1
|
Ye T, Liu T, Yi H, Du J, Wang Y, Xiao T, Cui J. In situ arsenic immobilization by natural iron (oxyhydr)oxide precipitates in As-contaminated groundwater irrigation canals. J Environ Sci (China) 2025; 153:143-157. [PMID: 39855787 DOI: 10.1016/j.jes.2024.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 01/27/2025]
Abstract
Arsenic-contaminated groundwater is widely used in agriculture. To meet the increasing demand for safe water in agriculture, an efficient and cost-effective method for As removal from groundwater is urgently needed. We hypothesized that Fe (oxyhydr)oxide (FeOOH) minerals precipitated in situ from indigenous Fe in groundwater may immobilize As, providing a solution for safely using As-contaminated groundwater in irrigation. To confirm this hypothesis and identify the controlling mechanisms, we comprehensively evaluated the transport, speciation changes, and immobilization of As and Fe in agricultural canals irrigated using As-contaminated groundwater. The efficiently removed As and Fe in the canals accumulated in shallow sediment rather than subsurface sediment. Linear combination fitting (LCF) analysis of X-ray absorption near edge spectroscopy (XANES) indicated that As(V) was the dominant As species, followed by As(III), and there was no FeAsO4 precipitate. Sequential extraction revealed higher contents of amorphous FeOOH and associated As in shallower sediment than in the subsurface layer. Stoichiometric molar ratio calculations, SEM‒EDS, FTIR, and fluorescence spectroscopy collectively demonstrated that the microbial reductive dissolution of amorphous FeOOH proceeded via reactive dissolved organic matter (DOM) consumption in subsurface anoxic porewater environment facilitating high labile As, whereas in surface sediment, the in situ-generated amorphous FeOOH was stable and strongly inhibited As release via adsorption. In summary, groundwater Fe2+ can efficiently precipitate in benthic surface sediment as abundant amorphous FeOOH, which immobilizes most of the dissolved As, protecting agricultural soil from contamination. This field research supports the critical roles of the phase and reactivity of in situ-generated FeOOH in As immobilization and provides new insight into the sustainable use of contaminated water.
Collapse
Affiliation(s)
- Tiancai Ye
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tianci Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hulong Yi
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco‒Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jinli Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Zhou X, Sun J, Yi H, Ye T, Zhao Y, Yang Y, Liu Z, Liang C, Huang J, Chen J, Xiao T, Cui J. Seasonal variations in groundwater chemistry and quality and associated health risks from domestic wells and crucial constraints in the Pearl River Delta. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:936-949. [PMID: 40035090 DOI: 10.1039/d4em00622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Groundwater quality is strongly compromised by polluted surface water recharge in rapidly developing urban regions. However, gaps still remain in the understanding of the critical contaminants controlling water quality and the health risks associated with groundwater consumption, particularly considering seasonal and climate changes in rainfall. This work focused on changes in groundwater quality and critical contaminants in domestic wells in the fast-developing Pearl River Delta (PRD) from the wet season to the dry season. The stable isotope δD and δ18O values indicated that groundwater was largely impacted by precipitation and has experienced strong evaporation. The groundwater generally exhibited oxidizing and slightly alkaline properties and was predominantly of the Ca-HCO3 type. Owing to the dominant water type of Ca-HCO3 and the high concentrations of Ca, concerns related to hard water arose, particularly during the wet season, which promotes the need for water softening before groundwater use. Although the heavy metal pollution index (HPI) and water quality index (WQI) indicated excellent or good water quality, 34% and 47% of the groundwater samples presented elevated concentrations of arsenic and nitrate, respectively, compared with the WHO recommended levels, and the contamination level was elevated during the dry season. To our knowledge, this study is the first to report the fluoride concentrations in the PRD groundwater, with median values below 0.5 mg L-1, underscoring the need for dietary fluoride supplementation. Health risk assessment confirmed the presence of both noncarcinogenic risks from arsenic and nitrate and cancer risk from arsenic in local populations resulting from groundwater consumption in the PRD region. This research emphasizes the importance of critical contaminants that constrain groundwater quality from different seasons with large variations in rainfall. Our work highlights the urgent need for the construction of adequate sanitation systems and for the control of agricultural nonpoint source pollution in rapidly urbanizing areas to safeguard both surface water and groundwater resources.
Collapse
Affiliation(s)
- Xingyu Zhou
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Jia Sun
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Hulong Yi
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Tiancai Ye
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yanping Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Yuzhong Yang
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zijun Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Changhang Liang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Jiawei Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Jingcheng Chen
- Guangzhou Prin-Cen Scientific Ltd, Guangzhou, 510520, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Jinli Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Shangguan Y, Li B, Zhuang X, Querol X, Moreno N, Huang P, Guo Y, Shi Y, Wu T, Sola PC. Arsenic distribution and speciation in deposited coal mine dust. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136537. [PMID: 39579695 DOI: 10.1016/j.jhazmat.2024.136537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
This study investigates arsenic (As) species, sources, and transformation patterns in deposited coal mine dust (DCMD) from three coal mines-QSY, MHJ, and SCC-in the Ningdong Coalfield, China. While the parent coals have low As levels, the DCMD shows significant enrichment, with concentrations 137 to 345 times higher. The mineral composition of the DCMD reflects that of the parent coals but includes secondary minerals such as gypsum and various trace elements, including As. This enrichment results from multiple factors: polluted waters used for dust control in the working front (WF), gangue dust introduced during mining operations, wear from mining machinery affecting Fe levels, and precipitation of As-salts from alkaline mine drainage. In the parent coals, As(V) comprises 60-65 % of the As, while As(III) accounts for 14-35 %. In contrast, the DCMD samples reveal As(V) as the dominant species (22-58 %), with As(III) making up 18-44 %. Arsenic leachability is influenced by Fe content, enhancing As adsorption and limiting mobility in QSY mine, while mixed As complexes in MHJ and SCC under alkaline conditions affect As mobility. The presence of more toxic As(III) in DCMD highlights environmental and health risks, emphasizing the need to avoid high-As polluted waters for dust control.
Collapse
Affiliation(s)
- Yunfei Shangguan
- Huibei Key Laboratory of Marine Geological Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China; Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
| | - Baoqing Li
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
| | - Xinguo Zhuang
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
| | - Xavier Querol
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China; Institute of Environmental Assessment and Water Research (IDAEA). Spanish National Research Council (CSIC), C/Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Natalia Moreno
- Institute of Environmental Assessment and Water Research (IDAEA). Spanish National Research Council (CSIC), C/Jordi Girona, 18-26, Barcelona 08034, Spain
| | - Pengcheng Huang
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China; Ningxia Hui Autonomous Region Bureau of Coal Geology, Yinchuan, China
| | - Yajie Guo
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
| | - Yutao Shi
- Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
| | - Tianchi Wu
- Huibei Key Laboratory of Marine Geological Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China
| | - Patricia Córdoba Sola
- Institute of Environmental Assessment and Water Research (IDAEA). Spanish National Research Council (CSIC), C/Jordi Girona, 18-26, Barcelona 08034, Spain.
| |
Collapse
|
4
|
Ji C, Zhu Y, Zhao S, Zhang Y, Nie Y, Zhang H, Zhang H, Wang S, Zhou J, Zhao H, Liu X. Arsenic species in soil profiles from chemical weapons (CWs) burial sites of China: Contamination characteristics, degradation process and migration mechanism. CHEMOSPHERE 2024; 349:140938. [PMID: 38101484 DOI: 10.1016/j.chemosphere.2023.140938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In this study, soil profiles and pore water from Japanese abandoned arsenic-containing chemical weapons (CWs) burial sites in Dunhua, China were analyzed to understand the distribution of arsenic (As) contamination, degradation, and migration processes. Results of As species analysis showed that the As-containing agents underwent degradation with an average rate of 87.55 ± 0.13%, producing inorganic pentavalent arsenic (As5+) and organic arsenic such as 2-chlorovinylarsonic acid (CVAOA), triphenylarsenic (TPA), and phenylarsine oxide (PAO). Organic arsenic pollutants accounted for 1.27-18.20% of soil As. In the vertical profiles, total As concentrations peaked at about 40-60 cm burial depth, and the surface agricultural soil exhibited moderate to heavy contamination level, whereas the contamination level was insignificant below 1 m, reflecting As migration was relatively limited throughout the soil profile. Sequential extraction showed Fe/Al-bound As was the predominant fraction, and poorly-crystalline Fe minerals adsorbed 33.23-73.13% of soil As. Oxygen-susceptible surface soil formed poorly-crystalline Fe3+ minerals, greatly reducing downward migration of arsenic. However, the reduction of oxidizing conditions below 2 m soil depth may promote As activity and require attention.
Collapse
Affiliation(s)
- Chao Ji
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yan Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Huijun Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haiyang Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shiyu Wang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, 230026, China
| | - Hongjie Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
5
|
Cui J, Yang J, Weber M, Yan J, Li R, Chan T, Jiang Y, Xiao T, Li X, Li X. Phosphate interactions with iron-titanium oxide composites: Implications for phosphorus removal/recovery from wastewater. WATER RESEARCH 2023; 234:119804. [PMID: 36889091 DOI: 10.1016/j.watres.2023.119804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/28/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Understanding the interactions between phosphate (P) and mineral adsorbents is critical for removing and recovering P from wastewater, especially in the presence of both cationic and organic components. To this end, we investigated the surface interactions of P with an iron-titanium coprecipitated oxide composite in the presence of Ca (0.5-3.0 mM) and acetate (1-5 mM), and quantified the molecular complexes and tested the possible removal and recovery of P from real wastewater. A quantitative analysis of P K-edge X-ray absorption near edge structure (XANES) confirmed the inner-sphere surface complexation of P with both Fe and Ti, whose contribution to P adsorption relies on their surface charge determined by pH conditions. The effects of Ca and acetate on P removal were highly pH-dependent. At pH 7, Ca (0.5-3.0 mM) in solution significantly increased P removal by 13-30% by precipitating the surface-adsorbed P, forming hydroxyapatite (14-26%). The presence of acetate had no obvious influence on P removal capacity and molecular mechanisms at pH 7. At pH 4, the removal amount of P was not obviously affected by the presence of Ca and acetate. However, acetate and high Ca concentration jointly facilitated the formation of amorphous FePO4 precipitate, complicating the interactions of P with Fe-Ti composite. In comparison with ferrihydrite, the Fe-Ti composite significantly decreased the formation of amorphous FePO4 probably by decreasing Fe dissolution due to the coprecipitated Ti component, facilitating further P recovery. An understanding of these microscopic mechanisms can lead to the successful use and simple regeneration of the adsorbent to recover P from real wastewater.
Collapse
Affiliation(s)
- Jinli Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jinsu Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mischa Weber
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Departement of Civil Environmental and Geomatic Engineering, ETH Zurich, Switzerland
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ruohong Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tingshan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Liu G, Chen T, Cui J, Zhao Y, Li Z, Liang W, Sun J, Liu Z, Xiao T. Trace Metal(loid) Migration from Road Dust to Local Vegetables and Tree Tissues and the Bioaccessibility-Based Health Risk: Impacts of Vehicle Operation-Associated Emissions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2520. [PMID: 36767884 PMCID: PMC9914983 DOI: 10.3390/ijerph20032520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Traffic activities release large amounts of trace metal(loid)s in urban environments. However, the impact of vehicle operation-associated emissions on trace metal(loid) enrichment in road dust and the potential migration of these trace metal(loid)s to the surrounding environment remain unclear. We evaluated the contamination, sequential fraction, and bioaccessibility of trace metal(loid)s in urban environments by assessing their presence in road dust, garden vegetables, and tree tissues, including bark and aerial roots, at a traffic-training venue impacted by vehicle operation emissions and, finally, calculated the bioaccessibility-based health risk. The results indicated a significant accumulation of trace metal(loid)s in road dust, with the highest lead (Pb), cadmium (Cd), and antimony (Sb) concentrations in the garage entrance area due to higher vehicle volumes, frequent vehicle starts and stops, and lower speeds. Aerial roots exposed to hill start conditions exhibited the highest Pb, Zn, and Sb levels, potentially caused by high road dust resuspension, confirming that this tree tissue is an appropriate bioindicator. Sequential extraction revealed high percentages of carbonate-, Fe/Mn oxide-, and organic/sulphide-associated fractions of Pb, copper (Cu), and zinc (Zn) in road dust, while most Cd, Cr, Ni, and Sb occurred as residual fractions. According to the potential mobilizable fractions in sequential extraction, the in vitro gastrointestinal method could be more suitable than the physiologically based extraction test to evaluate the bioaccessibility-related risk of traffic-impacted road dust. The bioaccessibility-based health risk assessment of the road dust or soil confirmed no concern about noncarcinogenic risk, while the major risk originated from Pb although leaded gasoline was prohibited before the venue establishment. Furthermore, the cancer risks (CRs) analysis showed the probable occurrence of carcinogenic health effects from Cd and Ni to adults and from Cd, Cr, and Ni to children. Furthermore, the Cd and Pb concentrations in the edible leaves of cabbage and radish growing in gardens were higher than the recommended maximum value. This study focused on the health risks of road dust directly impacted by vehicle emissions and provides accurate predictions of trace metal(loid) contamination sources in the urban environment.
Collapse
Affiliation(s)
- Guangbo Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Tian Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jinli Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yanping Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhi Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Weixin Liang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenghui Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Tang F, Li Z, Zhao Y, Sun J, Sun J, Liu Z, Xiao T, Cui J. Geochemical Contamination, Speciation, and Bioaccessibility of Trace Metals in Road Dust of a Megacity (Guangzhou) in Southern China: Implications for Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15942. [PMID: 36498014 PMCID: PMC9736075 DOI: 10.3390/ijerph192315942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 05/11/2023]
Abstract
Road dust has been severely contaminated by trace metals and has become a major health risk to urban residents. However, there is a lack of information on bioaccessible trace metals in road dust, which is necessary for an accurate health risk assessment. In this study, we collected road dust samples from industrial areas, traffic intersections, and agricultural fields from a megacity (Guangzhou), China, and conducted a geochemical enrichment, speciation, and bioaccessibility-based health risk assessment of trace metals. In comparison with local soil background values, the results revealed a significant accumulation of trace metals, including Zn, Cd, Cu, and Pb in the road dust, which is considered moderate to heavy pollution. Sequential extraction indicated that most trace metals in the road dust were primarily composed of a Fe/Mn oxide-bound fraction, carbonate-bound fraction, and residual fraction, while the dominant fraction was the organic matter-bound fraction of Cu, and the residual fractions of As, Cr, and Ni. The in vitro gastrointestinal (IVG) method revealed that high percentages of Zn, Cd, Cu, and As were bioaccessible, suggesting the possible dissolution of trace metals from adsorbed and carbonate-associated fractions in road dust exposed to the biological fluid matrix. The IVG bioaccessibility-based concentration largely decreased the noncarcinogenic health risk to a negligible level. Nevertheless, the entire population is still exposed to the cumulative probability of a carcinogenic risk, which is primarily contributed to by As, Cd, Cr, and Pb. Future identification of the exact sources of these toxic metals would be helpful for the appropriate management of urban road dust contamination.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhi Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanping Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, China National Analytical Center, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jia Sun
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenghui Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jinli Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|