1
|
Dong W, Liu C, Lin GB, Zhang YC, Li HB, Juhasz AL, Liu C, Ma LQ. Chromium Oral Bioavailability in 16 Contaminated Soils from Different Sources: Mouse Model Development and Cr Speciation in Soil and Mouse Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4318-4329. [PMID: 40017172 DOI: 10.1021/acs.est.4c12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Soil contamination by chromium (Cr) has attracted much public attention due to its ubiquity in the environment and toxicity to humans, with hexavalent CrVI being more toxic and mobile than trivalent CrIII. In this study, 16 soils contaminated from different sources were chosen to determine their Cr accumulation in mouse tissues and changes in Cr speciation in soils, and mouse intestinal contents, organs and excreta based on a steady-state mouse model. The Cr accumulation in mouse organs after exposing to CrVI was 1.6-2.6 fold greater than those exposing to CrIII. Further, Cr relative bioavailability (RBA) was measured using a mouse urinary excretion bioassay. Results show that Cr via oral digestion was mainly accumulated in the kidneys, with Cr-RBA in soils being 5.12-50.0%, averaging 15.6%. Besides soil properties, variation in Cr-RBA also depended on its contamination sources, with soils near electronic waste dismantling and tannery sites showing greater values. Further, instead of the CrVI contents in contaminated soils, Cr-RBA was closely related to the unreduced CrVI contents in mouse intestines, with 90.1% of CrVI being reduced before its absorption. This study helps to evaluate the health risks associated with Cr-contaminated soils by measuring Cr-RBA via a newly developed mouse model and its influence by Cr speciation. Our data suggest a potential risk associated with incidental exposure to Cr-contaminated soils via an oral pathway.
Collapse
Affiliation(s)
- Wenjie Dong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Can Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guo-Bing Lin
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan-Chen Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Chenjing Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Wang P, Yu F, Lv H, Wu L, Zhou H. Potential risk of heavy metals release in sediments and soils of the Yellow River Basin (Henan section): A perspective on bioavailability and bioaccessibility. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117799. [PMID: 39875254 DOI: 10.1016/j.ecoenv.2025.117799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/02/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
The ecology of watersheds plays an important role in regulating regional climate and human activities. The sediment-soil system in the middle and lower reaches of the Yellow River Basin (Henan section) was explored. The spatial distribution characteristics of heavy metals (HMs) showed that tributaries, which are affected by anthropogenic activities, contain higher concentrations of HMs than the main channel. Sequential extraction experiments indicated that Cd had the strongest potential to be released, followed by Mn. In vitro simulation experiments showed that gastric and pulmonary fluids rendered these two orders of magnitude more bioaccessible compared to sweat. Moreover, Cd exhibited the highest bioaccessibility in both gastric and lung fluids. When bioaccessibility was considered in the evaluation of health risks, more than 82 % of reductions in non-carcinogenic and carcinogenic risk indices were observed in children and adults. A positive matrix factorization model was utilized to determine the potential sources of HMs: industrial sources, natural sources, and mixed agricultural and transportation sources were identified as the three main sources of HMs in sediments and soils. In addition, mining activities were also an HMs source in sediments.
Collapse
Affiliation(s)
- Peng Wang
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Furong Yu
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China; Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, China.
| | - Haonan Lv
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Lin Wu
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China; Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, China.
| | - Hui Zhou
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
3
|
Xie L, Ma Q, Chen Q, Liu Y, Guo P, Zhang J, Duan G, Lin A, Zhang T, Li S. Efficient remediation of different concentrations of Cr-contaminated soils by nano zero-valent iron modified with carboxymethyl cellulose and biochar. J Environ Sci (China) 2025; 147:474-486. [PMID: 39003063 DOI: 10.1016/j.jes.2023.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 07/15/2024]
Abstract
Nano zero-valent iron (nZVI) is widely used in soil remediation due to its high reactivity. However, the easy agglomeration, poor antioxidant ability and passivation layer of Fe-Cr coprecipitates of nZVI have limited its application scale in Cr-contaminated soil remediation, especially in high concentration of Cr-contaminated soil. Herein, we found that the carboxymethyl cellulose on nZVI particles could increase the zeta potential value of soil and change the phase of nZVI. Along with the presence of biochar, 97.0% and 96.6% Cr immobilization efficiency through CMC-nZVI/BC were respectively achieved in high and low concentrations of Cr-contaminated soils after 90-days remediation. In addition, the immobilization efficiency of Cr(VI) only decreased by 5.1% through CMC-nZVI/BC treatment after 10 weeks aging in air, attributing to the strong antioxidation ability. As for the surrounding Cr-contaminated groundwater, the Cr(VI) removal capacity of CMC-nZVI/BC was evaluated under different reaction conditions through column experiments and COMSOL Multiphysics. CMC-nZVI/BC could efficiently remove 85% of Cr(VI) in about 400 hr when the initial Cr(VI) concentration was 40 mg/L and the flow rate was 0.5 mL/min. This study demonstrates that uniformly dispersed CMC-nZVI/BC has an excellent remediation effect on different concentrations of Cr-contaminated soils.
Collapse
Affiliation(s)
- Lihong Xie
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiyan Ma
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingjun Chen
- China National Petroleum and Chemical Planning Institute, Beijing 100013, China
| | - Yiyang Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pengfei Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinlan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aijun Lin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shangyi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Abelardo Gonzalez-Ocampo H, Parra-Olivas MC, Pérez-González E, Rodríguez-Meza GD. Rhizophora mangle L. bioindicator of environmental exposure to heavy metals in the Navachiste lagoon complex, Sinaloa, Mexico. MARINE POLLUTION BULLETIN 2024; 209:117131. [PMID: 39454394 DOI: 10.1016/j.marpolbul.2024.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Rhizophora mangle's potential as a bioindicator of pollution trace metals (TM). TM in sediments, and leaves, stembark, and roots were evaluated. Absorbance was measured by an Atomic Absorption Spectrophotometer (AAS). TM content was obtained by acid nitric digestion. TM seasonal change, bioavailable fractions (BioF), enrichment factor (EF), and correlation to tissues were evaluated. TMs in sediments were Fe > Mn > Zn > Cr > Ni > Cu > Cd. In tissues was Mn > Fe > Zn > Cu > Cr > Ni > Cd. TM was correlated with silt, clay, and organic materials. In the sediment, the BioF of Cu showed a strong significant correlation in summer with Cu in leaves in leaf and stembark. A significant correlation was shown between the BioF of Mn in the sediment and Mn in leaves during the spring, summer, and winter. The BioF in sediments is correlated with organic matter, sandy and silty, temperature, salinity, and pH. R. mangle could be a potential pollutant bioindicator of Cu and Mn.
Collapse
Affiliation(s)
- Hector Abelardo Gonzalez-Ocampo
- Instituto Politécnico Nacioanal - CIIDIR Unidad Sinaloa, Juan de Dios Bátiz Paredes s/n, Col. San Joachín, C.P. 81000 Guasave, Sinaloa, Mexico.
| | - María Cecilia Parra-Olivas
- Instituto Politécnico Nacioanal - CIIDIR Unidad Sinaloa, Juan de Dios Bátiz Paredes s/n, Col. San Joachín, C.P. 81000 Guasave, Sinaloa, Mexico
| | - Ernestina Pérez-González
- Instituto Politécnico Nacioanal - CIIDIR Unidad Sinaloa, Juan de Dios Bátiz Paredes s/n, Col. San Joachín, C.P. 81000 Guasave, Sinaloa, Mexico
| | - Guadalupe Durga Rodríguez-Meza
- Instituto Politécnico Nacioanal - CIIDIR Unidad Sinaloa, Juan de Dios Bátiz Paredes s/n, Col. San Joachín, C.P. 81000 Guasave, Sinaloa, Mexico
| |
Collapse
|
5
|
Kong F, Guan DX, Huang P, Lu S, Xu J, Wang H. Unveiling the barriers of Cd translocation from soil to rice: Insights from continuous flooding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174265. [PMID: 38936739 DOI: 10.1016/j.scitotenv.2024.174265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Understanding the spatiotemporal processes governing Cd behavior at the soil-solution-root interface is crucial for developing effective remediation strategies. This study examined the processes of chemical remediation in Cd-contaminated paddy soil using rhizotrons over the entire rice growth period. One-dimensional profile sampling with a 10 cm resolution revealed that during the initial flooding, paddy soil was strongly stimulated, followed by stabilization of porewater properties. X-ray diffraction of freeze-dried porewater confirmed the generation of submicron-precipitates such as CdS under continuous flooding, resulting in low ion levels of water-soluble Cd (<1 μg/L) and sulfate (<10 mg/L) in porewater. Two-dimensional imaging technologies indicated the maximum iron‑manganese plaque (IP) within 20-110 μm of the root surface. Subsequently, monitoring O2 in the rhizosphere with a planar optode by two 100 cm2 membranes for a consecutive month revealed significant circadian O2 variations between the root base and tip. Destructive sampling results showed that acid-soluble Cd in soils, as available Cd, is crucial for Cd uptake by rice roots under continuous flooding. The IP deposited on the root surface, as the barriers of Cd translocation, increased with rice growth and blocked Cd translocation from soil to rice by about 18.11 %-25.43 % at maturity. A Si-Ca-Mg compound amendment reduced available Cd by about 10 % and improved Cd blocking efficiency by about 7.32 % through increasing IP concentration, resulting in the absorption ratio of Cd in the amendment group being half that of the control group. By unveiling the complex Cd interactions at the soil-rice interface, this study lays the groundwork for developing effective agricultural practices to mitigate Cd-contaminated paddy and ensure food safety.
Collapse
Affiliation(s)
- Fanyi Kong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengwu Huang
- Agricultural and Rural Development Center of Yueqing, Yueqing 325699, Zhejiang Province, China
| | - Shenggao Lu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Lu L, Lei M, Zhou Y, Cui H, Du H. In vitro tungsten bioaccessibility in Chinese residential soils: Implications for human health risk assessments and soil screening level derivation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135368. [PMID: 39079296 DOI: 10.1016/j.jhazmat.2024.135368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
Tungsten (W) contamination presents emerging environmental challenges, necessitating the need to establish soil screening levels (SSLs), especially for residential soils. This study assessed the health exposure risk and derived national and regional residential SSLs for W in Chinese residential soils, incorporating machine-learning prediction of in-vitro soil W bioaccessibility. We analyzed 204 residential soil samples collected across 24 provinces, recording a wide range of W concentrations (0.01-3063.2 mg/kg). Synchrotron-based X-ray fluorescence spectroscopy, chemical extractions, and random forest modeling indicated that the key determinants of soil W bioaccessibility were soil pH, cation exchange capacity, organic matter, and clay contents. Monte Carlo simulations demonstrated that soil W contamination predominantly results in noncarcinogenic health risks to residents via oral exposure, especially in mining-affected regions. A national residential SSL (NRSSL) of 35.5 mg/kg and regional residential SSLs (RRSSLs) of 34.5-49.2 mg/kg were established. Incorporating predicted bioaccessibility increased the NRSSL to 73.8 mg/kg and the RRSSLs to 69.8-112.5 mg/kg. Southern China, which is rich in W ore, exhibited lower RRSSLs, underscoring a need for enhanced safety management. Our framework and findings provide a robust scientific foundation for future soil contamination risk assessment studies, and we present customized SSLs that can guide targeted W risk control strategies.
Collapse
Affiliation(s)
- Lei Lu
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China
| | - Ming Lei
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China
| | - Yaoyu Zhou
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China
| | - Haojie Cui
- College of Resources, Hunan Agricultural University, 410127 Changsha, China
| | - Huihui Du
- College of Environment & Ecology, Hunan Agricultural University, 410127 Changsha, China.
| |
Collapse
|
7
|
Hiller E, Faragó T, Kolesár M, Filová L, Mihaljevič M, Jurkovič Ľ, Demko R, Machlica A, Štefánek J, Vítková M. Metal(loid)s in urban soil from historical municipal solid waste landfill: Geochemistry, source apportionment, bioaccessibility testing and human health risks. CHEMOSPHERE 2024; 362:142677. [PMID: 38908448 DOI: 10.1016/j.chemosphere.2024.142677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Landfills, especially those poorly managed, can negatively affect the environment and human beings through chemical contamination of soils and waters. This study investigates the soils of a historical municipal solid waste (MSW) landfill situated in the heart of a residential zone in the capital of Slovakia, Bratislava, with an emphasis on metal (loid) contamination and its consequences. Regardless of the depth, many of the soils exhibited high metal (loid) concentrations, mainly Cd, Cu, Pb, Sb, Sn and Zn (up to 24, 2620, 2420, 134, 811 and 6220 mg/kg, respectively), classifying them as extremely contaminated based on the geo-accumulation index (Igeo >5). The stable lead isotopic ratios of the landfill topsoil varied widely (1.1679-1.2074 for 206Pb/207Pb and 2.0573-2.1111 for 208Pb/206Pb) and indicated that Pb contained a natural component and an anthropogenic component, likely municipal solid waste incineration (MSWI) ash and construction waste. Oral bioaccessibility of metal (loid)s in the topsoil was variable with Cd (73.2-106%) and Fe (0.98-2.10%) being the most and least bioaccessible, respectively. The variation of metal (loid) bioaccessibility among the soils could be explained by differences in their geochemical fractionation as shown by positive correlations of bioaccessibility values with the first two fractions of BCR (Community Bureau of Reference) sequential extraction for As, Cd, Mn, Ni, Pb, Sn and Zn. The results of geochemical fractionation coupled with the mineralogical characterisation of topsoil showed that the reservoir of bioaccessible metal (loid)s was calcite and Fe (hydr)oxides. Based on aqua regia metal (loid) concentrations, a non-carcinogenic risk was demonstrated for children (HI = 1.59) but no risk taking into account their bioaccessible concentrations (HI = 0.65). This study emphasises the need for detailed research of the geochemistry of wastes deposited in urban soils to assess the potentially hazardous sources and determine the actual bioaccessibility and human health risks of the accumulated metal (loid)s.
Collapse
Affiliation(s)
- Edgar Hiller
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Tomáš Faragó
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Martin Kolesár
- DEKONTA Slovensko, Ltd., Odeská 49, 821 06 Bratislava, Slovak Republic.
| | - Lenka Filová
- Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina 1, 842 48 Bratislava, Slovak Republic.
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic.
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Rastislav Demko
- Department of Older Geological Formations, Division of Geology, State Geological Institute of Dionýz Štúr, Mlynská dolina 1, 817 04 Bratislava 11, Slovak Republic.
| | - Andrej Machlica
- DEKONTA Slovensko, Ltd., Odeská 49, 821 06 Bratislava, Slovak Republic.
| | - Ján Štefánek
- DEKONTA Slovensko, Ltd., Odeská 49, 821 06 Bratislava, Slovak Republic.
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| |
Collapse
|
8
|
Baidourela A, Cheng S, Halik Ü, Sun Q, Zhayimu K, Zhang C, Cui K, Liu L, Sun G, Baiketuerhan Y, Wang W. Bio-availability of potential trace elements in urban dust, soil, and plants in arid northwest China. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1981-1995. [PMID: 38979644 DOI: 10.1080/15226514.2024.2371916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Potential trace elements pollution in cities poses a threat to the environment and human health. Bio-availability affects toxicity levels of potential trace elementss on organisms. This study focused on exploring the relationship between soil, plant, and atmospheric dust pollution in Urumqi, a typical city in western China. It aims to help reduce pollution and protect residents' health. The following conclusions were drawn: 1) potential trace elementss like Cr, Pb, As, and Ni are more prevalent in atmospheric dust and soil than in plants. Chromium was in the first group, Cadmium and Mercury were in the second, and Plumb, Arsenic, and Nickel were in the third. Atmospheric dust and soil exhibit a significantly higher heavy metal content than plants. For example, The atmospheric dust summary Chromium content was up to 88 mg/kg. 2) Soil, atmospheric dust, and plants have the highest amount of residual form. Residual form had the highest percentage average of 53.3%, whereas Organic matter bound form had the lowest percentage of just 7.7%. The plants contained less residual heavy metal than the soil and atmospheric dust. 3) The correlation coefficient between the carbonated form content of Cd of soil and atmospheric dust is 0.95, which is closely related. Other potential trace elements show similar correlations in their bio-available contents in soil, plants, and atmospheric dust. This study suggests that in urban area, the focus should be on converting potential trace elements into residual form instead of increasing plants' absorption of potential trace elements.
Collapse
Affiliation(s)
- Aliya Baidourela
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Sisi Cheng
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Ümüt Halik
- College of Ecology and Environment, Xinjiang University, Urumqi, P.R. China
| | - Qian Sun
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Kahaer Zhayimu
- College of Ecology and Environment, Xinjiang University, Urumqi, P.R. China
| | - Cuifang Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Kaixu Cui
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Li Liu
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Guili Sun
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Yeerjiang Baiketuerhan
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| | - Weixia Wang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, P.R. China
| |
Collapse
|
9
|
Billmann M, Pelfrêne A, Hulot C, Papin A, Pauget B. Toward a more realistic estimate of exposure to chromium and nickel in soils of geogenic and/or anthropogenic origin: importance of oral bioaccessibility. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:273. [PMID: 38958773 DOI: 10.1007/s10653-024-02041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
To enhance risk assessment for contaminated sites, incorporating bioavailability through bioaccessibility as a corrective factor to total concentration is essential to provide a more realistic estimate of exposure. While the main in vitro tests have been validated for As, Cd, and/or Pb, their potential for assessing the bioaccessibility of additional elements remains underexplored. In this study, the physicochemical parameters, pseudototal Cr and Ni concentrations, soil phase distribution, and oral bioaccessibility of twenty-seven soil samples were analysed using both the ISO 17924 standard and a simplified test based on hydrochloric acid. The results showed wide variability in terms of the concentrations (from 31 to 21,079 mg kg-1 for Cr, and from 26 to 11,663 mg kg-1 for Ni) and generally low bioaccessibility for Cr and Ni, with levels below 20% and 30%, respectively. Bioaccessibility variability was greater for anthropogenic soils, while geogenic enriched soils exhibited low bioaccessibility. The soil parameters had an influence on bioaccessibility, but the effects depended on the soils of interest. Sequential extractions provided the most comprehensive explanation for bioaccessibility. Cr and Ni were mostly associated with the residual fraction, indicating limited bioaccessibility. Ni was distributed in all phases, whereas Cr was absent from the most mobile phase, which may explain the lower bioaccessibility of Cr compared to that of Ni. The study showed promising results for the use of the simplified test to predict Cr and Ni bioaccessibility, and its importance for more accurate human exposure evaluation and effective soil management practices.
Collapse
Affiliation(s)
- Madeleine Billmann
- Laboratoire de Génie Civil et géo⁃Environnement - LGCgE, Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515, 48 Boulevard Vauban, 59000, Lille, France.
- Agence de l'Environnement et de la Maîtrise de l'Énergie, 20 Avenue du Grésillé, BP 90406, 49004, Angers Cedex 01, France.
| | - Aurélie Pelfrêne
- Laboratoire de Génie Civil et géo⁃Environnement - LGCgE, Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515, 48 Boulevard Vauban, 59000, Lille, France.
| | - Corinne Hulot
- Ineris, Parc Technologique Alata, BP 2, 60550, Verneuil⁃en⁃Halatte, France
| | - Arnaud Papin
- Ineris, Parc Technologique Alata, BP 2, 60550, Verneuil⁃en⁃Halatte, France
| | | |
Collapse
|
10
|
Li Z, Jiao W, Li R, Yu Z, Song N, Liu J, Zong H, Wang F. Source apportionment and source-specific risk assessment of bioavailable metals in river sediments of an anthropogenically influenced watershed in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169367. [PMID: 38104824 DOI: 10.1016/j.scitotenv.2023.169367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Integrated source analysis and risk assessment of metals facilitate the development of targeted risk management strategies. However, previous studies usually addressed total concentration rather than bioavailability, and consequently overestimated metal risk, especially natural source-related risk. In this study, a source-specific risk assessment was conducted by integrating the source analysis of bioavailable metals in surface sediments. Moreover, risk assessment was performed using two bioavailability-based indices: the total availability risk index (TARI) and a modified index of mean probable effect concentration quotients (mPEC-Q). A representative river watershed in eastern China was selected as the study area. Findings revealed that the total concentrations of Pb, Cu, Zn, Cr, and Ni in the sediments were 1.4-2.2 times higher than the local soil background values. Using a modified community bureau of reference (BCR) sequential extraction procedure, the dominant fraction for Pb, Cu, Zn, and Cr in the studied area was found to be the residual fraction, constituting 53.63-62.44% of the total concentrations. This suggested that a significant portion of the metals potentially originated from natural sources. Nevertheless, the concentration enrichment ratio (CER) indicated that anthropogenic sources contributed significantly, accounting for 67.84-87.68% of bioavailable metals. The positive matrix factorization (PMF) model further identified three different sources of bioavailable metals, with a descending concentration contribution sequence of industrial sources (37.61%), mixed traffic and natural sources (33.17%), and agricultural sources (29.22%). Both the TARI and mPEC-Q index values indicated that the bioavailable metals generally posed a moderate risk, and Ni was the priority pollutant. Industrial sources contributed the most to the total risk, although the contribution from TARI-based assessment (37.27%) was lower than that from the mPEC-Q assessment (46.43%). This study provides an example of the consideration of metal bioavailability in the context of source-specific risk assessments to develop more reasonable management strategies.
Collapse
Affiliation(s)
- Zhi Li
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Jiao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China.
| | - Ruiping Li
- School of Geography and Tourism, Qufu Normal University, Rizhao 276800, China
| | - Zihan Yu
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningning Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Liu
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiying Zong
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangli Wang
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
11
|
Zhang J, Yang L, Liu Y, Xing M, Wu Y, Bing H. Pollution and mobility of heavy metals in the soils of a typical agricultural zone in eastern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:91. [PMID: 38367072 DOI: 10.1007/s10653-024-01887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
The pollution of heavy metals (HMs) in agricultural soils profoundly threatens national food safety, and the mobility and environmental behaviors of HMs are closely implicated in crop safety. Here, we assessed the pollution level and mobility of ten HMs and explored their environmental behaviors in the soils of three different land uses from a main crop production zone in eastern China. The concentrations of HMs in the soils were higher in the farmland than the woodland and wasteland, and Cd showed a relatively higher pollution and ecological risk levels compared to other metals. Cadmium was dominated by the reducible (41%) and exchangeable (23%) fractions, and the rest of HMs were mainly in the residual fraction (> 60%). The significant correlation between the exchangeable and DGT-labile Cd indicates relatively higher mobility of Cd in the soils. Soil pH, organic matters and mineral elements had significant correlation with the exchangeable and reducible fractions of most of the HMs (e.g., Cd, Co, Mn, Ni, Pb and V; p < 0.05), indicating their good predictors of the HMs mobility. However, this was not the case for the DGT-labile fraction, which suggests a marked difference in the controlling mechanisms of the mobility versus potential bioavailability of HMs in the soils. The results of this study indicate that both the chemically extracted fractions and the bioavailable fractions of HMs need be considered when effectively assessing the safety of agricultural soils.
Collapse
Affiliation(s)
- Jie Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Liyuan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Ye Liu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Menghan Xing
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yanhong Wu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China.
| |
Collapse
|
12
|
Wu MW, Dong WJ, Guan DX, Li SW, Ma LQ. Total contents, fractionation and bioaccessibility of nine heavy metals in household dust from 14 cities in China. ENVIRONMENTAL RESEARCH 2024; 243:117842. [PMID: 38065384 DOI: 10.1016/j.envres.2023.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
The potential health risk caused by long-term exposure to heavy metals in household dust is not only depended on their total content, but also bioaccessibility. In this study, twenty-one dust samples were collected from residential buildings, schools, and laboratories in 14 provincial-capital/industrial cities of China, aiming to evaluate the total contents, fractionation, bioaccessibility and health risks of nine heavy metals (As, Cd, Cr, Ni, Pb, Mn, Zn, Fe, and Cu). Results showed that the highest levels of Cd, Cr, Ni and Zn were found in laboratory dust, As, Pb and Mn in school dust, and Fe and Cu in residential dust, indicating different source profiles of the heavy metals. The mean bioaccessibility of the heavy metals across all samples as evaluated using SBRC (Solubility Bioavailability Research Consortium), IVG (In Vitro Gastrointestinal), and PBET (Physiologically Based Extraction Test) assays was 58.4%, 32.4% and 17.2% in gastric phase (GP), and 24.9%, 21.9% and 9.39% in intestinal phase (IP), respectively. Cadmium had the highest content in the fractions of E1+C2 (43.7%), as determined by sequential extraction, and Pb, Mn, and Zn had a higher content in E1+C2+F3 (64.2%, 67.2%, 78.8%), resulting in a higher bioaccessibility of these heavy metals than others. Moreover, the bioaccessibility of most heavy metals was inversely related to dust pH (R = -0.18 in GP; -0.18 in IP; P < 0.01) and particle size, while a positive correlation was observed with total organic carbon (R = 0.40 in GP; 0.38 in IP; P < 0.01). The exposure risk calculated by the highest bioaccessibility was generally lower than that calculated by the total content. However, Pb in one school dust sample had an unacceptable carcinogenic risk (adult risk = 1.19 × 10-4; child risk = 1.08 × 10-4). This study suggests that bioaccessibility of heavy metals in household dust is likely related to geochemical fractions and physical/chemical properties. Further research is needed to explore the sources of bioaccessible heavy metals in household dust.
Collapse
Affiliation(s)
- Ming-Wen Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Jie Dong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
13
|
Li XY, Li XY, Jiang YF, Zhang C, Yang Q, Manzoor M, Luo J, Guan DX. High-resolution chemical imaging to understand Cd activation in rice rhizosphere of karstic soils. CHEMOSPHERE 2024; 349:140988. [PMID: 38122945 DOI: 10.1016/j.chemosphere.2023.140988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Cadmium (Cd) activation, especially at a high spatial resolution, in paddy soils with a high geogenic Cd background is yet to be understood. To investigate the temporal and spatial patterns of Cd activation in rice rhizosphere, pot and rhizotron experiments were conducted using four paddy soils with high geogenic Cd (0.11-3.70 mg kg-1) from Guangxi, southwestern China. The pot experiment results showed that porewater Cd concentrations initially decreased and then increased over the complete rice growth period, reaching its lowest value during the late-tillering and early-filling stages. Besides, correlation analysis identified organic matter and root manganese (Mn) content as the main factors affecting rice Cd uptake, with Mn having a negative effect and organic matter having a positive effect. Sub-millimeter two-dimensional chemical imaging revealed that the distribution of labile Cd in the rhizosphere (by diffusive gradients in thin-films, or DGT) was influenced by the root system and soil properties, such as pH (by planar optode) and acid phosphatase activity (by soil zymography). Soil acid phosphatase activity increased under Cd stress. The overall pH at rice rhizosphere decreased. Moreover, a close relationship was found between the spatial distributions of soil labile Mn and Cd at the rhizosphere, with higher Mn being associated with lower Cd lability. This study highlights Mn as a key element in regulating rice Cd uptake and enlightens future Mn-based strategies for addressing Cd pollution in rice paddy soils, especially in karst areas with high geochemical background.
Collapse
Affiliation(s)
- Xing-Yue Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xi-Yuan Li
- Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yi-Fan Jiang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Maria Manzoor
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Ledingham GJ, Fang Y, Catalano JG. Irreversible Trace Metal Binding to Goethite Controlled by the Ion Size. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2007-2016. [PMID: 38232091 DOI: 10.1021/acs.est.3c06516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The dynamics of trace metals at mineral surfaces influence their fate and bioaccessibility in the environment. Trace metals on iron (oxyhydr)oxide surfaces display adsorption-desorption hysteresis, suggesting entrapment after aging. However, desorption experiments may perturb the coordination environment of adsorbed metals, the distribution of labile Fe(III), and mineral aggregation properties, influencing the interpretation of labile metal fractions. In this study, we investigated irreversible binding of nickel, zinc, and cadmium to goethite after aging times of 2-120 days using isotope exchange. Dissolved and adsorbed metal pools exchange rapidly, with half times <90 min, but all metals display a solid-associated fraction inaccessible to isotope exchange. The size of this nonlabile pool is the largest for nickel, with the smallest ionic radius, and the smallest for cadmium, with the largest ionic radius. Spectroscopy and extractions suggest that the irreversibly bound metals are incorporated in the goethite structure. Rapid exchange of labile solid-associated metals with solution demonstrates that adsorbed metals can sustain the dissolved pool in response to biological uptake or fluid flow. Trace metal fractions that irreversibly bind following adsorption provide a contaminant sequestration pathway, limit the availability of micronutrients, and record metal isotope signatures of environmental processes.
Collapse
Affiliation(s)
- Greg J Ledingham
- Department of Earth, Environmental, and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yihang Fang
- Department of Earth, Environmental, and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jeffrey G Catalano
- Department of Earth, Environmental, and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
15
|
Dong WJ, He SX, Li XY, Zeng JY, Li MY, Guan DX, Ma LQ. Chromium contents, distribution and bioaccessibility in cultivated mushrooms from market: Health implications for human consumption. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132643. [PMID: 37774608 DOI: 10.1016/j.jhazmat.2023.132643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Mushrooms are consumed worldwide as they constitute a part of traditional cuisine culture in many countries. However, chromium (Cr) accumulation in mushrooms may constitute a potential pathway for its chronical exposure to humans. In this work, the Cr contents, distribution and bioaccessibility in 140 cultivated mushrooms from 14 species in 10 top-producing provinces in China were examined. Total Cr contents were 0.09-4.71 mg·kg-1 dw (mean 0.74 mg kg-1), with 59% exceeding the 0.5 mg kg-1standard. Additionally, less Cr was accumulated in the caps than stipes, with Cr ratio in caps/stipes being 0.28-2.6, averaging 0.91. Based on the Solubility Bioaccessibility Research Consortium (SBRC) assay, the mean Cr bioaccessibility in the mushrooms was 24.8% and 50.1% in the gastric phase (GP) and intestinal phase (IP). However, samples from Guizhou show the lowest Cr bioaccessibility at 12.5% in GP and 24.8% in IP. Further, a negative correlation between total Cr contents and Cr bioaccessibility suggests that Cr bioaccessibility is critical for accurate assessment of Cr exposure. In addition, drying mushrooms increased their bioaccessibility in the gastric phase. This study shows a high Cr exceeding rate of cultivated mushrooms, which may indicate a potential exposure risk, with Cr contents and bioaccessibility showing species and regional variation.
Collapse
Affiliation(s)
- Wen-Jie Dong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Si-Xue He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xing-Yue Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing-Yu Zeng
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng-Ya Li
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Xie L, Chen Q, Liu Y, Ma Q, Zhang J, Tang C, Duan G, Lin A, Zhang T, Li S. Enhanced remediation of Cr(VI)-contaminated soil by modified zero-valent iron with oxalic acid on biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167399. [PMID: 37793443 DOI: 10.1016/j.scitotenv.2023.167399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Hexavalent chromium (Cr(VI)) is carcinogenic and widely presented in soil. In this study, modified zero-valent iron (ZVI) with oxalic acid on biochar (OA-ZVI/BC) was prepared using wet ball milling method for the remediation of Cr(VI)-contaminated soil. Microscopic characterizations showed that ZVI were distributed on the biochar uniformly and confirmed the enhanced interface interaction between biochar and ZVI by wet ball milling. Electrochemical analysis indicated the strong electron transfer ability and enhanced corrosion behavior of OA-ZVI/BC. Moreover, inhibitory efficiencies of Cr(VI) removal with the addition of 1,10-phenanthroline suggested abundant Fe2+ generation in OA-ZVI/BC, which might facilitate the reduction of Cr(VI) to Cr(III). Theory calculation further demonstrated the ZVI modified by oxalic acid was more susceptible to solid-solid interfacial reactions with Cr(VI), and more electrons were transferred to Cr(VI). When applied to Cr(VI)-contaminated soil, OA-ZVI/BC could passivate 96.7 % total Cr(VI) and maintained for 90 days. The toxicity characteristic leaching procedure (TCLP) and simple based extraction test (SBET) were used to evaluate the leaching toxicity and bioaccessibility of Cr(VI), respectively. The TCLP-Cr(VI) decreased to 0.11 mg·L-1 after OA-ZVI/BC treatment, much lower than that of soils with ZVI/BC and OA-ZVI remediation (1.5 mg·L-1 and 4.1 mg·L-1). The bioaccessibility of Cr(VI) reduced by 93.5 % after 3-month remediation. Sequential extraction showed that Cr fractions in the soil after OA-ZVI/BC remediation was converted from acetic acid-extractable (HOAc-extractable) to more stable forms (e.g., residual and oxidizable forms). Benefiting from the synergies of oxalic acid, biochar and wet ball milling, OA-ZVI/BC exhibited an excellent performance on the remediation of Cr(VI)-contaminated soil, whose mechanisms involved adsorption, reduction (Fe0/Fe2+, Fe2+/Fe3+) and co-precipitation. This study herein develops a promising ZVI technology in the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Lihong Xie
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingjun Chen
- China National Petroleum and Chemical Planning Institute, Beijing 100013, China
| | - Yiyang Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiyan Ma
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinlan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenliu Tang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aijun Lin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shangyi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
17
|
Sun Y, Yang J, Li K, Gong J, Gao J, Wang Z, Cai Y, Zhao K, Hu S, Fu Y, Duan Z, Lin L. Differentiating environmental scenarios to establish geochemical baseline values for heavy metals in soil: A case study of Hainan Island, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165634. [PMID: 37474065 DOI: 10.1016/j.scitotenv.2023.165634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Soil heavy metal distributions exhibit regional heterogeneity due to the complex characteristics of parent materials and soil formation processes, emphasizing the need for appropriate regional standards prior to assessing soil risks. This study focuses on Hainan Island and employs the Multi-purpose Regional Geochemical Survey dataset to establish heavy metal geochemical baseline and background values for soil using an iterative method. Geographical detector analysis reveals that parent materials are the primary factor influencing heavy metal distribution, followed by soil types and land use. Heavy metal geochemical baseline values are established for the island's three environments and administrative regions. Notably, a universal geochemical baseline value cannot adequately represent regional variations in heavy metal distribution, with parent materials playing a crucial role in various scenarios. Locally applicable values based on parent material are the most representative for Hainan Island. This study provides a reference framework for developing region-specific environmental baseline values for soil heavy metal assessments.
Collapse
Affiliation(s)
- Yanling Sun
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China; UNESCO International Centre on Global-scale Geochemistry, Langfang 065000, PR China; Faculty of Earth Sciences, China University of Geoscience, Wuhan 430074, PR China
| | - Jianzhou Yang
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China.
| | - Kai Li
- Radiation Environmental Monitoring Center of GDNGB, Guangzhou 510800, PR China
| | - Jingjing Gong
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Jianweng Gao
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Zhenliang Wang
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China.
| | - Yongwen Cai
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Keqiang Zhao
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China.
| | - Shuqi Hu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Yangang Fu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Zhuang Duan
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Lujun Lin
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| |
Collapse
|
18
|
Billmann M, Hulot C, Pauget B, Badreddine R, Papin A, Pelfrêne A. Oral bioaccessibility of PTEs in soils: A review of data, influencing factors and application in human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165263. [PMID: 37400023 DOI: 10.1016/j.scitotenv.2023.165263] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Understanding the behavior of metal(loi)ds transported from soil to humans is critical for human health risk assessment (HHRA). In the last two decades, extensive studies have been conducted to better assess human exposure to potentially toxic elements (PTEs) by estimating their oral bioaccessibility (BAc) and quantifying the influence of different factors. This study reviews the common in vitro methods used to determine the BAc of PTEs (in particular As, Cd, Cr, Ni, Pb, and Sb) under specific conditions (particularly in terms of the particle size fraction and validation status against an in vivo model). The results were compiled from soils derived from various sources and allowed the identification of the most important influencing factors of BAc (using single and multiple regression analyses), including physicochemical soil properties and the speciation of the PTEs in question. This review presents current knowledge on integrating relative bioavailability (RBA) in calculating doses from soil ingestion in the HHRA process. Depending on the jurisdiction, validated or non-validated bioaccessibility methods were used, and risks assessors applied different approaches: (i) using default assumptions (i.e., RBA of 1); (ii) considering that bioaccessibility value (BAc) accurately represents RBA (i.e., RBA equal to BAc); (iii) using regression models to convert BAc of As and Pb into RBA as proposed by the USA with the US EPA Method 1340; or (iv) applying an adjustment factor as proposed by the Netherlands and France to use BAc from UBM (Unified Barge Method) protocol. The findings from this review should help inform risk stakeholders about the uncertainties surrounding using bioaccessibility data and provide recommendations for better interpreting the results and using bioaccessibility in risk studies.
Collapse
Affiliation(s)
- Madeleine Billmann
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, 48 boulevard Vauban, F-59000 Lille, France; Agence de l'Environnement et de la Maîtrise de l'Énergie, 20 avenue du Grésillé BP 90406, F-49004 Angers Cedex 01, France
| | - Corinne Hulot
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | | | - Rabia Badreddine
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | - Arnaud Papin
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | - Aurélie Pelfrêne
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, 48 boulevard Vauban, F-59000 Lille, France.
| |
Collapse
|
19
|
Liu F, Wang X, Dai S, Zhou J, Liu D, Hu Q, Bai J, Zhao L, Nazir N. Impact of different industrial activities on heavy metals in floodplain soil and ecological risk assessment based on bioavailability: A case study from the Middle Yellow River Basin, northern China. ENVIRONMENTAL RESEARCH 2023; 235:116695. [PMID: 37467945 DOI: 10.1016/j.envres.2023.116695] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Understanding the impact of different industrial activities on heavy metals and conducting scientific ecological risk assessments are critical to the management of heavy metal pollution. The present study compared soils affected by different industrial activities in three types of industrial cities (coal city, oil-gas city, and economic city) to control samples and examined the ecological risk based on bioavailability in the Middle Yellow River Basin. The findings revealed that the impact characteristics of different industrial activities on soil heavy metals in the research area were different. Both coal-based and oil-gas industry activities had a minor impact on soil heavy metals, whereas economic industry activities in the southern part had a major impact, as evidenced by significant enrichment of Cd, Hg, Cu, Pb, and Zn. In principal component analysis, the soil heavy metals affected by economic industry activities designated a distinct source from the control samples, particularly the anthropogenic sources represented by Hg and Cd. In the context of heavy metals in chemical form, three types of industrial activities all had an effect on bioavailability (0.72-24.27%) and could increase migratory activity in the environment. Furthermore, both traditional and improved assessments, based on total content and bioavailability, showed a low ecological risk near coal cities and oil-gas cities in the middle and northern parts, while there was a medium-high ecological risk near economically developed cities in the south, particularly Tianshui, Baoji, Qishan, Xianyang, Xi'an, and Tongchuan. In comparison, improved risk assessment based on bioavailability tends to not only compensate for an overestimation in traditional risk assessment from the perspective of total content, but additionally achieve a more reasonable, effective, and advanced assessment of heavy metal risks in scientific research. The outcome of this study has significance for the ecological conservation and high-quality development of the Yellow River Basin.
Collapse
Affiliation(s)
- Futian Liu
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources & School of Earth Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Xueqiu Wang
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, China; UNESCO International Center on Global-scale Geochemistry, Langfang, 065000, China.
| | - Shuang Dai
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources & School of Earth Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jian Zhou
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, China; UNESCO International Center on Global-scale Geochemistry, Langfang, 065000, China
| | - Dongsheng Liu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, China; UNESCO International Center on Global-scale Geochemistry, Langfang, 065000, China
| | - Qinghai Hu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, China; UNESCO International Center on Global-scale Geochemistry, Langfang, 065000, China
| | - Jianke Bai
- Xining Center of Natural Resources Comprehensive Survey, CGS, Xining, 810000, China
| | - Linxing Zhao
- Xining Center of Natural Resources Comprehensive Survey, CGS, Xining, 810000, China
| | - Nusrat Nazir
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources & School of Earth Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
20
|
Yan X, Guan DX, Li J, Song Y, Tao H, Zhang X, Ma M, Ji J, Zhao W. Fate of Cd during mineral transformation by sulfate-reducing bacteria in clay-size fractions from soils with high geochemical background. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132213. [PMID: 37549581 DOI: 10.1016/j.jhazmat.2023.132213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Sulfate-reducing bacteria (SRB) can immobilize heavy metals in soils through biomineralization, and the parent rock and minerals in the soil are critical to the immobilization efficiency of SRB. To date, there is little knowledge about the fate of Cd associated with the parent rocks and minerals of soil during Cd immobilized by SRB. In this study, we created a model system using clay-size fraction of soil and SRB to explore the role of SRB in immobilizing Cd in soils from stratigraphic successions with high geochemical background. In the system, clay-size fractions (particle size < 2 µm) with concentration of Cd (0.24-2.84 mg/kg) were extracted from soils for bacteria inoculation. After SRB reaction for 10 days, the Cd fraction tended to transform into iron-manganese bound. Further, two clay-size fractions, i.e., the non-crystalline iron oxide (Fe-OX) and the crystalline iron oxide (Fe-CBD), were separated by extraction. The reaction of SRB with them verified the transformation of primary iron-bearing minerals into secondary iron-bearing minerals, which contributed to Cd redistribution. This study shows that SRB could exploit the composition and structure of minerals to induce mineral recrystallization, thereby aggravating Cd redistribution and immobilization in clay-size fractions from stratigraphic successions with high geochemical background.
Collapse
Affiliation(s)
- Xing Yan
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, PR China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jie Li
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Yinxian Song
- Department of Geosciences, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China
| | - Hua Tao
- Chongqing Geological and Mineral Resource Exploration and Development Bureau 607 Geological Team, Chongqing 401120, PR China
| | - Xianming Zhang
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, PR China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Junfeng Ji
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, PR China
| | - Wancang Zhao
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
21
|
Huang K, Yang Y, Lu H, Hu S, Chen G, Du Y, Liu T, Li X, Li F. Transformation kinetics of exogenous nickel in a paddy soil during anoxic-oxic alteration: Roles of organic matter and iron oxides. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131246. [PMID: 36989790 DOI: 10.1016/j.jhazmat.2023.131246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Nickel is generally released from flooded soils; however, the key Ni transformation processes in soils that are freshly contaminated by Ni2+ during anoxic-oxic alteration remain unclear. We developed a kinetic model to investigate the Ni transformation in paddy soils under anoxic and oxic conditions based on the results of the seven-step sequential extraction, determination of dissolved and soil organic matter, and surface site quantification, which provide the kinetic data of different Ni fractions, organic matter, and reactive sites for modeling. The dissolved, exchangeable, and specifically adsorbed Ni was gradually transferred to fulvic complex, humic complex, Fe-Mn oxide bound, and sulfide bound Ni after 40 d of anoxic incubation due to the increase in pH and soil surface sites, which were mainly induced by Fe(III) oxide reduction and soil organic matter release. The introduction of oxygen triggered a rapid release of Ni, which was ascribed to the decrease in pH and soil surface sites caused by Fe(II) oxidation and carbon re-immobilization. Kinetic modeling demonstrated that complexation with soil organic matter dominated Ni immobilization under anoxic conditions, while organic matter and Fe-Mn oxides contributed similarly to Ni release under oxic conditions, although the majority of Ni remained complexed with soil organic matter. These findings are important for the evaluation and prediction of Ni behavior in paddy soils with exogenous Ni during flooding-drainage practices.
Collapse
Affiliation(s)
- Kaiyi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hansha Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yanhong Du
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
22
|
Sun Y, Chen S, Dai X, Li D, Jiang H, Jia K. Coupled retrieval of heavy metal nickel concentration in agricultural soil from spaceborne hyperspectral imagery. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130722. [PMID: 36628862 DOI: 10.1016/j.jhazmat.2023.130722] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Widespread soil contamination endangers public health and undermines global attempts to achieve the United Nations Sustainable Development Goals. Due to the lack of relevant studies and low precision of spaceborne spectroscopy, estimating soil heavy metal concentrations is challenging. In this study, we developed a coupled retrieval to qualify the heavy metal nickel (Ni) concentration in agricultural soil from spaceborne hyperspectral imagery. The retrieval couples spectral feature extraction from multi-scale discrete wavelet transform (DWT) and dimension reduction (DR), optimal band combination algorithm to five machine learning retrieval models using tree-based ensemble learning, neural network-based, and kernel-based. The comparison between the retrievals and Ni measurements shows that the DWT combined with t-distributed stochastic neighbor embedding (tSNE) coupled extreme gradient boosting (XGboost) retrieval model exhibited the best prediction for the validation dataset. Moreover, due to the integration of six statistical indicators of model performance and the fitted slope of the regression line, the retrieval framework can produce more robust and accurate predictions than those that rely on correlation coefficients. The demonstrated potential of spaceborne hyperspectral remote sensing to provide accurate quantitative measurements of soil heavy metal concentrations will serve as a reference for agricultural plot applications worldwide.
Collapse
Affiliation(s)
- Yishan Sun
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou 510070, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuisen Chen
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou 510070, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shaoguan Shenwan Low Carbon Digital Technology Co., Ltd., Shaoguan 512026, China.
| | - Xuemei Dai
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou 510070, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Li
- Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou 510070, China
| | - Hao Jiang
- Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou 510070, China
| | - Kai Jia
- Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou 510070, China
| |
Collapse
|