1
|
Zhang Q, Wang X, Chen Y, Song G, Zhang H, Huang K, Luo Y, Cheng N. Discovery and solution for microplastics: New risk carriers in food. Food Chem 2025; 471:142784. [PMID: 39788019 DOI: 10.1016/j.foodchem.2025.142784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Microplastics (MPs), as a kind of plastic particles with an equal volume size of less than 5 mm, similar to PM2.5 in the air, are causing severe contamination issues in food. Along with the food chain accumulation, they have been confirmed to appear in daily foods and cause serious health risks to the organisms. However, there were no unifying national and local policies on separating, extracting, and detecting MPs in food, which is an essential and imperative early-warning strategy. This review carefully and comprehensively summarized the validated contaminated food, physical and chemical characteristics, extraction methods, traditional and rapid detection techniques, as well as degradation methods of MPs. We thoroughly analyzed the differences among these traditional strategies, and innovatively generalized the existing rapid detection techniques for MPs. Finally, the shortcomings of existing research were discussed, and the possibility of novel rapid and intelligent detection techniques for MPs in food was proposed.
Collapse
Affiliation(s)
- Qi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yang Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guangchun Song
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hao Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Yunbo Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Choi YH, Park N, Kim J, Park SA, Jung J, Song JS, Choi YH, Kim DH. Microplastic contamination in artificial tears in South Korea: Potential for direct ocular exposure. Cont Lens Anterior Eye 2025; 48:102325. [PMID: 39532599 DOI: 10.1016/j.clae.2024.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To investigate microplastics (MP) contamination in artificial tear (AT) products. METHOD Five hyaluronic acid ATs (two multi-use and three disposable ATs) were used to gauge MP levels in three scenarios: 1) initial drop and remaining liquid after opening the lid upward; 2) remaining liquid after opening the lid downward and discarding two drops; and 3) remaining liquid after opening the lid downward and discarding half of it. Raman spectroscopy was used to identify the quantity, morphological characteristics, and composition of MPs. Scanning electron microscopy/energy dispersive spectroscopy was used to examine the surface traits and elements of MPs and ATs. RESULTS MPs were detected in 4 out of 5 ATs in the initial drops, containing 0.50 ± 0.65 particles/30 mL, whereas the remaining solution had 0.75 ± 0.72 particles/30 mL. After discarding two drops, 0.14 ± 0.35 particles/30 mL were present in the remaining solution. No MPs were detected after discarding half drops. Most MPs were transparent (95 %), irregular fragments (55 %) sized 10-20 μm (35 %), and made of polyethylene (95 %). If patients use the first drops of ATs four times a day for a year, individuals can be exposed to 730.0 particles. This exposure can be reduced to 204.4 particles by discarding the first two drops before use. CONCLUSION MPs are observed in commercially available ATs, and human eyes may be directly exposed to MPs through the use of ATs.
Collapse
Affiliation(s)
- Yun-Hee Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea; School of Health and Environmental Science, Korea University, Seoul, South Korea
| | - Nayoon Park
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Juyang Kim
- Korea Institute of Analytical Science and Technology, Seoul, South Korea
| | - Seul-Ah Park
- Korea Institute of Analytical Science and Technology, Seoul, South Korea
| | - Jaehak Jung
- Korea Institute of Analytical Science and Technology, Seoul, South Korea
| | - Jong Suk Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Yoon-Hyeong Choi
- School of Health and Environmental Science, Korea University, Seoul, South Korea.
| | - Dong Hyun Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Chia RW, Atem NV, Lee JY, Cha J. Microplastic and human health with focus on pediatric well-being: a comprehensive review and call for future studies. Clin Exp Pediatr 2025; 68:1-15. [PMID: 39533740 PMCID: PMC11725616 DOI: 10.3345/cep.2023.01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 11/16/2024] Open
Abstract
Although humans are highly dependent on plastics from infancy to adolescence, these materials can degrade into ubiquitous microplastics (MPs) that affect individuals at every stage of life. However, information on the sources, mechanisms, detection techniques, and detrimental effects of MPs on children's health from infancy to adolescence is limited. Hence, here we identified and reviewed original research papers published in 2017-2023 across 11 database categories in PubMed, Google Scholar, Scopus, and Web of Science to improve our understanding of MPs with a focus on pediatric well-being. These studies found that milk and infant formulas are common sources of MP exposure in infants. Infant formula is the dominant source of MPs in babies, while plastic toys are a common source of MPs in toddlers. Adolescents are frequently exposed to MPs through the consumption of food contaminated with MPs and the use of plastics in food packaging. Water and air are sources of MP exposure in children from infancy through adolescence. This study thoroughly summarized how MP exposure in children of all ages causes cell damage and leads to adverse health effects such as cancer. With appropriate authorization from the relevant authorities, small amounts of human biological samples (10 g of feces) were collected from volunteers to assess the amounts of MPs in children with the aim of promoting pediatric well-being. The samples were then treated with Fenton's reagent, stored in glass jars, and filtered through nonplastic filters. Finally, MPs in children were quantified using stereomicroscopy and characterized using micro-Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
- Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, Korea
- Research Institute for Earth Resources, Kangwon National University, Chuncheon, Korea
| | | | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, Korea
- Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon, Korea
| | - Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon, Korea
- School of Science and Engineering, University of Missouri, Kansas City, MO, USA
| |
Collapse
|
4
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
de Carvalho JGR, Augusto HC, Ferraz R, Delerue-Matos C, Fernandes VC. Micro(nano)plastic and Related Chemicals: Emerging Contaminants in Environment, Food and Health Impacts. TOXICS 2024; 12:762. [PMID: 39453182 PMCID: PMC11510996 DOI: 10.3390/toxics12100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Microplastic pollution is a problem of increasing concern in food, and while food safety issues around the world are serious, an increasing number of food safety issues related to microplastics have become the focus of people's attention. The presence of microplastics in food is a worldwide problem, and they are present in all kinds of foods, foods of both animal and plant origin, food additives, drinks, plastic food packaging, and agricultural practices. This can cause problems for both humans and the environment. Microplastics have already been detected in human blood, heart, placenta, and breastmilk, but their effects in humans are not well understood. Studies with mammals and human cells or organoids have given perspective about the potential impact of micro(nano)plastics on human health, which affect the lungs, kidneys, heart, neurological system, and DNA. Additionally, as plastics often contain additives or other substances, the potentially harmful effects of exposure to these substances must also be carefully studied before any conclusions can be drawn. The study of microplastics is very complex as there are many factors to account for, such as differences in particle sizes, constituents, shapes, additives, contaminants, concentrations, etc. This review summarizes the more recent research on the presence of microplastic and other plastic-related chemical pollutants in food and their potential impacts on human health.
Collapse
Affiliation(s)
- Juliana G. R. de Carvalho
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
| | - Helga Coelho Augusto
- Cofisa—Conservas de Peixa da Figueira, S.A., Terrapleno do Porto de Pesca—Gala, 3090-735 Figueira da Foz, Portugal;
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Virgínia Cruz Fernandes
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| |
Collapse
|
6
|
Luo Y, Naidu R, Fang C. Toy building bricks as a potential source of microplastics and nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134424. [PMID: 38678720 DOI: 10.1016/j.jhazmat.2024.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Microplastics and nanoplastics have become noteworthy contaminants, affecting not only outdoor ecosystems but also making a notable impact within indoor environments. The release of microplastics and nanoplastics from commonly used plastic items remains a concern, and the characterisation of these contaminants is still challenging. This study focused on evaluating the microplastics and nanoplastics produced from plastic building bricks. Using Raman spectroscopy and correlation analysis, the plastic material used to manufacture building blocks was determined to be either acrylonitrile butadiene styrene (correlation value of 0.77) or polycarbonate (correlation value of 0.96). A principal component analysis (PCA) algorithm was optimised for improved detection of the debris particles released. Some challenges in microplastic analysis, such as the interference from the colourants in the building block materials, was explored and discussed. Combining Raman results with scanning electron microscopy - energy-dispersive X-ray spectroscopy, we found the scratches on the building blocks to be a significant source of contamination, estimated several thousand microplastics and several hundred thousand nanoplastics were generated per mm2 following simulated play activities. The potential exposure to microplastics and nanoplastics during play poses risks associated with the ingestion and inhalation of these minute plastic particles.
Collapse
Affiliation(s)
- Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
7
|
Paul I, Mondal P, Haldar D, Halder G. Beyond the cradle - Amidst microplastics and the ongoing peril during pregnancy and neonatal stages: A holistic review. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133963. [PMID: 38461669 DOI: 10.1016/j.jhazmat.2024.133963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Advancements in research concerning the occurrence of microplastics (MPs) in human blood, sputum, urine, and breast milk samples have piqued the interest of the scientific community, prompting further investigation. MPs present in the placenta, amniotic fluid, and meconium raise concerns about interference with embryonic development, leading to preeclampsia, stillbirth, preterm birth, and spontaneous abortion. The challenges posed by MPs extend beyond pregnancy, affecting the digestive, reproductive, circulatory, immune, and central nervous systems. This has spurred scientists to examine the origins of MPs in distinct environmental layers, including air, water, and soil. These risks continue after birth, as neonates are continuously exposed to MPs through everyday items such as breast milk, cow milk and infant milk powder, as well as plastic-based products like feeding bottles and breast milk storage bags. It is the need of the hour to strike a balance amidst lifestyle changes, alternative choices to traditional plastic products, raising awareness about plastic-related health risks, and fostering collaboration between the scientific community and policymakers. This review aims to provide fresh insights into potential sources of MP pollution, with a specific focus on pregnancy and neonates. It is the first compilation of its kind so far that includes critical studies on recently reported discoveries.
Collapse
Affiliation(s)
- Indrani Paul
- Department of Biotechnology, Brainware University, Kolkata 700125, West Bengal, India
| | - Pritam Mondal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
8
|
Maurya AC, Bhattacharya A, Vij V, Khare SK. Deciphering the seasonal dynamics of microplastic morphotypes and associated co-contaminants along the northwest coast of India. CHEMOSPHERE 2024; 354:141690. [PMID: 38484988 DOI: 10.1016/j.chemosphere.2024.141690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
In the present study, the northwest coast of India, bordering the Arabian Sea, was selected to evaluate the microplastic (MP) abundance. This is the first study to emphasize the effects of different seasons on MP distribution. The collected MPs were dried, segregated, and evaluated based on their morphotype, size, color, and polymer type. A total of 1756.6, 7326.6, and 202 particles/kg of sand were estimated in the pre-monsoon, monsoon and post-monsoon seasons, respectively, with a dominance of polypropylene (PP) type of plastic in the pre-monsoon and high-density polyethylene (HDPE) in monsoon and post-monsoon seasons. HDPE and PP collected MPs during the monsoon season were further characterized for associated contaminants. Metal absorbance was detected using SEM-EDX mapping and ICP-MS. The presence of organic compounds (OCs) was analyzed using GC-MS. MPs exhibit distinct associations with metals, among which the HDPE pellet morphotype exhibits a higher range of metal adsorption. Total 61 different OCs were associated with MPs. The HDPE pellets contained the highest amounts of hydrophobic organic compounds. PP pellets were found to contain triglycerides, fatty aldehydes, and alkaloids, along with HOCs. Among morphotypes, pellet forms of MPs were found to adsorb more contaminants. These co-contaminants infiltrate the study area through sewage runoff and shoreline debris deposition, subsequently interacting with MPs. Furthermore, the MP diversity was studied by employing the MP diversity integrated index, which suggests that most of the MP diversity was observed in the pre-monsoon period. The pollution load index employed an MP risk assessment, which presented a low degree of MP contamination. In contrast, the polymer hazard index was calculated as 21650.3 in post-monsoon, placing the area under the extreme danger category. It is evident from the data that the types of MP is more important than their number. Thus, MP morphotypes have importance in the adsorption of co-contaminants.
Collapse
Affiliation(s)
- Ankita C Maurya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi-11016, India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi-11016, India
| | - Varun Vij
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi-11016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi-11016, India.
| |
Collapse
|
9
|
Liu S, Chen H, Ding Y, Zhou X, Ding Y, Liu S, Ke Z. Thermal aging of polystyrene microplastics within mussels (Mytilus coruscus) under boiling and drying processing. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133282. [PMID: 38142652 DOI: 10.1016/j.jhazmat.2023.133282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Aged microplastics (MPs) in the environment are a growing concern due to their higher ecological toxicity compared to pristine MPs. While previous studies have explored aging behaviors of MPs under various stress conditions, little is known about their aging during food processing. In this study, we investigated the effects of different thermal food processing methods on the aging of polystyrene (PS) MPs within mussels. We subjected the mussels containing PS MPs to boiling, boiling/solar drying, boiling/hot air drying, and boiling/microwave drying treatments, all of which are common preservation methods used in industry. We analyzed the particle size, surface morphology, yellowing, crystallinity, chemical groups, and hydrophilicity of the PS MPs to understand the aging process. Results show that all processing methods led to aging of PS MPs, with boiling/microwave drying having the most significant impact, followed by boiling/hot air drying, boiling/solar drying, and boiling alone. The aged PS MPs exhibited smaller size, morphological changes, reduced crystallinity, increased yellowness index and carbonyl index, higher presence of O-containing groups, and enhanced hydrophilicity. These findings provide evidence of MPs aging during thermal food processing and emphasize the potential risks associated with this pathway.
Collapse
Affiliation(s)
- Siyu Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Zhigang Ke
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China.
| |
Collapse
|
10
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
11
|
Ayala F, Rangel-Vega A, Quinde E, Reyes E, Zeta-Flores M, Tume-Ruiz J, De-la-Torre GE. Bibliometric review on microplastic contamination in the Pacific Alliance countries. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1369. [PMID: 37880459 DOI: 10.1007/s10661-023-11990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Microplastics, capable of absorbing persistent organic compounds, heavy metals, and emerging pollutants, are of global concern due to their potential to alter the behavior and metabolism of biota. In Latin America, the Pacific Alliance, comprising Mexico, Colombia, Peru, and Chile, stands out for its biological wealth and productive ecosystems, which account for 37% of the region's gross domestic product. The leaders of these countries expressed their concern about microplastic pollution and pledged to take joint action. We conducted an analysis of the scientific production of these countries and the collaborations of their researchers, focused on the period 2015-2023, using Scopus and SCImago. We observed that marine-coastal/wetland ecosystems are the most studied, with a focus on fish, and that Mexico leads in publications, followed by Colombia, Peru, and Chile. In addition, we note the absence of an inter-institutional group dedicated to microplastics research in these countries. We recommend promoting collaboration between academic institutions specialized in microplastic research and government agencies dedicated to the promotion of science and technology in the countries belonging to the Pacific Alliance.
Collapse
Affiliation(s)
- Félix Ayala
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Antia Rangel-Vega
- Facultad de Ingeniería Pesquera, Universidad Nacional de Piura, Piura, Peru
| | - Edgardo Quinde
- Facultad de Ingeniería Pesquera, Universidad Nacional de Piura, Piura, Peru
| | - Eddy Reyes
- Facultad de Ingeniería Pesquera, Universidad Nacional de Piura, Piura, Peru
| | - Martín Zeta-Flores
- Facultad de Ingeniería de Minas, Universidad Nacional de Piura, Piura, Peru
| | - Juan Tume-Ruiz
- Facultad de Ingeniería Pesquera, Universidad Nacional de Piura, Piura, Peru
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
12
|
Urrutia-Pereira M, Guidos-Fogelbach G, Chong-Neto HJ, Solé D. Microplastics exposure and immunologic response. Allergol Immunopathol (Madr) 2023; 51:57-65. [PMID: 37695231 DOI: 10.15586/aei.v51i5.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE To assess the impact of microplastics (MPs) on human health. DATA SOURCE The authors conducted a non-systematic review of articles published in English, Portuguese, French, and Spanish in the last decade in the following databases: PubMed, Google Scholar, EMBASE, and SciELO. The keywords used were: microplastics OR nanoplastics OR marine litter OR toxicology OR additives AND human health OR children OR adults. DATA SUMMARY MPs are a group of emerging contaminants that have attracted scientific interest and societal attention in the last decade due to their ubiquitous detection in all environments. Humans can primarily be exposed to MPs and nanoplastics via oral and inhalation routes, but dermal contact cannot be overlooked, especially in young children. The possible toxic effects of plastic particles are due to their potential toxicity, often combined with that of leachable additives and adsorbed contaminants. CONCLUSIONS Unless the plastic value chain is transformed over the next two decades, the risks to species, marine ecosystems, climate, health, economy, and communities will be unmanageable. However, along with these risks are the unique opportunities to help transition to a more sustainable world.
Collapse
Affiliation(s)
| | | | - Herberto José Chong-Neto
- Department of Pediatrics, Divison of Allergy and Pneumology, Federal University of Paraná, Curitiba, Paraná, Brazil;
| | - Dirceu Solé
- Department of Pediatrics, Division of Allergy, Clinical Immunology and Rheumatology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Roy PD, Martínez IE. Consumption of commercially sold dried fish snack "Charales" contaminated with microplastics in Mexico. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121961. [PMID: 37277071 DOI: 10.1016/j.envpol.2023.121961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Inadvertent human exposure to microplastics by the ingestion of microplastic-contaminated processed foods poses health risks and new preventative issues; nevertheless, investigations analyzing microplastic occurrences in commercially dried fish for direct human consumption are scarce. This study assessed the abundance and characteristics of microplastics in 25 commercially sold dried fish products (4 supermarkets, 3 street vendors, and 18 traditional agri-product farmers' markets) from two widely consumed and commercially important Chirostoma species (C. jordani and C. patzcuaro) in Mexico. Microplastics were detected in all the samples examined, with abundances ranging from 4.00 ± 0.94 to 55.33 ± 9.43 items g-1. C. jordani dried fish samples had higher mean microplastic abundance (15.17 ± 5.90 items g-1) than the C. patzcuaro dried fish samples (7.82 ± 2.90 items g-1); nevertheless, there was no statistically significant difference in microplastic concentrations between the samples. The most prevalent type of microplastic was fiber (67.55%), followed by fragment (29.18%), film (3.00%), and sphere (0.27%). Non-colored microplastics (67.35%) predominated, while microplastic sizes varied from 24 to 1670 μm, with sizes less than 500 μm (84%) being the most common. ATR-FTIR analysis revealed polyester, acrylonitrile butadiene styrene, polyvinyl alcohol, ethylene-propylene copolymer, nylon-6 (3), cellophane, and viscose in the dried fish samples. Overall, this study's findings are the first in Latin America to demonstrate microplastic contamination in dried fish for human consumption, underscoring the need for developing countermeasures to prevent plastic pollution in fish-caught regions and reduce the risks of human exposure to these micropollutants.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Priyadarsi D Roy
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - I Elizalde Martínez
- Instituto Politécnico Nacional (IPN), Centro Mexicano para la Producción más Limpia (CMP+L), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340, México City, Mexico
| |
Collapse
|
14
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Roy PD, Elizalde-Martínez I. Common laboratory reagents: Are they a double-edged sword in microplastics research? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162610. [PMID: 36894090 DOI: 10.1016/j.scitotenv.2023.162610] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Understanding and communicating instances of microplastic contamination is critical for enabling plastic-free transitions. While microplastics research uses a variety of commercial chemicals and laboratory liquids, the impact of microplastics on these materials remains unknown. To fill this knowledge gap, the current study investigated microplastics abundance and their characteristics in laboratory waters (distilled, deionized, and Milli-Q), salts (NaCl and CaCl2), chemical solutions (H2O2, KOH and NaOH), and ethanol from various research laboratories and commercial brands. The mean abundance of microplastics in water, salt, chemical solutions, and ethanol samples was 30.21 ± 30.40 (L-1), 24.00 ± 19.00 (10 g-1), 187.00 ± 45.00 (L-1), and 27.63 ± 9.53 (L-1), respectively. Data comparisons revealed significant discrepancies between the samples in terms of microplastic abundance. Fibers (81 %) were the most common microplastics, followed by fragments (16 %) and films (3 %); 95 % of them were <500 μm, with the smallest and largest particle sizes recorded being 26 μm and 2.30 mm, respectively. Microplastic polymers discovered included polyethylene, polypropylene, polyester, nylon, acrylic, paint chips, cellophane, and viscose. These findings lay the groundwork for identifying common laboratory reagents as a potential contributor to microplastic contamination in samples, and we offer solutions that should be integrated into data processing to produce accurate results. Taken together, this study shows that commonly used reagents not only play a key role in the microplastic separation process but also contain microplastic contamination themselves, requiring the attention of researchers to promote quality control during microplastic analysis and commercial suppliers in formulating novel prevention strategies.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - V C Shruti
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, C.P. 04510 Ciudad de México, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Priyadarsi D Roy
- Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, C.P. 04510 Ciudad de México, Mexico
| | - I Elizalde-Martínez
- Instituto Politécnico Nacional (IPN), Centro Mexicano para la Producción más Limpia (CMP+L), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340 México City, Mexico
| |
Collapse
|