1
|
Hay Mele B, Bianchi AR, Guerretti V, Pugliese M, De Maio A, Arena C. Antioxidant Defenses and Poly(ADP-Ribose) Polymerase (PARP) Activity Provide "Radioresilience" Against Ionizing Radiation-Induced Stress in Dwarf Bean Plants. Antioxidants (Basel) 2025; 14:261. [PMID: 40227223 PMCID: PMC11939814 DOI: 10.3390/antiox14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 04/15/2025] Open
Abstract
Exposure to ionizing radiation (IR) poses a significant risk for all organisms. Although plants are generally more resistant than animals, radiation still impacts their structure and function. Plant resistance to ionizing radiation is a pivotal property to guarantee their survival. This study evaluates bean leaves' early and long-term responses to oxidative stress induced by ionizing radiation. To assess the early response, we measured a battery of photosynthetic efficiency and oxidative stress markers after exposure of dwarf bean plants to X-ray doses of 0.3, 10, 50, and 100 Gy. We observed that doses started to impact photosynthetic activity at 50 Gy and that markers aggregate in two kinds of behaviors. To test the capacity to recover from radiation-induced damages, 50 Gy-irradiated plants were evaluated with the same markers 3-, 10-, 12-, and 20-days post-irradiation. Dwarf beans displayed remarkable resilience, recovering photosynthetic activity to pre-stress level after three days and pigment content after ten days. The remodulation of oxidative stress markers is slower and more complex, with catalase and total polyphenols failing to recover completely and residual antioxidant activity after twenty days. Despite that, PARP activity recovers to pre-irradiation after three days. The restoration of photosynthesis to pre-irradiated conditions highlights the DNA-repairing efficiency of poly(ADP-ribose) polymerase and antioxidant machinery in providing resilience to radiation-induced oxidative stress. Understanding resilience mechanisms sheds light on the ability of plants to survive and thrive in radiation-intense environments, such as space or radioactively contaminated areas.
Collapse
Affiliation(s)
- Bruno Hay Mele
- Department of Biology, University of Naples Federico II, Via Cinthia, 4, 80126 Naples, Italy
| | - Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia, 4, 80126 Naples, Italy
| | - Valeria Guerretti
- Department of Biology, University of Naples Federico II, Via Cinthia, 4, 80126 Naples, Italy
| | - Mariagabriella Pugliese
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 4, 80126 Naples, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 4, 80126 Naples, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 4, 80126 Naples, Italy
| |
Collapse
|
2
|
Wang C, Wu Y, Liu C, Li Y, Mi S, Yang X, Liu T, Tian Y, Zhang Y, Hu P, Qiao L, Deng G, Liang N, Sun J, Zhang Y, Zhang J. Nervonic acid alleviates radiation-induced early phase lung inflammation by targeting macrophages activation in mice. Front Immunol 2024; 15:1405020. [PMID: 39723218 PMCID: PMC11668677 DOI: 10.3389/fimmu.2024.1405020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background Patients receiving chest radiation therapy, or exposed to high radiation levels due to accidental nuclear leakage are at risk of radiation-induced lung injury (RILI). In innate immunity, macrophages not only exhibit certain radiation tolerance but also play an important regulatory role in the whole pathological process. Nervonic acid (NA), a long-chain unsaturated fatty acid found in nerve tissue, plays a pivotal role in maintaining normal tissue growth and repair. However, the influence of NA on RILI progression has yet to be examined. Aim This study aimed to assess the role of macrophage subtypes in RILI and whether NA can alleviate RILI. Specifically, whether NA can alleviate RILI by targeting macrophages and reducing the levels of inflammatory mediators in mouse models was assessed. Methods Mice RILI model was employed with 13 Gy whole thoracic radiation with or without administration of NA. Various assays were performed to evaluate lung tissue histological changes, cytokine expression, IκB-α expression and the number and proportion of macrophages. Results Radiation can lead to the release of inflammatory mediators, thereby exacerbating RILI. The specific radiation dose and duration of exposure can lead to different dynamic changes in the number of subpopulations of lung macrophages. NA can affect the changes of macrophages after irradiation and reduce inflammatory responses to alleviate RILI. Conclusion Macrophages play a significant role in the integrated pathological process of lung injury after irradiation which shows a dynamic change with different times. NA can protect lung tissues against the toxic effects of ionizing radiation and is a new potential functional component for targeting macrophages.
Collapse
Affiliation(s)
- Chenlin Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yanan Wu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yang Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Song Mi
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Xiaofan Yang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Tong Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Yuanjing Tian
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - YingYing Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Pingping Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Jinyue Sun
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Yan Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Medical Integration and Practice Center, Cheeto College of Medicine, Shandong University, Jinan, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Cai XL, Yao X, Zhang L, Chai YH, Liu X, Liu WW, Zhang RX, Fan YY, Xiao X. Dual-directional regulation of extracellular respiration in Shewanella oneidensis for intelligently treating multi-nuclide contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136371. [PMID: 39488975 DOI: 10.1016/j.jhazmat.2024.136371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Radionuclide contamination has become a global environmental concern due to the high mobility and toxicity of certain isotopes. Bioreduction mediated by electrochemically active bacteria (EAB) with unique extracellular electron transfer (EET) capability is recognized as a promising approach for nuclear waste treatment. However, it is difficult to achieve bidirectional regulation of EET pathway through traditional genetic manipulation, limiting the bioremediation application of EAB. Here, we designed and optimized a novel Esa quorum sensing (EQS) system for highly efficient gene expression and interleaved cellular functional output. By promoting dimethyl sulfoxide reductase at low cell density and increasing the synthesis of electron conductive complex and flavins at high cell density, the EQS system dynamically switched the extracellular respiratory pathway of Shewanella oneidensis MR-1 according to cell density. The engineered strain exhibited precise switching and substantial improvement in the extracellular remediation of multiple nuclides, sequentially increasing the reduction of iodine IO3- and uranium U(VI) by 2.51- and 2.05-fold compared with the control, respectively. Furthermore, a mobile bacterial biofilm material was fabricated for collecting uranium precipitates coupled with U(VI) reduction. This work clearly demonstrates that EQS system contributes to the bidirectional regulation of EET pathway in EAB, providing an effective and refined strategy for bioremediation of multi-nuclide contamination.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuan Yao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Li Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yu-Han Chai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuan Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Wen-Wen Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ruo-Xi Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
4
|
Yuan S, Chen X, Han N, Sun M, Yang CH, Wang MX, Li Q, Du WP, Wu G. Cesium accumulation and plant growth promotion characteristics of Paecilomyces lilacinus A10 isolated from Brassica juncea L. rhizosphere soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:46-56. [PMID: 39723810 DOI: 10.1080/15226514.2024.2399771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The combined microbial-plant remediation has increasingly been used to remediate heavy metal-contaminated soil. Some microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In the present study, a strong cesium (Cs)-tolerant fungal strain Paecilomyces lilacinus was identified from soil microorganisms contaminated with Cs, and the enrichment conditions for Cs were optimized. Furthermore, the effects of the A10 fermentation solution on the growth of Indian mustard (Brassica juncea L.) seedlings were investigated. The results indicated that the optimal combination of factors consisted of a culture temperature of 28 °C, pH7.0, initial concentration of Cs at 5.91 g·L-1. The maximum enrichment of Cs in the A10 was up to 75.36 mg·g-1 DW. In addition, the enrichment of Cs in Indian mustard was significantly enhanced by the application of the A10 fermentation solution, and the growth of Indian mustard was promoted under Cs stress. The present study has expanded the repertoire of microbial resources available for facilitating the Cs contaminated soil, thereby enhancing its applicability in the phytoremediation strategies.
Collapse
Affiliation(s)
- Shan Yuan
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xi Chen
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Na Han
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China
- Qing Hai San Jiang Yuan Minzu Middle School, Xining, Qinghai, China
| | - Ming Sun
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Chao-Hui Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Ming-Xuan Wang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Qun Li
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Wen-Ping Du
- Institute of Biotechnology & Nuclear Techniques, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Guo Wu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, China
- College of Life Science, Sichuan Normal University, Chengdu, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, China
| |
Collapse
|
5
|
Fatemifard SZ, Masoumiasl A, Rezaei R, Fazeli-Nasab B, Salehi-Sardoei A, Ghorbanpour M. Association between molecular markers and resistance to bacterial blight using binary logistic analysis. BMC PLANT BIOLOGY 2024; 24:670. [PMID: 39004723 PMCID: PMC11247743 DOI: 10.1186/s12870-024-05381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
The most effective strategy for managing wheat bacterial blight caused by Pseudomonas syringae pv. syringae is believed to be the use of resistant cultivars. Researching the correlation between molecular markers and stress resistance can expedite the plant breeding process. The current study aims to evaluate the response of 27 bread wheat cultivars to bacterial blight disease in order to identify resistant and susceptible cultivars and to pinpoint ISSR molecular markers associated with bacterial blight resistance genes. ISSR markers are recommended for assessing a plant's disease resistance. This experiment is focused on identifying ISSR molecular markers linked to bacterial blight resistance. After applying the bacterial solution to the leaves, we performed sampling to determine the infection percentage in the leaves at different intervals (7, 14, and 18 days after spraying). In most cultivars, the average leaf infection percentage decreased 18 days after spraying on young leaves. However, in some cultivars such as Niknegad, Darab2, and Zarin, leaf infection increased in older leaves and reached up to 100% necrosis. In our study, 12 ISSR primers generated a total of 170 bands, with 156 being polymorphic. The primers F10 and F5 showed the highest polymorphism, while the F7 primer exhibited the lowest polymorphism. Cluster analysis grouped these cultivars into four categories. The resistant group included Qods, Omid, and Atrak cultivars, while the semi-resistant and susceptible groups comprised the rest of the cultivars. Through binary logistic analysis, we identified three Super oxide dismutase-related genes that contribute to plant resistance to bacterial blight. These genes were linked to the F3, F5, and F12 primers in regions I (1500 bp), T (1000 bp), and G (850 bp), respectively. We also identified seven susceptibility-associated genes. Atrak, Omid, and Qods cultivars exhibited resistance against bacterial blight, and three genes associated with this resistance were linked to the F3, F5, and F12 primers. These markers can be used for screening or transferring tolerance to other wheat cultivars in breeding programs.
Collapse
Affiliation(s)
| | - Asad Masoumiasl
- Plant Breeding Department, Agriculture Faculty, Yasouj University, Yasouj, Iran.
| | - Rasool Rezaei
- Plant Protection Department, Agriculture Faculty, Yasouj University, Yasouj, Iran
| | - Bahman Fazeli-Nasab
- Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran
| | - Ali Salehi-Sardoei
- Crop and Horticultural Science Research Department, South Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
6
|
Deng YD, Zhang WH, Zuo ZH, Zhang H, Xu J, Gao JJ, Wang B, Li ZJ, Fu XY, Wang LJ, Wang Y, Tian YS, Peng RH, Yao QH. The complete degradation of 1,2-dichloroethane in Escherichia coli by metabolic engineering. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134476. [PMID: 38691996 DOI: 10.1016/j.jhazmat.2024.134476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/01/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
1,2-Dichloroethane (1,2-DCA), a widely utilized chemical intermediate and organic solvent in industry, frequently enters the environment due to accidental leaks and mishandling during application processes. Thus, the in-situ remediation of contaminated sites has become increasingly urgent. However, traditional remediation methods are inefficient and costly, while bioremediation presents a green, efficient, and non-secondary polluting alternative. In this study, an engineered strain capable of completely degrading 1,2-DCA was constructed. We introduced six exogenous genes of the 1,2-DCA degradation pathway into E. coli and confirmed their normal transcription and efficient expression in this engineered strain through qRT-PCR and proteomics. The degradation experiments showed that the strain completely degraded 2 mM 1,2-DCA within 12 h. Furthermore, the results of isotope tracing verified that the final degradation product, malic acid, entered the tricarboxylic acid cycle (TCA) of E. coli and was ultimately fully metabolized. Also, morphological changes in the engineered strain and control strain exposed to 1,2-DCA were observed under SEM, and the results revealed that the engineered strain is more tolerant to 1,2-DCA than the control strain. In conclusion, this study paved a new way for humanity to deal with the increasingly complex environmental challenges.
Collapse
Affiliation(s)
- Yong-Dong Deng
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Wen-Hui Zhang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Zhi-Hao Zuo
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Hao Zhang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Jing Xu
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Jian-Jie Gao
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Bo Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Zhen-Jun Li
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Xiao-Yan Fu
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Li-Juan Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Yu Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China
| | - Yong-Sheng Tian
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Ri-He Peng
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Quan-Hong Yao
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R. China.
| |
Collapse
|
7
|
Yang H, Feng Q, Xu W, Tang Y, Bai G, Liu Y, Liu Z, Xia S, Wu Z, Zhang Y. Unraveling the nuclear isotope tapestry: Applications, challenges, and future horizons in a dynamic landscape. ECO-ENVIRONMENT & HEALTH 2024; 3:208-226. [PMID: 38655003 PMCID: PMC11035956 DOI: 10.1016/j.eehl.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 04/26/2024]
Abstract
Nuclear isotopes, distinct atoms characterized by varying neutron counts, have profoundly influenced a myriad of sectors, spanning from medical diagnostics and therapeutic interventions to energy production and defense strategies. Their multifaceted applications have been celebrated for catalyzing revolutionary breakthroughs, yet these advancements simultaneously introduce intricate challenges that warrant thorough investigation. These challenges encompass safety protocols, potential environmental detriments, and the complex geopolitical landscape surrounding nuclear proliferation and disarmament. This comprehensive review embarks on a deep exploration of nuclear isotopes, elucidating their nuanced classifications, wide-ranging applications, intricate governing policies, and the multifaceted impacts of their unintended emissions or leaks. Furthermore, the study meticulously examines the cutting-edge remediation techniques currently employed to counteract nuclear contamination while projecting future innovations in this domain. By weaving together historical context, current applications, and forward-looking perspectives, this review offers a panoramic view of the nuclear isotope landscape. In conclusion, the significance of nuclear isotopes cannot be understated. As we stand at the crossroads of technological advancement and ethical responsibility, this review underscores the paramount importance of harnessing nuclear isotopes' potential in a manner that prioritizes safety, sustainability, and the greater good of humanity.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qi Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiang Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yadong Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoliang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|