1
|
Gao S, Huang G, Han D. Plastic Leachates Disproportionately Impair Aquatic Animals: A Multifactor, Multieffect, and Multilevel Meta-analytic Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40420422 DOI: 10.1021/acs.est.5c01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
While the toxicity of microplastics (MPs) and nanoplastics (NPs) has been demonstrated, studies focusing on plastic leachates (PLs) in isolation remain limited. Herein, we developed a multifactor, multieffect, and multilevel meta-analytic model (3M) to systematically evaluate the toxicity of PLs to aquatic animals and examine the impacts of multiple influencing factors. Six biochemical functions (survival, growth, development, reproduction, behavior, and physiology) of aquatic animals and impacts of 20 influencing factors (plastic characteristics, environmental conditions, and animal traits) were analyzed. The results revealed that PLs significantly impaired aquatic animals, with an overall effect of -28% (-40, -16%) on survival, 10% (-18, -2%) on growth, 30% (-44, -16%) on development, and 13% (-25, -2%) on reproduction. PL toxicity was positively correlated with plastic size and concentration and influenced by polymer type, biodegradability, aging conditions, and leaching conditions. Notably, marine species showed greater sensitivity than freshwater species, and primary consumers were more vulnerable than secondary consumers. Future research should prioritize environmentally relevant PL concentrations, standardized leaching procedures, and transparent reporting of environmental conditions. By identifying the key drivers of toxicity, our findings provide a valuable foundation for future efforts to develop effective strategies for mitigating PL toxicity.
Collapse
Affiliation(s)
- Sichen Gao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Guohe Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Dengcheng Han
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
2
|
Barbosa RS, Silva ALP, Rodrigues ACM, Soares AMVM, Sarmento RA, Gravato C. Polymer-specific stress responses in planarians exposed to microplastics of similar size. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 285:107428. [PMID: 40449166 DOI: 10.1016/j.aquatox.2025.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/14/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025]
Abstract
Due to their potential ecological impacts, environmental contamination by microplastics (MPs) has gained significant attention. This study investigated the adverse effects of dietary exposure to three distinct polymer types of MPs with similar size-aliphatic polyurethane (PU), polyethylene-polytetrafluoroethylene composite (PE-PTFE), and high-density polyethylene-polytetrafluoroethylene-alumina nanocomposite (HDPE-PTFE-alumina) on the freshwater planarian Girardia tigrina. Dietary exposure was simulated to assess the effects of MPs on the organisms' defense systems and locomotor behavior. The biomarkers assessed were related to oxidative stress, detoxification, antioxidant capacity, cellular energy allocation, planarian locomotor velocity, physiology, and cholinesterase activity. The exposure to PU MPs induced the most pronounced biochemical alterations, with increased glutathione S-transferase, catalase, cholinesterase activities, energy reserves, and aerobic metabolism. Exposure to HDPE-PTFE-alumina MPs also increased glutathione S-transferase activity and aerobic metabolism while reducing lipid peroxidation. In contrast, exposure to PE-PTFE MPs solely reduced lipid peroxidation. Despite these biochemical shifts, planarian movement and physiology were not significantly affected. This study highlights the need for comprehensive analysis of diverse polymers, physiological endpoints, and exposure routes to understand the ecotoxicological impacts of MPs on model species. Additionally, it underscores that comparing effects across polymer types, even within the same species and size range, can lead to confounding results. The results offer valuable insights for future research on long-term sublethal effects, particularly regarding growth, reproduction, behavior, and redox biology in freshwater planarians.
Collapse
Affiliation(s)
- Rone S Barbosa
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal; Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal; Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brasil
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Portugal
| | - Andreia C M Rodrigues
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Portugal
| | | | - Carlos Gravato
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal; Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| |
Collapse
|
3
|
Miao L, Jin Z, Ci H, Adyel TM, Deng X, You G, Xu Y, Wu J, Yao Y, Kong M, Hou J. Dynamic changes of leachates of aged plastic debris under different suspended sand concentrations and their toxicity. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136874. [PMID: 39700944 DOI: 10.1016/j.jhazmat.2024.136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Plastic pollution in aquatic environments poses significant ecological risks, particularly through released leachates. While traditional or non-biodegradable plastics (non-BPs) are well-studied, biodegradable plastics (BPs) have emerged as alternatives that are designed to degrade more rapidly within the environment. However, research on the ecological risks of the leachates from aged BPs in aquatic environments is scarce. This controlled laboratory study investigated the leachate release processes and associated toxicity of traditional non-BPs, i.e., polyethylene terephthalate (PET) and polypropylene (PP) and BPs, i.e., polylactic acid (PLA) combined with polybutylene adipate terephthalate (PBAT) and starch-based plastic (SBP) under different aging time and suspended sand concentrations (0, 50, 100, 250, and 500 mg/L). The results indicated that BPs release significantly higher levels of dissolved organic carbon (DOC) than those of non-BPs, particularly at elevated suspended sand concentrations. The DOC concentrations in PLA+PBAT leachate reached 2.69 mg/L, surpassing those of PET and PP. Additionally, BPs released organic matter of larger molecular weight and protein-like substances. Toxicity tests showed that leachates from BPs inhibited the activity of Daphnia magna more than those from non-BPs. At a suspended sand concentration of 500 mg/L, PLA+PBAT leachate caused a 30 % inhibitory rate of Daphnia magna. Despite enhanced degradability, leachates from BPs may pose increased environmental risks in ecosystems with high suspended sand concentrations. Comprehensive ecological risk assessments are essential for effectively managing and mitigating these hazards of plastic pollution.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhuoyi Jin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hanlin Ci
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200434, PR China
| | - Tanveer M Adyel
- Centre for Nature Positive Solutions, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xiaoya Deng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China.
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
4
|
Boháčková J, Cajthaml T. Contribution of chemical toxicity to the overall toxicity of microplastic particles: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177611. [PMID: 39557166 DOI: 10.1016/j.scitotenv.2024.177611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Nanoplastics and microplastics are of growing research interest due to their persistence in the environment and potential harm to organisms through physical damage, such as abrasions or blockages, and chemical harm from leached additives and contaminants. Despite extensive research, a clear distinction between the physical and chemical toxicity of plastic particles has been lacking. This study addresses this gap by reviewing studies examining both toxicity types, focusing on environmentally relevant leachates. The chemicals used in plastics manufacturing, which number over 16,000, include additives, processing aids, and monomers, many of which pose potential hazards due to their toxicity, persistence, and bioaccumulation. Studies typically use extraction or leaching methods to assess chemical toxicity, with leaching more closely mimicking environmental conditions. Factors influencing leaching include plastic type, particle size, and environmental conditions. A systematic literature search identified 35 relevant studies that assessed the toxicity of plastic particle suspensions and their leachates. Analysis revealed that, in 52 % of the cases, both the suspension and leachate had toxic effects, while in 35 % of the cases, toxicity was attributed to the suspension alone. At 13 %, only the leachate was toxic. This suggests that leachates contribute significantly to overall toxicity. However, the results vary widely depending on the experimental conditions and plastic type, highlighting the complexity of microplastic toxicity. The preparation methods used for leachates significantly influence toxicity results. Factors such as leaching time, particle size, and separation techniques affect the concentration and presence of toxic chemicals. Additionally, washed particles-those subjected to procedures for removing leachable chemicals-often showed reduced toxicity, although the results varied. This underscores the need for standardized methods to compare studies better and understand the relative contributions of physical and chemical toxicity to microplastic pollution.
Collapse
Affiliation(s)
- Jana Boháčková
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
5
|
Jiang K, Gao Q, Feng J, Zhu S, Zhai W, Wu D, Zhang H, Zhang W, Liu X, Zhang J, Wang S, Wang Z. Impact of phenolic-formaldehyde resin microplastics on anaerobic granular sludge: EPS interaction mechanisms and impacts on reactor performance. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136308. [PMID: 39467432 DOI: 10.1016/j.jhazmat.2024.136308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
This paper investigates the effects of phenolic-formaldehyde resin microplastics (PF-MPs) with different particle sizes on anaerobic granular sludge (AnGS) and reveals the complex interaction mechanisms between extracellular polymeric substances (EPS) and PF-MPs through the combination of molecular dynamics simulations and spectroscopy. PF-MPs provide a new ecological niche for microorganisms. Microorganisms and EPS can adhere and accumulate on the surface of PF-MPs, producing highly active floc sludge inside the reactor, thereby increasing the chemical oxygen demand (COD) removal rate and methane production of the reactor. However, the high metabolic activity of floc sludge consumes the biodegradable components in EPS, resulting in loose rupture of the sludge particles and reduced particle size. In addition, small particle size S-PF can adhere to the sludge surface,which caused mass transfer barriers and reduced the expression of genes and enzyme activities for the sludge acidification process and the main methanogenic processes. Insufficient internal nutrients lead to endogenous metabolism within the granules, causing internal hollowing, which affects the density and settling performance of the sludge. Monolayer physical adsorption plays a major role in the adsorption of EPS on PF-MPs. 2D-COS and FTIR spectroscopy were used to elucidate the preferential binding of polysaccharides to PF-MPs. This paper explores the fate of PF-MPs in anaerobic systems and demonstrates the important role of EPS in the capture of microplastics by granular sludge, providing a theoretical basis for understanding the migration of microplastics in wastewater treatment.
Collapse
Affiliation(s)
- Keyang Jiang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qian Gao
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jinhu Feng
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Sijia Zhu
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wenxia Zhai
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Di Wu
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Huiya Zhang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wei Zhang
- Shandong Sun Paper Co., Ltd., Yanzhou 272100, China
| | - Xi Liu
- Anhui Bossco Environm Co Ltd, Ningguo 242300, China
| | - Jian Zhang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shuangfei Wang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhiwei Wang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
6
|
Omidoyin KC, Jho EH. Environmental occurrence and ecotoxicological risks of plastic leachates in aquatic and terrestrial environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176728. [PMID: 39383966 DOI: 10.1016/j.scitotenv.2024.176728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Plastic pollution poses a significant threat to environmental and human health, with microplastics widely distributed across various ecosystems. Although current ecotoxicological studies have primarily focused on the inherent toxicity of plastics in natural environments, the role of chemical additives leaching from plastics into the environment remains underexplored despite their significant contribution to the overall toxic potential of plastics. Existing systematic studies on plastic leachates have often examined isolated additive compounds, neglecting the ecotoxicological effects of multiple compounds present in plastic leachates. Additionally, most previous research has focused on aquatic environments, overlooking the leaching mechanisms and ecological risks to diverse species with various ecological roles in aquatic and terrestrial ecosystems. This oversight hinders comprehensive ecological risk assessments. This study addresses these research gaps by reviewing the environmental occurrence of plastic leachates and their ecotoxicological impacts on aquatic and terrestrial ecosystems. Key findings reveal the pervasive presence of plastic leachates in various environments, identifying common additives such as phthalates, polybrominated diphenyl ethers (PBDEs), bisphenol A (BPA), and nonylphenols (NPs). Ecotoxicologically, chemical additives leaching from plastics under specific environmental conditions can influence their bioavailability and subsequent uptake by organisms. This review proposes a novel ecotoxicity risk assessment framework that integrates chemical analysis, ecotoxicological testing, and exposure assessment, offering a comprehensive approach to evaluating the risks of plastic leachates. This underscores the importance of interdisciplinary research that combines advanced analytical techniques with ecotoxicological studies across diverse species and environmental conditions to enhance the understanding of the complex impacts of plastic leachates and inform future research and regulatory policies.
Collapse
Affiliation(s)
- Kehinde Caleb Omidoyin
- Department of Agricultural Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Eun Hea Jho
- Department of Agricultural Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Department of Agricultural and Biological Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center of SEBIS (Strategic Solutions for Environmental Blindspots in the Interest of Society), 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
7
|
Garello NA, Blettler MCM, Gündoğdu S, Rabuffetti AP, Pascuale D, Espínola LA, Wantzen KM. Trashy treasures? The increasing terrestrial invertebrate diversity in small-scale dumps. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124818. [PMID: 39187059 DOI: 10.1016/j.envpol.2024.124818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
The research on the impact of plastic pollution on biodiversity has primarily focused on aquatic ecosystems, especially marine ones. Therefore, it is vital to assess how plastic pollution affects other environments and organisms, including terrestrial invertebrates. These organisms are widely recognized for their susceptibility to environmental changes and pollution. The objectives of this study were i) to investigate the potential influence (positive or negative) of macroplastic debris (MaP) on invertebrates inhabiting riverine sandy environments, ii) the potential occurrence of the microplastic (MP) adherence phenomenon on the invertebrate's body by entanglement on the body's setae or electrostatic effect (i.e., bioadhesion), and iii) the effects of removal of debris on the colonized diversity. By performing a mesocosm experiment, emulating a "small-scale dump" (also called micro-waste sites), we found that terrestrial invertebrates show a preference for colonizing areas rich in MaP, resulting in higher species richness in these areas (39 taxa in areas containing plastic debris vs. 21 taxa in areas free of plastics). This preference is likely due to the provision of shade, protection, and distinct micro-habitats offered by MaP. Regarding MP, we observed a significant number of invertebrates with MPs attached to their bodies (4.3 ± 0.8 MPs attached per individual), mainly wolf spiders (Lycosidae) and ground beetles (Carabidae), suggesting potential negative ecological implications that are discussed herein.
Collapse
Affiliation(s)
- Nicolás A Garello
- The National Institute of Limnology (INALI, CONICET-UNL), Ciudad Universitaria (3000), Santa Fe, Argentina.
| | - Martín C M Blettler
- The National Institute of Limnology (INALI, CONICET-UNL), Ciudad Universitaria (3000), Santa Fe, Argentina.
| | - Sedat Gündoğdu
- Faculty of Fisheries, Department of Basic Sciences, Cukurova University, 01330, Adana, Turkey.
| | - Ana Pia Rabuffetti
- The National Institute of Limnology (INALI, CONICET-UNL), Ciudad Universitaria (3000), Santa Fe, Argentina.
| | - Daiana Pascuale
- The National Institute of Limnology (INALI, CONICET-UNL), Ciudad Universitaria (3000), Santa Fe, Argentina.
| | - Luis A Espínola
- The National Institute of Limnology (INALI, CONICET-UNL), Ciudad Universitaria (3000), Santa Fe, Argentina.
| | - Karl M Wantzen
- UNESCO Chair River Culture, CNRS UMR, 7324 CITERES and Graduate School of Engineering Polytech Tours, University of Tours, France; EUCOR Excellence Chair "Water and Sustainability", Institut Terre et Environnement de Strasbourg (ITES) (CNRS/ENGEES UMR7063) Université de Strasbourg, France and Karlsruher Institut für Technologie, Germany.
| |
Collapse
|
8
|
Kim C, Kalčíková G, Jung J. Role of benzophenone-3 additive in the effect of polyethylene microplastics on Daphnia magna population dynamics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106901. [PMID: 38493548 DOI: 10.1016/j.aquatox.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The adverse effects of microplastics (MPs) on Daphnia magna have been extensively studied; however, their population-level effects are relatively unknown. This study investigated the effect of polyethylene MP fragments (33.90 ± 17.44 μm) and benzophenone-3 (BP-3), which is a widely used plastic additive (2.91 ± 0.02% w/w), on D. magna population dynamics in a 34-day microcosm experiment. In the growth phase, neither MP nor MP/BP-3 fragments changed the population size of D. magna compared with the control. However, MP/BP-3 fragments significantly reduced (p < 0.05) the population biomass compared to that of the control, whereas MP fragments did not induce a significant reduction. The MP/BP-3 group had a significantly higher (p < 0.05) neonate proportion than that in the control and MP groups. MP/BP-3 fragments upregulated usp and downregulated ecrb, ftz-f1, and hr3, altering gene expression in the ecdysone signaling pathway linked to D. magna growth and development. These findings suggested that BP-3 in MP/BP-3 fragments may disrupt neonatal growth, thereby decreasing population biomass. In the decline phase, MP fragments significantly decreased (p < 0.05) the population size and biomass of D. magna compared with the control and MP/BP-3 fragments. This study highlights the importance of plastic additives in the population-level ecotoxicity of MPs.
Collapse
Affiliation(s)
- Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea.
| |
Collapse
|
9
|
Li Y, Liu C, Yang H, He W, Li B, Zhu X, Liu S, Jia S, Li R, Tang KHD. Leaching of chemicals from microplastics: A review of chemical types, leaching mechanisms and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167666. [PMID: 37820817 DOI: 10.1016/j.scitotenv.2023.167666] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
It is widely known that microplastics are present everywhere and they pose certain risks to the ecosystem and humans which are partly attributed to the leaching of additives and chemicals from them. However, the leaching mechanisms remain insufficiently understood. This review paper aims to comprehensively and critically illustrate the leaching mechanisms in biotic and abiotic environments. It analyzes and synthesizes the factors influencing the leaching processes. It achieves the aims by reviewing >165 relevant scholarly papers published mainly in the past 10 years. According to this review, flame retardants, plasticizers and antioxidants are the three main groups of additives in microplastics with the potentials to disrupt endocrine functions, reproduction, brain development and kidney functions. Upon ingestion, the MPs are exposed to digestive fluids containing enzymes and acids which facilitate their degradation and leaching of chemicals. Fats and oils in the digestive tracts also aid the leaching and transport of these chemicals particularly the fat-soluble ones. Leaching is highly variable depending on chemical properties and bisphenols leach to a larger extent than other endocrine disrupting chemicals. However, the rates of leaching remain poorly understood, owing probably to multiple factors at play. Diffusion and partitioning are two main mechanisms of leaching in biotic and abiotic environments. Photodegradation is more predominant in the latter, generating reactive oxygen species which cause microplastic aging and leaching with minimal destruction of the chemicals leached. Effects of microplastic sizes on leaching are governed by Sherwood number, thickness of aqueous boundary layer and desorption half-life. This review contributes to better understanding of leaching of chemicals from microplastics which affect their ecotoxicities and human toxicity.
Collapse
Affiliation(s)
- Yage Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Chen Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Haotian Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Wenhui He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Beibei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Xinyi Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Shuyan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Shihao Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
10
|
Rozman U, Klun B, Kuljanin A, Skalar T, Kalčíková G. Insights into the shape-dependent effects of polyethylene microplastics on interactions with organisms, environmental aging, and adsorption properties. Sci Rep 2023; 13:22147. [PMID: 38092860 PMCID: PMC10719240 DOI: 10.1038/s41598-023-49175-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
The shape-dependent effects of microplastics have been studied in the context of ingestion but have not been considered in other environmental processes. Therefore, we investigated how the shape of polyethylene microplastics (spheres, fragments, and films) affects interactions with plants, aging, and their adsorption properties. The shape had no effect on the growth rate and chlorophyll content of duckweed Lemna minor, but the fragments strongly adhered to the plant biomass and reduced the root length. The adsorption process of the model organic compound (methylene blue dye) was described by the same kinetic model for all shapes-the experimental data best fit the pseudo-second order model. However, twice as much methylene blue was adsorbed on films as on fragments and spheres. During environmental aging, most biofilm developed on films. The biofilm on spheres contained significantly less photosynthetic microorganisms, but twice as much extracellular polymeric substances (EPS) as on fragments and films. This suggests that the attachment of microorganisms to spherical particles is limited and therefore more intensive production of EPS is required for stable biofilm formation. From the results of this study, it is evident that the shape of microplastics significantly affects not only ecotoxicity but also other environmentally relevant processes.
Collapse
Affiliation(s)
- Ula Rozman
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia
| | - Barbara Klun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia
| | - Aleksandra Kuljanin
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia
| | - Tina Skalar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Procházková P, Mácová S, Aydın S, Zlámalová Gargošová H, Kalčíková G, Kučerík J. Effects of biodegradable P3HB on the specific growth rate, root length and chlorophyll content of duckweed, Lemna minor. Heliyon 2023; 9:e23128. [PMID: 38076089 PMCID: PMC10703853 DOI: 10.1016/j.heliyon.2023.e23128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 10/16/2024] Open
Abstract
The extensive production and use of plastics have led to widespread pollution of the environment. As a result, biodegradable polymers (BDPs) are receiving a great deal of attention because they are expected to degrade entirely in the environment. Therefore, in this work, we tested the effect of two fractions (particles <63 μm and particles from 63 to 125 μm) of biodegradable poly-3-hydroxybutyrate (P3HB) at different concentrations on the specific growth rate, root length, and photosynthetic pigment content of the freshwater plant Lemna minor. Microparticles with similar properties made of polyethylene terephthalate (PET) were also tested for comparison. No adverse effects on the studied parameters were observed for either size fraction; the only effect was the root elongation with increasing P3HB concentration. PET caused statistically significant root elongation only in the highest concentration, but the effect was not as extensive as for P3HB. The development of a biofilm on P3HB particles was observed during the experiment, and the nutrient sorption experiment showed that the sorption capacity of P3HB was greater than PET's. Therefore, depleting the nutrients from the solution could force the plant to increase the root surface area by their elongation. The results suggest that biodegradable microplastics may cause secondary nutrient problems in the aquatic environment due to their biodegradability.
Collapse
Affiliation(s)
- Petra Procházková
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Sabina Mácová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Seçil Aydın
- Department of Chemical Engineering, Faculty of Chemistry-Metallurgical, Yıldız Technical University, 34210, Davutpasa Esenler, Istanbul, Turkiye
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, SI-1000, Ljubljana, Slovenia
| | - Jiří Kučerík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
12
|
Polechońska L, Rozman U, Sokołowska K, Kalčíková G. The bioadhesion and effects of microplastics and natural particles on growth, cell viability, physiology, and elemental content of an aquatic macrophyte Elodea canadensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166023. [PMID: 37541516 DOI: 10.1016/j.scitotenv.2023.166023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Microplastics in the aquatic environment can interact with aquatic plants, but the consequences of these interactions are poorly understood. Therefore, the aim of this study was to investigate the effects of microplastics commonly found in the environment, namely polyethylene (PE) fragments, polyacrylonitrile (PAN) fibres, tire wear (TW) particles under a relevant environmental concentration (5000 particles/L) on the growth, cell viability, physiology, and elemental content of the aquatic macrophyte Elodea canadensis. The effects of microplastics were compared to those of natural wood particles. The results showed that all types of microplastics adhered to plant tissues, but the effect on leaves (leaf damage area) was greatest at PE > PAN > TW, while the effect of natural particles was comparable to that of the control. None of the microplastics studied affected plant growth, lipid, carbohydrate, or protein content. Electron transport system activity was significantly higher in plants exposed to PAN fibres and PE fragments, but also when exposed to natural particles, while chlorophyll a content was negatively affected only by PE fragments and TW particles. Elemental analysis of plant tissue showed that in some cases PAN fibres and TW particles caused increased metal content. The results of this study indicated that aquatic macrophytes may respond differently to exposure to microplastics than to natural particles, likely through the combined effects of mechanical damage and chemical stress.
Collapse
Affiliation(s)
- Ludmiła Polechońska
- Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, ul. Kanonia 6/8, 50-328 Wrocław, Poland.
| | - Ula Rozman
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, University of Wrocław, ul. Kanonia 6/8, Wrocław 50-328, Poland
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
13
|
Chen T, Zhao MX, Tang XY, Wei WX, Wen X, Zhou SZ, Ma BH, Zou YD, Zhang N, Mi JD, Wang Y, Liao XD, Wu YB. The tigecycline resistance gene tetX has an expensive fitness cost based on increased outer membrane permeability and metabolic burden in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131889. [PMID: 37348375 DOI: 10.1016/j.jhazmat.2023.131889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Livestock-derived tetX-positive Escherichia coli with tigecycline resistance poses a serious risk to public health. Fitness costs, antibiotic residues, and other tetracycline resistance genes (TRGs) are fundamental in determining the spread of tetX in the environment, but there is a lack of relevant studies. The results of this study showed that both tetO and tetX resulted in reduction in growth and an increased in the metabolic burden of E. coli, but the presence of doxycycline reversed this phenomenon. Moreover, the protection of E. coli growth and metabolism by tetO was superior to that of tetX in the presence of doxycycline, resulting in a much lower competitiveness of tetX-carrying E. coli than tetO-carrying E. coli. The results of RNA-seq showed that the increase in outer membrane proteins (ompC, ompF and ompT) of tetX-carrying E. coli resulted in increased membrane permeability and biofilm formation, which is an important reason for fitness costs. Overall, the increased membrane permeability and metabolic burden of E. coli is the mechanistic basis for the high fitness cost of tetX, and the spread of tetO may limit the spread of tetX. This study provides new insights into the rational use of tetracycline antibiotics to control the spread of tetX.
Collapse
Affiliation(s)
- Tao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Min-Xing Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Yue Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Xiao Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shi-Zheng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bao-Hua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yong-De Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Jian-Dui Mi
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Di Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yin-Bao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Chan K, Zinchenko A. Templating of catalytic gold and silver nanoparticles by waste plastic PET-derived hydrogel playing a dual role of a reductant and a matrix. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:20-28. [PMID: 37185066 DOI: 10.1016/j.wasman.2023.03.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
The progressive accumulation of discarded plastic in the environment demands further development of waste management of plastic waste and conversion technologies of such waste to value-added materials. Recently, the conversion of plastic waste to functional materials via chemical recycling has attracted considerable attention. In this report, plastic waste (PET) was utilized for the preparation of a hydrogel-based catalyst via a cross-linking reaction of PET-derived oligo(terephthalamide)s followed by the electroless metallization. The polymeric matrix of PET-derived hydrogel plays multiple roles of (i) an adsorption media for noble metal ions such as Au3+ and Ag+, (ii) a reducing agent of Au3+ and Ag+ ions to Au0 and Ag0, and (iii) a matrix for the controlled growth of Au and Ag nanoparticles (AuNPs and AgNPs). The obtained hybrid hydrogels after metallization contained well-dispersed AuNPs and AgNPs of 6.1 ± 3.7 nm or 6.1 ± 1.4 nm size, respectively. The catalytic activities of the hybrid hydrogels with metal nanoparticles were studied in a model system of p-nitrophenol reduction in an aqueous solution. The hybrid materials of both Au@hydrogel and Ag@hydrogel were catalytically active for the reduction of p-nitrophenol, obeying the first-order kinetics. Importantly, the AuNPs or AgNPs in the hydrogel matrix preserved the original catalytic activity after multiple p-nitrophenol reduction reactions, showing a promising reusability of the catalysts. The proposed here approach aims to broaden the scope of conversion routes of plastic waste to value-added materials as well as to develop new types of polymeric matrices for templating and growth of metal nanoparticles for catalytic applications.
Collapse
Affiliation(s)
- Kayee Chan
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
15
|
Li A, Cui H, Sheng Y, Qiao J, Li X, Huang H. Global plastic upcycling during and after the COVID-19 pandemic: The status and perspective. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:110092. [PMID: 37200549 PMCID: PMC10167783 DOI: 10.1016/j.jece.2023.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Plastic pollution has become one of the most pressing environmental issues worldwide since the vast majority of post-consumer plastics are hard to degrade in the environment. The coronavirus disease (COVID-19) pandemic had disrupted the previous effort of plastic pollution mitigation to a great extent due to the overflow of plastic-based medical waste. In the post-pandemic era, the remaining challenge is how to motivate global action towards a plastic circular economy. The need for one package of sustainable and systematic plastic upcycling approaches has never been greater to address such a challenge. In this review, we summarized the threat of plastic pollution during COVID-19 to public health and ecosystem. In order to solve the aforementioned challenges, we present a shifting concept, regeneration value from plastic waste, that provides four promising pathways to achieve a sustainable circular economy: 1) Increasing reusability and biodegradability of plastics; 2) Transforming plastic waste into high-value products by chemical approaches; 3) The closed-loop recycling can be promoted by biodegradation; 4) Involving renewable energy into plastic upcycling. Additionally, the joint efforts from different social perspectives are also encouraged to create the necessary economic and environmental impetus for a circular economy.
Collapse
Affiliation(s)
- Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
16
|
Kalčíková G. Beyond ingestion: Adhesion of microplastics to aquatic organisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106480. [PMID: 36948066 DOI: 10.1016/j.aquatox.2023.106480] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The interactions of microplastics with aquatic organisms have been studied primarily using animal species, with dietary ingestion being the most important uptake route. However, recent research indicated that microplastics also interact with biota via bioadhesion. This process has been studied in aquatic macrophytes under laboratory conditions where microplastics adhered to their biomass, but monitoring studies also confirmed that microplastic bioadhesion occurs in other species and in the natural environment. Similarly, microplastics adhere to microorganisms, and in the aquatic environment they can be retained by ubiquitous biofilms. This can occur on a natural substrate such as sediment or rocks, but biofilms are also responsible for enhanced bioadhesion of microplastics to other biotic surfaces such as plant surfaces. Adhesion to these large biotic surfaces could influence the abundance and bioavailability of microplastics in the environment. Only few studies have been conducted on the bioadhesion of microplastics to animals, but their results confirmed that bioadhesion may be even greater than particle ingestion by some animals, such as corals or bivalves. However, the ecotoxicological effects are not yet fully understood and the possible transport of microplastics, e.g. adhered to fish or aquatic insects, also needs to be considered. In summary, bioadhesion seems to be an important process for the interactions of microplastics and biota. Neglecting bioadhesion in an environmental context may limit our understanding of the behavior, fate, and effects of microplastics in the aquatic environment.
Collapse
Affiliation(s)
- Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
17
|
Das S, Kalyani MI. From trash to treasure: review on upcycling of fruit and vegetable wastes into starch based bioplastics. Prep Biochem Biotechnol 2022:1-15. [PMID: 36565171 DOI: 10.1080/10826068.2022.2158470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Growing public concern toward environmental sustainability is currently motivating a paradigm shift toward designing easily degradable plastics that can replace conventional synthetic plastics. The massive rise in food waste generation has led to an increased burden on landfills, thereby resulting in the higher emission of greenhouse gases. Using this food waste to produce bioplastics will benefit not only the environment but also develop a systematic food waste management system. Moreover, bioplastics are preferred due to the use of biomaterials derived from renewable resources. Furthermore, bioplastics degrade faster than conventional synthetic plastics, which take years to degrade. The biodegradation of bioplastics occurs under normal environmental conditions and disintegrates into carbon dioxide, water, biomass, and inorganic compounds without producing hazardous residues. In this review, we will discuss the synthesis of starch based bioplastics using discarded parts of various fruits and vegetables. Furthermore, we will address the importance of various components in the development of starch based bioplastics, such as fillers, plasticizers, and other additives that are essential in providing the bioplastic with different physio-mechanical properties. Therefore, bioplastic production using food waste will pave the way to achieve systematic waste management and environmental sustainability in the near future.
Collapse
Affiliation(s)
- Subhankar Das
- Biotechnology Unit, Mangalore University, Mangalore, India
| | | |
Collapse
|
18
|
Rozman U, Kalčíková G. The Response of Duckweed Lemna minor to Microplastics and Its Potential Use as a Bioindicator of Microplastic Pollution. PLANTS (BASEL, SWITZERLAND) 2022; 11:2953. [PMID: 36365405 PMCID: PMC9658923 DOI: 10.3390/plants11212953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Biomonitoring has become an indispensable tool for detecting various environmental pollutants, but microplastics have been greatly neglected in this context. They are currently monitored using multistep physico-chemical methods that are time-consuming and expensive, making the search for new monitoring options of great interest. In this context, the aim of this study was to investigate the possibility of using an aquatic macrophyte as a bioindicator of microplastic pollution in freshwaters. Therefore, the effects and adhesion of three types of microplastics (polyethylene microbeads, tire wear particles, and polyethylene terephthalate fibers) and two types of natural particles (wood dust and cellulose particles) to duckweed Lemna minor were investigated. The results showed that fibers and natural particles had no effect on the specific growth rate, chlorophyll a content, and root length of duckweed, while a significant reduction in the latter was observed when duckweed was exposed to microbeads and tire wear particles. The percentage of adhered particles was ten times higher for polyethylene microbeads than for other microplastics and natural particles, suggesting that the adhesion of polyethylene microbeads to duckweed is specific. Because the majority of microplastics in freshwaters are made of polyethylene, the use of duckweed for their biomonitoring could provide important information on microplastic pollution in freshwaters.
Collapse
|