, Guan XH, Yong CLX, Ying L, Todd P. Trapping of microplastics and other anthropogenic particles in seagrass beds: Ubiquity across a vertical and horizontal sampling gradient. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106487. [PMID: 38583358 DOI: 10.1016/j.marenvres.2024.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Seagrass beds can trap large amounts of marine debris leading to areas of accumulation, known as 'sinks', of anthropogenic particles. While the presence of vegetation can enhance accumulation, less is known about how the trapping effect changes from vegetated to less vegetated patches. To test this, vegetation and sediment were sampled along a vegetation percent cover gradient from the centre of seagrass beds to nearby less vegetated patches. To determine whether trapped particles can lead to increased accumulation in associated fauna, gastropods were also collected from the transects laid across this gradient. Extracted anthropogenic particles were counted and characterised. Particles were detected in all sample types and reached quantifiable limits in at least 50% of sediment and gastropod samples. There was no significant difference in the distribution of particles found in seagrass beds compared to less vegetated patches, suggesting other factors contribute to the trapping efficiency of biogenic habitats besides simply the presence or absence of vegetation.
Collapse
Affiliation(s)
- Janine Ledet
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Chloe Tan
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Xing Hua Guan
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Clara Lei Xin Yong
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Lynette Ying
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558
| | - Peter Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Block S3 Level 2, Singapore, 117558.
| |
Collapse
|
7
|
Jiang J, He L, Zheng S, Liu J, Gong L. A review of microplastic transport in coastal zones. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106397. [PMID: 38377936 DOI: 10.1016/j.marenvres.2024.106397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Transport of microplastics (MPs) in coastal zones is influenced not only by their own characteristics, but also by the hydrodynamic conditions and coastal environment. In this article, we first summarized the source, distribution and abundance of MPs in coastal zones around the world through the induction of in-situ observation literature, and then comprehensively reviewed the different transports of MPs in coastal zones, including sedimentation, vertical mixing, resuspension, drift and biofouling. Afterwards, we conducted a comparative analysis of relevant experimental literature, and found that the current experimental research on microplastic transport mainly focused on the settling velocity under static water and the transport distribution under dynamic water. Based on the relevant literature on numerical simulation of microplastic transport in coastal zones, it was also found that the Euler-Lagrange method is the most widely used. The main influencing factor in the Euler method is hydrodynamic, while the Lagrange method and Euler-Lagrange method is hydrodynamic and microplastic particle characteristics. Tides in hydrodynamics are mentioned the most frequently, and the role of turbulence in almost all the literature. The density of MPs is the most influencing factor on transport results, followed by size, while shape is only studied in small-scale models. Some literature has also found that the influence of biofilms is mainly reflected in the changes in the density and size of MPs.
Collapse
Affiliation(s)
- Jianhao Jiang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Lulu He
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China.
| | - Shiwei Zheng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China; Zhejiang Design Institute of Water Conservancy and Hydroelectric Power, Hangzhou, 310002, Zhejiang, China
| | - Junping Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Lixin Gong
- The Eighth Geological Brigade, Hebei Bureau of Geology and Mineral Resources Exploration, Qinhuangdao, 066001, Hebei, China; Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao, 066001, Hebei, China
| |
Collapse
|
8
|
McIlwraith HK, Lindeque PK, Miliou A, Tolhurst TJ, Cole M. Microplastic shape influences fate in vegetated wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123492. [PMID: 38311156 DOI: 10.1016/j.envpol.2024.123492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Coastal areas are prone to plastic accumulation due to their proximity to land based sources. Coastal vegetated habitats (e.g., seagrasses, saltmarshes, mangroves) provide a myriad of ecosystem functions, such as erosion protection, habitat refuge, and carbon storage. The biological and physical factors that underlie these functions may provide an additional benefit: trapping of marine microplastics. While microplastics occurrence in coastal vegetated sediments is well documented, there is conflicting evidence on whether the presence of vegetation enhances microplastics trapping relative to bare sites and the factors that influence microplastic trapping remain understudied. We investigated how vegetation structure and microplastic type influences trapping in a simulated coastal wetland. Through a flume experiment, we measured the efficiency of microplastic trapping in the presence of branched and grassy vegetation and tested an array of microplastics that differ in shape, size, and polymer. We observed that the presence of vegetation did not affect the number of microplastics trapped but did affect location of deposition. Microplastic shape, rather than polymer, was the dominant factor in determining whether microplastics were retained in the sediment or adhered to the vegetation canopy. Across the canopy, microfibre concentrations decreased from the leading edge to the interior which suggests that even on a small-scale, vegetation has a filtering effect. The outcome of this study enriches our understanding of coastal vegetation as a microplastics sink and that differences among microplastics informs where they are most likely to accumulate within a biogenic canopy.
Collapse
Affiliation(s)
- Hayley K McIlwraith
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK; University of East Anglia, School of Environmental Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Penelope K Lindeque
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | - Anastasia Miliou
- Archipelagos Institute of Marine Conservation, Pythagorio, Samos, 83103, Greece
| | - Trevor J Tolhurst
- University of East Anglia, School of Environmental Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK.
| |
Collapse
|
9
|
Zhang C, Bao F, Wang F, Xue Z, Lin D. Toxic effects of nanoplastics and microcystin-LR coexposure on the liver-gut axis of Hypophthalmichthys molitrix. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170011. [PMID: 38220005 DOI: 10.1016/j.scitotenv.2024.170011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Plastic products and nutrients are widely used in aquaculture facilities, resulting in copresence of nanoplastics (NPs) released from plastics and microcystins (MCs) from toxic cyanobacteria. The potential effects of NPs-MCs coexposure on aquatic products require investigation. This study investigated the toxic effects of polystyrene (PS) NPs and MC-LR on the gut-liver axis of silver carp Hypophthalmichthys molitrix, a representative commercial fish, and explored the effects of the coexposure on intestinal microorganism structure and liver metabolic function using traditional toxicology and multi-omics association analysis. The results showed that the PS-NPs and MC-LR coexposure significantly shortened villi length, and the higher the concentration of PS-NPs, the more obvious the villi shortening. The coexposure of high concentrations of PS-NPs and MC-LR increased the hepatocyte space in fish, and caused obvious loss of gill filaments. The diversity and richness of the fish gut microbes significantly increased after the PS-NPs exposure, and this trend was amplified in the copresence of MC-LR. In the coexposure, MC-LR contributed more to the alteration of fish liver metabolism, which affected the enrichment pathway in glycerophospholipid metabolism and folic acid biosynthesis, and there was a correlation between the differential glycerophospholipid metabolites and affected bacteria. These results suggested that the toxic mechanism of PS-NPs and MC-LR coexposure may be pathological changes of the liver, gut, and gill tissues, intestinal microbiota disturbance, and glycerophospholipid metabolism imbalance. The findings not only improve the understanding of environmental risks of NPs combined with other pollutants, but also provide potential microbiota and glycerophospholipid biomarkers in silver carp.
Collapse
Affiliation(s)
- Chaonan Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Huzhou 313300, China
| | - Feifan Bao
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Zhihao Xue
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Huzhou 313300, China.
| |
Collapse
|
10
|
Ciaralli L, Rotini A, Scalici M, Battisti C, Chiesa S, Christoforou E, Libralato G, Manfra L. The under-investigated plastic threat on seagrasses worldwide: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8341-8353. [PMID: 38170360 DOI: 10.1007/s11356-023-31716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Marine plastic pollution is a well-recognised and debated issue affecting most marine ecosystems. Despite this, the threat of plastic pollution on seagrasses has not received significant scientific attention compared to other marine species and habitats. The present review aims to summarise the scientific data published in the last decade (January 2012-2023), concerning the evaluation of plastic pollution, of all sizes and types, including bio-based polymers, on several seagrass species worldwide. To achieve this goal, a comprehensive and critical review of 26 scientific papers has been carried out, taking into consideration the investigated areas, the seagrass species and the plant parts considered, the experimental design and the type of polymers analysed, both in field monitoring and in laboratory-controlled experiments. The outcomes of the present review clearly showed that the dynamics and effects of plastic pollution in seagrass are still under-explored. Most data emerged from Europe, with little or no data on plastic pollution in North and South America, Australia, Africa and Antarctica. Most of the studies were devoted to microplastics, with limited studies dedicated to macroplastics and only one to nanoplastics. The methodological approach (in terms of experimental design and polymer physico-chemical characterisation) should be carefully standardised, beside the use of a model species, such as Zostera marina, and further laboratory experiments. All these knowledge gaps must be urgently fulfilled, since valuable and reliable scientific knowledge is necessary to improve seagrass habitat protection measures against the current plastic pollution crisis.
Collapse
Affiliation(s)
- Laura Ciaralli
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati, 48, 00144, Rome, Italy
| | - Alice Rotini
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati, 48, 00144, Rome, Italy.
| | - Massimiliano Scalici
- Department of Sciences, University of Rome, Roma 3", Viale Guglielmo Marconi 446, 00146, Rome, Italy
- National Biodiversity Future Center (NBFC), Università Di Palermo, Piazza Marina 61, 90133, Palermo, Italy
| | - Corrado Battisti
- Protected Areas Service, Torre Flavia' LTER (Long Term Ecological Research) Station, Città Metropolitana Di Roma Capitale, Viale G. Ribotta, 41, 00144, Rome, Italy
| | - Stefania Chiesa
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati, 48, 00144, Rome, Italy
| | - Eleni Christoforou
- Cyprus Marine and Maritime Institute, CMMI House, Vasileos Pavlou Square, 6023, Larnaca, Cyprus
- Department of Chemical Engineering, Cyprus University of Technology, 3036, Limassol, Cyprus
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy
- Department of Ecosustainable Marine Biotechnology, Villa Comunale, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Loredana Manfra
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati, 48, 00144, Rome, Italy
- Department of Ecosustainable Marine Biotechnology, Villa Comunale, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| |
Collapse
|
11
|
Shi R, Liu W, Lian Y, Wang X, Men S, Zeb A, Wang Q, Wang J, Li J, Zheng Z, Zhou Q, Tang J, Sun Y, Wang F, Xing B. Toxicity Mechanisms of Nanoplastics on Crop Growth, Interference of Phyllosphere Microbes, and Evidence for Foliar Penetration and Translocation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1010-1021. [PMID: 37934921 DOI: 10.1021/acs.est.3c03649] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Despite the increasing prevalence of atmospheric nanoplastics (NPs), there remains limited research on their phytotoxicity, foliar absorption, and translocation in plants. In this study, we aimed to fill this knowledge gap by investigating the physiological effects of tomato leaves exposed to differently charged NPs and foliar absorption and translocation of NPs. We found that positively charged NPs caused more pronounced physiological effects, including growth inhibition, increased antioxidant enzyme activity, and altered gene expression and metabolite composition and even significantly changed the structure and composition of the phyllosphere microbial community. Also, differently charged NPs exhibited differential foliar absorption and translocation, with the positively charged NPs penetrating more into the leaves and dispersing uniformly within the mesophyll cells. Additionally, NPs absorbed by the leaves were able to translocate to the roots. These findings provide important insights into the interactions between atmospheric NPs and crop plants and demonstrate that NPs' accumulation in crops could negatively impact agricultural production and food safety.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xue Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuzhen Men
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Li C, Zhu L, Li WT, Li D. Microplastics in the seagrass ecosystems: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166152. [PMID: 37567296 DOI: 10.1016/j.scitotenv.2023.166152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Marine microplastic (MP) pollution represents a global environmental issue that has ignited considerable apprehension within the international community. Seagrass beds, which serve as nearshore marine ecosystems, have emerged as focal points of plastic and MP contamination due to the pronounced density of anthropogenic activities and the hydrological mitigating effects of submerged vegetation. Nevertheless, our comprehension of MPs within seagrass ecosystems remains constrained. In this study, we employed bibliometric analyses and comprehensive data exploration to summarize the historical progression of the development, pivotal areas of interest, and research deficiencies, followed by proposing future research directions for MP pollution in seagrass beds. The 37 selected papers were sourced from the Web of Science Core Collection scientific database as of December 31st, 2022. Based on the current evaluation, MPs are ubiquitously discovered within seagrass canopies, sediments, and marine organisms, while less than 15 % of seagrass species worldwide have been investigated. Moreover, methodological inconsistencies in sampling, processing and visualization between studies hindered the fusion and comparison of data. MPs in upper sediments and seagrass blades were the most widely investigated, with an average abundance of 263.4 ± 309.2 n/kg and 0.09 ± 0.03 n/blade. In all environmental compartments, the prevalent forms of MPs comprise fibrous and fragmented particles, encompassing the dominant polymers such as polypropylene, polyethylene and polyethylene terephthalate. However, the source of MPs in seagrass beds based on MP characteristics and local hydrodynamics has not been comprehensively analyzed in previous studies. The evidence for MPs acting as pollutants and contaminant carries impacting the growth and decline of seagrass is also weak. Currently, the precise implications of MPs on submerged vegetation, organisms, and the broader seagrass ecosystem remain inconclusive. However, considering the persistent accumulation of MPs, it is imperative to explore the ecological hazards they may pose within the foreseeable future.
Collapse
Affiliation(s)
- Changjun Li
- Ocean School, Yantai University, Yantai, China.
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China; Department of Marine and Environmental Science, Northeastern University, Boston, MA, USA
| | - Wen-Tao Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
13
|
Barcelona A, Colomer J, Serra T, Cossa D, Infantes E. The role epiphytes play in particle capture of seagrass canopies. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106238. [PMID: 37883828 DOI: 10.1016/j.marenvres.2023.106238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Seagrass epiphytic communities act as ecological indicators of the quality status of vegetated coastal environments. This study aims to determine the effect leaf epiphytes has on the sediment capture and distribution from outside sources. Thirteen laboratory experiments were conducted under a wave frequency of 0.5 Hz. Three epiphyte models were attached to a Zostera marina canopy of 100 plants/m2 density. The sediment deposited to the seabed, captured by the epiphytic leaf surface, and remaining in suspension within the canopy were quantified. This study demonstrated that the amount of epiphytes impacts on the sediment stocks. Zostera marina canopies with high epiphytic areas and long effective leaf heights may increase the sediment captured on the epiphyte surfaces. Also, reducing suspended sediment and increasing the deposition to the seabed, therefore enhancing the clarity of the water column. For largest epiphytic areas, a 34.5% increase of captured sediment mass is observed. The sediment trapped on the leaves can be 10 times greater for canopies with the highest epiphytic areas than those without epiphytes. Therefore, both the effective leaf length and the level of epiphytic colonization are found to determine the seagrass canopy ability at distributing sediment.
Collapse
Affiliation(s)
- Aina Barcelona
- Department of Physics, University of Girona, 17071, Girona, Spain.
| | - Jordi Colomer
- Department of Physics, University of Girona, 17071, Girona, Spain
| | - Teresa Serra
- Department of Physics, University of Girona, 17071, Girona, Spain
| | - Damboia Cossa
- Department of Marine Sciences, Kristineberg, University of Gothenburg, 45178, Sweden; Eduardo Mondlane University, Department of Biological Sciences, Maputo, Mozambique
| | - Eduardo Infantes
- Department of Biological and Environmental Sciences, Kristineberg, University of Gothenburg, 45178, Sweden
| |
Collapse
|
14
|
Wang Y, Bai J, Wen L, Wang W, Zhang L, Liu Z, Liu H. Phytotoxicity of microplastics to the floating plant Spirodela polyrhiza (L.): Plant functional traits and metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121199. [PMID: 36738884 DOI: 10.1016/j.envpol.2023.121199] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Freshwater ecosystems are gradually becoming sinks for terrestrial microplastics (MPs), posing a potential ecological risk. Although the effects of MPs on plankton and aquatic animals in freshwater ecosystems have been given increasing attention, the toxicity of MPs to the metabolism of aquatic plants remains unclear. Here, the model aquatic plant Spirodela polyrhiza (L.) Schleid. (S. polyrhiza) was exposed to polyvinyl chloride (PVC; 0, 10, 100 and 1000 mg/L) MPs, and changes in the plant functional traits and physiological metabolism were monitored. The results showed that the high dose of PVC MPs decreased the adventitious root elongation ratio by 41.68% and leaf multiplication ratio by 61.03% of S. polyrhiza, and resulted in the decrease in anthocyanin and nitrogen contents to 63.45% and 84.21% of the control group, respectively. Moreover, the widely targeted metabolomics analysis results showed 37 differential metabolites in the low-dose treatment and 119 differential metabolites in the high-dose treatment. PVC MPs interfered with organic matter accumulation by affecting carbon metabolism, nitrogen metabolism, amino acid metabolism and lipid metabolism, and S. polyrhiza resists PVC MP stress by regulating the synthesis and metabolism of secondary metabolites. PVC MPs had concentration-related toxicological effects on plant functional traits, inhibited plant growth and reproduction, affected plant nutrient metabolism, and exhibited profound effects on the nitrogen fate of aquatic plant habitats. Overall, we systematically summarized the metabolic response mechanisms of aquatic plants to PVC MP stress, providing a new perspective for studying the effects of MPs on plant trait function and ecological risks.
Collapse
Affiliation(s)
- Yaqi Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Lixiang Wen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Wei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Zhe Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Haizhu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
15
|
Hao B, Wu H, You Y, Liang Y, Huang L, Sun Y, Zhang S, He B. Bacterial community are more susceptible to nanoplastics than algae community in aquatic ecosystems dominated by submerged macrophytes. WATER RESEARCH 2023; 232:119717. [PMID: 36796151 DOI: 10.1016/j.watres.2023.119717] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
As a ubiquitous emerging pollutant, microplastics can interact with algal and bacterial communities in aquatic ecosystems. Currently, knowledge on how microplastics influence algae/bacteria is mostly limited to toxicity tests using either monocultures of algae/bacteria or specific algal-bacterial consortium. However, information on the effect of microplastics on algal and bacterial communities in natural habitats is not easily available. Here, we conducted a mesocosm experiment to test the effect of nanoplastics on algal and bacterial communities in aquatic ecosystems dominated by different submerged macrophytes. The community structure of algae and bacteria suspended in the water column (planktonic) and attached to the surface of submerged macrophytes (phyllospheric) were identified, respectively. Results showed that both planktonic and phyllospheric bacteria were more susceptible to nanoplastics, and these variations driven by decreased bacterial diversity and increased abundance of microplastic-degrading taxa, especially in aquatic systems dominated by V. natans. The community composition of both algae and bacteria were influenced to varying degrees by nanoplastics and/or plant types, but RDA results showed that only bacterial community composition was strongly correlated with environmental variables. Correlation network analysis showed that nanoplastics not only reduced the intensity of associations between planktonic algae and bacteria (average degree reduced from 4.88 to 3.24), but also reduced proportion of positive correlations (from 64% to 36%). Besides, nanoplastics also decreased the algal/bacterial connections between planktonic and phyllospheric habitats. Our study elucidates the potential interactions between nanoplastics and algal-bacterial community in natural aquatic ecosystems. These findings suggest that in aquatic ecosystems, bacterial community are more vulnerable to nanoplastics and may serve as a protective barrier for algae community. Further research is needed to reveal the protective mechanism of bacteria against algae at the community level.
Collapse
Affiliation(s)
- Beibei Hao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haoping Wu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yi You
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ying Liang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lihua Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yan Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Siyi Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bin He
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
16
|
Zhao X, Zhou Y, Liang C, Song J, Yu S, Liao G, Zou P, Tang KHD, Wu C. Airborne microplastics: Occurrence, sources, fate, risks and mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159943. [PMID: 36356750 DOI: 10.1016/j.scitotenv.2022.159943] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
This paper serves to enhance the current knowledge base of airborne microplastics which is significantly smaller than that of microplastics in marine, freshwater and terrestrial environments. It systematically presents the prevalence, sources, fate, risks and mitigations of airborne microplastics through the review of >140 scientific papers published mainly in the last 10 years. Unlike the extant review, it places an emphasis on the indoor microplastics, the risks of airborne microplastics on animals and plants and their mitigations. The outdoor microplastics are mostly generated by the wear and tear of tires, brake pads, waste incineration and industrial activities. They have been detected in many regions worldwide at concentrations ranging from 0.3 particles/m3 to 154,000 particles/L of air even in the Pyrenees Mountains and the Arctic. As for indoor microplastics, the reported concentrations range from 1 piece/m3 to 9900 pieces/m2/day, and are frequently higher than those of the outdoor microplastics. They come from the wear and tear of walls and ceilings, synthetic textiles and furniture finishings. Airborne microplastics could be suspended and resuspended, entrapped, settle under gravity as well as interact with chemicals, microorganisms and other microplastic particles. In the outdoors, they could also interact with sunlight and be carried by the wind over long distance. Airborne microplastics could adversely affect plants, animals and humans, leading to reduced photosynthetic rate, retarded growth, oxidative stress, inflammatory responses and increased cancer risks in humans. They could be mitigated indirectly through filters attached to air-conditioning system and directly through source reduction, regulation and biodegradable substitutes.
Collapse
Affiliation(s)
- Xinran Zhao
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Yupeng Zhou
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Chenzhe Liang
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Jianchen Song
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Siyun Yu
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Gengxuan Liao
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Peiyan Zou
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| | - Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA..
| | - Chenmiao Wu
- Environmental Science Programme, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
17
|
He S, Wei Y, Yang C, He Z. Interactions of microplastics and soil pollutants in soil-plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120357. [PMID: 36220572 DOI: 10.1016/j.envpol.2022.120357] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
In recent years, increasing studies have been reported on characterization and detection of microplastics (MPs), and their interactions with organic pollutants (OPs) and heavy metals (HMs) in soils. However, a comprehensive review on the characteristics and factors that influence MPs distribution in soils, the sorption characteristics and mechanisms of soil contaminants by MPs, especially the interactions of MPs and their complexes with pollutants in the soil-plant systems remains rarely available at present. This review focuses on the sorption features and mechanisms of pollutants by MPs in soil and discussed the effects of MPs and their complexing with pollutants on soil properties, microbe and plants. The polarity of MPs significantly influenced the sorption of OPs, and different sorption mechanisms are involved for the hydrophobic and hydrophilic OPs. The sorption of OPs on MPs in soils is different from that in water. Aging of MPs can promote the sorption and migration of contaminants. The enhanced effects of biofilm in microplastisphere on the sorption of pollutants by MPs are critical, and interactions of soil environment-MPs-microbe-HMs-antibiotics increase the potential pathogens and larger release of resistance genes. The coexistence of HMs and MPs affected the growth of plants and the uptake of HMs and MPs by the plants. Moreover, the type, dose, shape and particle size of MPs have important influences on their interactions with pollutants and subsequent effects on soil properties, microbial activities and plant growth. This review also pointed out some knowledge gaps and constructive countermeasures to promote future research in this field.
Collapse
Affiliation(s)
- Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China.
| | - Yufei Wei
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministryof Education, Changsha, Hunan, 410082, China
| | - Zhenli He
- Department Soil and Water Sciences / Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida, 34945, USA
| |
Collapse
|
18
|
Gaboy SMM, Guihawan JQ, Leopardas VE, Bacosa HP. Unravelling macroplastic pollution in seagrass beds of Iligan City, Mindanao, Philippines. MARINE POLLUTION BULLETIN 2022; 185:114233. [PMID: 36252442 DOI: 10.1016/j.marpolbul.2022.114233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Despite being a leading pollutant in the ocean, there are limited studies about plastic litter in seagrasses, and none has been documented in the Philippines. This study determined the abundance and composition of macroplastics in seagrass beds of Iligan City, Philippines. Plastics were collected from transect lines laid in seagrass beds of four sites (Dalipuga, Hinaplanon, Tominobo and Buru-un), and three locations (landward, midward, seaward) in each site, periodically within 42 days. A total of 921 macroplastic items were collected in all sampling sites, of which 308 were from Buru-un, 271 from Tominobo, 240 from Dalipuga, and 102 from Hinaplanon. Landward areas have a significantly higher density than either midward or seaward. The first sampling was higher than the succeeding sampling period. Food packaging, plastic bags, and fragments predominated the litter in seagrass. This study is the first to document the presence of macroplastics in seagrass beds in the Philippines.
Collapse
Affiliation(s)
- Shiela Mae M Gaboy
- Environmental Science Graduate Program, Department of Biological Sciences, Mindanao State University- Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City, Lanao del Norte 9200, Philippines.
| | - Jaime Q Guihawan
- Environmental Science Graduate Program, Department of Biological Sciences, Mindanao State University- Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City, Lanao del Norte 9200, Philippines
| | - Venus E Leopardas
- College of Marine and Allied Sciences, Mindanao State University at Naawan, Naawan, Misamis Oriental 9023, Philippines
| | - Hernando P Bacosa
- Environmental Science Graduate Program, Department of Biological Sciences, Mindanao State University- Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City, Lanao del Norte 9200, Philippines
| |
Collapse
|
19
|
Peng L, Wang Y. Sediment organic carbon dominates the heteroaggregation of suspended sediment and nanoplastics in natural and surfactant-polluted aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129802. [PMID: 36007369 DOI: 10.1016/j.jhazmat.2022.129802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The aggregation of nanoplastics (NPs) and suspended sediment (SPS) is the key to the transport and environmental fate of NPs. However, the influence of SPS composition and environmental conditions on this process and its mechanisms are still unclear. In this study, the heteroaggregation of NPs and SPS of different compositions is systematically explored under natural and surfactant-polluted aquatic environments (NaCl, humic acid, cetyltrimethylammonium bromide (CTAB)). The results showed that sediment organic carbon (SOC) dominates the aggregation and that different kinds of SOC (comprised of both amorphous organic carbon (AOC) and black carbon (BC)) contribute vary under distinct conditions. In natural freshwater, AOC represents a larger contribution to aggregation because of its weaker electrostatic repulsion compared to that of BC. However, BC represents a larger contribution in natural seawater resulting from decreased electrostatic repulsion and more hydrogen bonding. Conversely, in surfactant-polluted aquatic environments, both AOC and BC have a high contribution owing to the bridge effect plus hydrogen bonding. Notably, minerals' contribution in aggregates remains low under all conditions. Furthermore, CTAB typically inhibits aggregation except under special conditions. The findings of this study contribute notably to a better understanding of the migration of nanoplastics in complex aquatic environments.
Collapse
Affiliation(s)
- Ling Peng
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Ying Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
20
|
Gerstenbacher CM, Finzi AC, Rotjan RD, Novak AB. A review of microplastic impacts on seagrasses, epiphytes, and associated sediment communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119108. [PMID: 35259472 DOI: 10.1016/j.envpol.2022.119108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Microplastics have been discovered ubiquitously in marine environments. While their accumulation is noted in seagrass ecosystems, little attention has yet been given to microplastic impacts on seagrass plants and their associated epiphytic and sediment communities. We initiate this discussion by synthesizing the potential impacts microplastics have on relevant seagrass plant, epiphyte, and sediment processes and functions. We suggest that microplastics may harm epiphytes and seagrasses via impalement and light/gas blockage, and increase local concentrations of toxins, causing a disruption in metabolic processes. Further, microplastics may alter nutrient cycling by inhibiting dinitrogen fixation by diazotrophs, preventing microbial processes, and reducing root nutrient uptake. They may also harm seagrass sediment communities via sediment characteristic alteration and organism complications associated with ingestion. All impacts will be exacerbated by the high trapping efficiency of seagrasses. As microplastics become a permanent and increasing member of seagrass ecosystems it will be pertinent to direct future research towards understanding the extent microplastics impact seagrass ecosystems.
Collapse
Affiliation(s)
| | - Adrien C Finzi
- Department of Biology, Boston University, MA, 02215, USA
| | - Randi D Rotjan
- Department of Biology, Boston University, MA, 02215, USA
| | - Alyssa B Novak
- Department of Earth and Environment, Boston University, MA, 02215, USA.
| |
Collapse
|