1
|
Li F, Hou Y, Chen L, Qiu Y. Advances in silica nanoparticles for agricultural applications and biosynthesis. ADVANCED BIOTECHNOLOGY 2025; 3:14. [PMID: 40289240 PMCID: PMC12034607 DOI: 10.1007/s44307-025-00067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Nanotechnology has emerged as a revolutionary force in modern agriculture, opening new avenues for crop enhancement and sustainable farming practices. This review systematically evaluates the roles of silica nanoparticles (SiO2 NPs) in agricultural applications, with particular emphasis on their biosynthesis pathways and functional mechanisms. SiO2 NPs have demonstrated considerable potential to enhance crop resilience against both biotic (pathogens, pests) and abiotic (heavy metals, salinity, drought) stresses through phytohormonal regulation, defense gene activation, and metabolic modulation. As nanocarriers, these particles enhance pesticide and fertilizer delivery accuracy, reduce environmental contamination, and promote plant growth. Biosynthesis methods of SiO2 NPs range from conventional physical-chemical techniques to eco-friendly green approaches, including the utilization of biological cells/extracts, natural biomaterials, and peptide templates. Although green synthesis offers sustainability advantages, the agricultural adoption of SiO2 NPs faces critical challenges, such as insufficient understanding of their long-term environmental persistence and ecotoxicological impacts, high production costs related to green synthesis, and incomplete regulatory frameworks. Addressing these challenges is essential to enable their broader use in agriculture.
Collapse
Affiliation(s)
- Fei Li
- National Biopesticide Engineering Research Centre, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
| | - Yuxi Hou
- National Biopesticide Engineering Research Centre, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
- College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Lu Chen
- National Biopesticide Engineering Research Centre, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China
- College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Yimin Qiu
- National Biopesticide Engineering Research Centre, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430064, China.
- College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
2
|
Alizadeh R, Jalali M, Valizadeh-Rad K, Etesami H. Enhancing water deficit tolerance in canola (Brassica napus L.) through the synergistic application of nano-silicon and sulfur. BMC PLANT BIOLOGY 2025; 25:486. [PMID: 40241001 PMCID: PMC12001595 DOI: 10.1186/s12870-025-06535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Water deficit stress is a critical constraint on global crop productivity, particularly in arid and semi-arid regions, where it severely compromises plant growth, yield, and nutritional quality. Sustainable strategies to enhance plant resilience under such conditions are urgently needed. Nano-silicon (Si-NPs) and sulfur (S) have emerged as promising amendments for mitigating abiotic stress, but their synergistic potential in alleviating water deficit stress in oilseed crops like canola (Brassica napus L.) remains underexplored. This study investigated the combined effects of Si-NPs (0, 100, 200, and 300 mg kg⁻1) and sulfur (0, 75, and 150 mg S kg⁻1) on the morphological, physiological, and nutritional responses of canola under three water deficit levels (0.8, 0.6, and 0.4 field capacity). Results demonstrated that water deficit stress significantly reduced photosynthetic efficiency, biomass accumulation, and yield components. However, Si-NPs and S application counteracted these adverse effects. Specifically, 100 mg Si-NPs kg⁻1 increased shoot and root weights by 19.3% and 22.9%, respectively, compared to the control. The most effective treatment-200 mg Si-NPs kg⁻1 combined with 75 mg S kg⁻1-enhanced chlorophyll (1.76 mg g⁻1 FW), carotenoids (0.51 mg g⁻1 FW), phosphorus uptake (0.85%), and silicon accumulation in shoots (4.3%), while reducing lipid peroxidation (malondialdehyde: 23.53 µg g⁻1 FW). These findings highlight the synergistic role of Si-NPs and S in improving drought resilience by enhancing photosynthetic capacity, nutrient homeostasis, and oxidative stress mitigation. This study provides actionable insights for integrating nano-enabled and sustainable nutrient management practices to bolster crop productivity in water-scarce agroecosystems. Future research should validate these results under field conditions and elucidate the molecular mechanisms driving these stress-adaptive responses.
Collapse
Affiliation(s)
- Reza Alizadeh
- Soil Science Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Mahboobeh Jalali
- Soil Science Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Keyvan Valizadeh-Rad
- Soil Science Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Pandey K, Dasgupta CN. Role of nanobionics to improve the photosynthetic productivity in plants and algae: an emerging approach. 3 Biotech 2025; 15:74. [PMID: 40060293 PMCID: PMC11885746 DOI: 10.1007/s13205-025-04244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/16/2025] [Indexed: 04/13/2025] Open
Abstract
The domain of nanobionics has gained attention since its inception due to its potential applicability in plant, microalgal treatments, productivity enhancement. This review compares the intake and mobilization of nanoparticles (NPs) in plant and algal cell. In plants, NPs enter from root or other openings, and then carried by apoplastic or symplastic transport and accumulated in various parts, whereas in algae, NPs enter via endocytosis, passive transmission pathways, traverse the algal cell cytoplasm. This study demonstrated the mechanisms of metal-based NPs such as zinc (Zn), silver (Ag), iron (Fe), copper (Cu), titanium (Ti), and silica (Si) for seed priming or plant treatments to improve productivity. These metal NPs are used as nano-fertilizer for plant growths. It has also been observed that these NPs can reduce pathogenic infection and help to cope up with environmental stresses including heavy metals contamination such as arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb). Overall, the photosynthetic productivity increases through NPs as it increases ability to enhance light capture, improve electron transport, and optimize carbon fixation pathways and withstand stresses. These advancements not only elevate biomass production in plant improving agricultural output but also support the sustainable generation of biofuels and bioproducts from algae.
Collapse
Affiliation(s)
- Komal Pandey
- Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh 226028 India
| | - Chitralekha Nag Dasgupta
- Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh 226028 India
| |
Collapse
|
4
|
da Silva VHC, de Lima RF, Mayer JLS, Arruda MAZ. Feasibility of using silica (Na 2SiO 3 and SiO 2NPs) to mitigate mercury in transgenic soybeans grown in contaminated soils and respective effects on nutrient homeostasis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7600-7619. [PMID: 40045078 DOI: 10.1007/s11356-025-36179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
This study aimed to investigate the potential of Silicon (SiO2NPs and Na2SiO3) to mitigate Hg absorption, accumulation, and toxicity in transgenic soybean plants. By analyzing Hg speciation, total Hg content, physiological characteristics, anatomical structures, and the homeostasis of macro (P, S, Ca, K, and Mg) and micro (Cu, Fe, Mn, Zn) nutrients, the impact of Si against Hg-induced stress was assessed. Plants were cultivated under six treatments: water, SiO2NPs, Na2SiO3, Na2SiO3 + HgCl2, SiO2NPs + HgCl2, and HgCl2. The addition of silicon to the soil, both in the form of nanoparticles and in its soluble form, did not negatively impact plant development. SiO2 NPs reduced Hg concentration in roots by 17% (RR) and 29% (INTACTA) and Na2SiO3 by 15% and 37%. In leaves, Hg reductions were 25% with SiO2NPs and 22% with Na2SiO3 for RR variety, while INTACTA showed decreases of 14% and 34%. Only Hg(II) species were found, indicating no Hg methylation in soil or plants. PCA revealed that Hg, alone or with Si, altered nutrient absorption. Morphological analyses showed that SiO2NPs and Na2SiO3 reduced Hg toxicity at the cellular level, highlighting their potential to mitigate heavy metal contamination in crops.
Collapse
Affiliation(s)
- Vinnícius H C da Silva
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Rodrigo F de Lima
- Laboratory of Plant Anatomy, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6109, Campinas, SP, 13083-970, Brazil
| | - Juliana L S Mayer
- Laboratory of Plant Anatomy, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6109, Campinas, SP, 13083-970, Brazil
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil.
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6154, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
5
|
Kadir ML, Dageri A, Aslan TN. Nanopesticides for managing primary and secondary stored product pests: Current status and future directions. Heliyon 2025; 11:e42341. [PMID: 40034316 PMCID: PMC11872584 DOI: 10.1016/j.heliyon.2025.e42341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
The preservation of agricultural commodities during storage is critical for ensuring food security and minimizing post-harvest losses. Both primary storage pests such as Callosobruchus maculatus, Callosobruchus chinensis, Sitophilus weevils, Rhyzopertha dominica, and Trogoderma granarium, and secondary storage pests like Tribolium castaneum cause significant damage to stored products, resulting in substantial economic losses. Traditional pest control methods, including chemical insecticides, face limitations due to environmental concerns and pest resistance. Consequently, nanoparticle-based insecticides are being extensively suggested as a promising alternative. This review analyzes the available literature on the efficacy of nanoparticles (NPs) against primary and some secondary storage pests. Green synthesis methods using plant extracts and other biological sources are highlighted for the production of environmentally friendly NPs. Studies demonstrate that NPs of alumina, carbon, silica, silver, copper, zinc oxide, nickel oxide, titanium dioxide, nano zeolite, as well as chitosan and polymers exhibit significant insecticidal activity against a variety of pests, in some cases surpassing mortality rates caused by traditional insecticides at recommended dosages. Structural, biochemical and molecular studies reveal that NPs induce oxidative stress, disrupt cellular homeostasis, and cause structural damage in pests. Histopathological evaluations indicate specific organ-related toxicity, emphasizing the need for comprehensive biosafety assessments. Additionally, the integration of NPs with conventional insecticides shows enhanced pest control efficiency, although challenges remain in standardizing synthesis methods and evaluating long-term environmental impacts. This review highlights the potential of NPs in sustainable pest management and underlines the importance of ongoing research to optimize specific formulations for specific groups of pests and ensure safety.
Collapse
Affiliation(s)
- Mohammed Lengichow Kadir
- Department of Biology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
| | - Asli Dageri
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Meram, Konya, 42090, Turkey
| | - Tuğba Nur Aslan
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Meram, Konya, 42090, Turkey
| |
Collapse
|
6
|
Adamipour N, Nazari F, Nalousi AM, Teixeira da Silva JA. Evaluation of the molecular mechanism underlying proline metabolic and catabolic pathways and some morpho-physiological traits of tobacco (Nicotiana tabacum L.) plants under arsenic stress. BMC PLANT BIOLOGY 2025; 25:258. [PMID: 40000937 PMCID: PMC11854119 DOI: 10.1186/s12870-025-06262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND In recent decades, arsenic (As) toxicity has emerged as a significant challenge in many countries. It not only reduces the growth and performance of plants, but also poses a threat to human health. The synthesis of compatible solutes, particularly proline, is a mechanism plants utilize to cope with stress. Investigating the metabolic pathways of proline would deepen our understanding for future molecular breeding or genetic engineering efforts. Therefore, the aim of this study was to explore the metabolic and catabolic pathways of proline, as well as the morpho-physiological traits of tobacco, under As stress. RESULTS The results revealed a significant decrease in morphological traits and photosynthetic efficiency, chlorophyll content, and total soluble protein content with increasing As concentration. The results also showed that proline content, total soluble carbohydrates, hydrogen peroxide, and malondialdehyde, as well as the activity of two antioxidant enzymes, superoxide dismutase and ascorbate peroxidase, increased with increasing As concentration. At 10 mg As Kg-1 soil, the expression of Δ1-pyrroline-carboxylate synthetase (P5CS) and P5C reductase (P5CR) genes was not different from the control, but their expression increased significantly at 20 and 40 mg As Kg-1 soil. At 10 mg As Kg-1 soil, the expression of proline dehydrogenase (PDH) and P5C dehydrogenase (P5CDH) genes decreased sharply compared to the control but remained unchanged at 20 and 40 mg As Kg-1 soil. At 10 and 20 mg As Kg-1 soil, expression of the ornithine δ-aminotransferase (OAT) gene was unchanged compared to the control, but at 40 mg As Kg-1 soil, it increased sharply. CONCLUSION The results showed that the accumulation of proline at the lowest (10 mg As Kg-1 soil) tested As concentration was due to a decrease in the expression of proline catabolic genes (PDH and P5CDH), while the genes involved in proline synthesis did not play a role. At 20 mg As Kg-1 soil, proline accumulation was caused by the increased expression of genes (P5CS and P5CR) involved in the glutamate pathway of proline synthesis. Additionally, at the highest concentration of arsenic (40 mg As Kg-1 soil), the OAT gene, which is active in the ornithine pathway, was also involved in proline synthesis, along with the P5CS and P5CR genes.
Collapse
Affiliation(s)
- Nader Adamipour
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Farzad Nazari
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Ayoub Molaahmad Nalousi
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | |
Collapse
|
7
|
Shahzad R, Koerniati S, Harlina PW, Hastilestari BR, Djalovic I, Prasad PVV. Iron oxide nanoparticles enhance alkaline stress resilience in bell pepper by modulating photosynthetic capacity, membrane integrity, carbohydrate metabolism, and cellular antioxidant defense. BMC PLANT BIOLOGY 2025; 25:170. [PMID: 39924529 PMCID: PMC11808985 DOI: 10.1186/s12870-025-06180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Bell pepper (Capsicum annuum L.) is a commercially important and nutritionally rich vegetable crop in the Solanaceae family. Alkaline stress (AS) can disrupt growth, metabolism, and, particularly, nutritional quality. This study aims to evaluate the role of iron oxide nanoparticles (FeNP) in mitigating AS and enhancing plant growth and metabolic functions by conducting experiments under controlled greenhouse conditions with four main treatments: AS (irrigating plants with alkaline salts mixture solution); FeNP (foliar application of Fe3O4 nanoparticles at 100 mg L-¹); AS + FeNP (integrated treatment of AS and FeNP); and CK (control). The results clearly demonstrated that the AS treatment negatively affects plant biomass, photosynthetic attributes, membrane integrity, carbohydrate metabolism, and the balance of the antioxidant system. Additionally, key phenolic and flavonoid compounds decreased under the AS, indicating a detrimental effect on the plant's secondary metabolites. In contrast, the application of FeNP under the AS not only improved growth and photosynthetic attributes but also enhanced membrane integrity and restored antioxidant balance. This restoration was driven by the accumulation of sugars (glucose, fructose, sucrose) and starch, along with key carbohydrate metabolism enzymes-sucrose phosphate synthase (SPS), sucrose synthase (SuSy), neutral invertase (NI), and vacuolar invertase (VI)-and their associated gene expression. The correlation analysis further revealed a tight regulation of carbohydrate metabolism at both enzymatic and transcript levels in all tissue types, except for SPS in the roots. Furthermore, the AS + FeNP treatment resulted in increased levels of key phenolics (dihydrocapsaicin, capsaicin, p-coumaric acid, sinapic acid, p-OH benzoic acid, p-OH benzaldehyde, and ferulic acid) and flavonoid compounds (dihydroquercetin, naringenin, kaempferol, dihydrokaempferol, and quercetin) compared to the AS treatment, thus suggesting that these secondary metabolites likely contribute to the stabilization of cellular structures and membranes, ultimately supporting improved physiological functions and resilience under stress. In conclusion, the application of FeNP demonstrate potential in enhancing the resilience of bell pepper plants against the AS by improving growth, carbohydrate metabolism, and the levels of secondary metabolites.
Collapse
Affiliation(s)
- Raheel Shahzad
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia.
| | - Sri Koerniati
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung, 45363, Indonesia
| | - Bernadetta Rina Hastilestari
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, 21000, Serbia
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, 108 Waters Hall, 1603 Old Claflin Place, Manhattan, KS, 66506, USA
| |
Collapse
|
8
|
Iftikhar F, Zulfiqar A, Kamran A, Saleem A, Arshed MZ, Zulfiqar U, Djalovic I, Vara Prasad PV, Soufan W. Antioxidant Responses in Chromium-Stressed Maize as Influenced by Foliar and Root Applications of Fulvic Acid. Sci Rep 2025; 15:1289. [PMID: 39779785 PMCID: PMC11711313 DOI: 10.1038/s41598-024-84803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
Maize (Zea mays L.) faces significant challenges to its growth and productivity from heavy metal stress, particularly Chromium (Cr) stress, which induces reactive oxygen species (ROS) generation and damages photosynthetic tissues. This study aimed to investigate the effects of fulvic acid (FA) application, via foliar spray or root irrigation, on mitigating chromium stress in maize by evaluating its impact on antioxidant activity and growth parameters. Two maize varieties, P3939 and 30Y87, were subjected to chromium stress (CrCl3·6H2O) at concentrations of 300 µM and 100 µM for a duration of 5 weeks. The experiment was conducted in a wire house under natural environmental conditions at the Seed Centre, Institute of Botany, University of the Punjab, Lahore, Pakistan. Physiological assessments included electrolyte leakage, chlorophyll pigment content, malondialdehyde (MDA) levels, and activities of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) in maize leaves. Growth parameters were also monitored. The results revealed that chromium stress significantly reduced chlorophyll content and increased oxidative stress, as evidenced by elevated MDA levels and electrolyte leakage. However, FA application notably mitigated these effects: chlorophyll content improved by 15%, and MDA levels decreased significantly. Irrigation with FA was particularly effective, reducing MDA levels by 40% compared to the 300 µM chromium treatment. Furthermore, while chromium stress enhanced antioxidant enzyme activities, FA application further boosted total soluble protein levels and antioxidant enzyme activities under stress conditions. In conclusion, FA application demonstrates potential in improving maize tolerance to heavy metal stress by enhancing the antioxidant defense system and preserving photosynthetic pigments. These findings highlight FA's promise as a practical strategy for mitigating the negative impacts of chromium stress on maize, promoting sustainable agricultural practices in contaminated environments.
Collapse
Affiliation(s)
- Farwa Iftikhar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Asma Zulfiqar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Atif Kamran
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Ammara Saleem
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000, Novi Sad, Serbia.
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, 108 Waters Hall, 1603 Old Claflin Place, Manhattan, KS, 66506, USA
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Shah AA, Usman S, Noreen Z, Kaleem M, Raja V, El-Sheikh MA, Ibrahim Z, Sehar S. Fullerenol nanoparticles and AMF application for optimization of Brassica napus L. resilience to lead toxicity through physio-biochemical and antioxidative modulations. Sci Rep 2024; 14:30992. [PMID: 39730765 DOI: 10.1038/s41598-024-82086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites. In this study, the ameliorative role of carbon based fullerenol nanoparticles (FNPs) in combination with Arbuscular Mycorrhizal Fungi (AMF) inoculation was examined in Brassica napus L. grown in Pb contaminated soil. A pot experiment in three-ways completely randomize fashion with three replicates was conducted. For Pb stress, a 200 µM PbCl2 solution was applied at a rate of 1 L per pot. FNPs were applied via foliar spray at a concentration of 3 mM. For AMF inoculation rhizospheric soil was collected from Sorghum bicolor fields and used in this experiment. Results of the study showed that Pb toxicity greatly reduced growth (shoot length; 15%, root length; 25%) of B. napus plants. It lowered photosynthesis (38%) and gas exchange related attributes. Pb contamination caused oxidative stress, evident from elevated level of malondialdehyde (62%), and reactive oxygen species (H2O2; 60%, OH-; 103% and O2•-; 23%). It also triggered the antioxidant defense system of B. napus. These plants also had high Pb metal ions in their root and shoot compared with control. Foliar application of FNPs along with AMF inoculation effectively mitigated oxidative stress caused by Pb via increasing antioxidant enzymes activities. Catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, glutathione reductase, phenylalanine ammonia-lyase and polyphenol peroxidase activities were increased by 37, 19, 96, 200, 47, 117 and 47%, respectively. In conclusion, these treatments modulated photosynthetic machinery, antioxidant defense mechanism and nutrients uptake in B. napus plants to alleviate Pb stress. It is presumed that use of carbon-based nano particles in combination with AMF inoculation could effectively mitigate HMs stress in crop plants grown in contaminated soil.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Muhammad Kaleem
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Vaseem Raja
- University Centre for Research and Development Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zakir Ibrahim
- Faculty of Agriculture, Department of Biotechnology and Bioinformatics, Lasbela University of Agriculture, Water and Marine Sciences, Uthal , 90150, Pakistan
| | - Shafaque Sehar
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Irshad MK, Ansari JR, Noman A, Javed W, Lee JC, Aqeel M, Waseem M, Lee SS. Seed priming with Fe 3O 4-SiO 2 nanocomposites simultaneously mitigate Cd and Cr stress in spinach (Spinacia oleracea L.): A way forward for sustainable environmental management. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117195. [PMID: 39447293 DOI: 10.1016/j.ecoenv.2024.117195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Seed priming with a composite of iron oxide (Fe3O4) and silicon dioxide (SiO2) nanoparticles (NPs) is an innovative technique to mitigate cadmium (Cd) and chromium (Cr) uptake in plants from rooting media. The current study explored the impact of seed priming with varying levels of Fe3O4 NPs, SiO2 NPs, and Fe3O4-SiO2 nanocomposites on Cd and Cr absorption and phytotoxicity, metal-induced oxidative stress mitigation, growth and biomass yield of spinach (Spinacia oleracea L.). The results showed that seed priming with the optimum level of 100 mg L-1 of Fe3O4-SiO2 nanocomposites significantly (p ≤ 0.05) increased root dry weight (144 %), shoot dry weight (243 %) and leaf area (34.4 %) compared to the control, primarily by safeguarding plant's photosynthetic machinery, oxidative stress and phytotoxicity of metals. Plants treated with this highest level of Fe3O4-SiO2 nanocomposites exhibited a substantial increase in photosynthetic and gas exchange indices of spinach plants and enhanced activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) antioxidant enzymes by 45 %, 48 %, and 60 %, respectively. Correspondingly, the relative gene expression levels of SOD, CAT, and APX also rose by 109 %, 181 %, and 137 %, respectively, compared to non-primed plants. This nanocomposite application also boosted the levels of phenolics (28 %), ascorbic acid (68 %), total sugars (129 %), flavonoids (39 %), and anthocyanin (29 %) in spinach leaves, while significantly reducing Cd (34.7 %, 53.4 %) and Cr (20.2 %, 28.8 %) contents in plant roots and shoots, respectively. These findings suggest that seed priming with Fe3O4-SiO2 nanocomposites effectively mitigated the toxic effects of Cd and Cr, enhancing the growth and biomass yield of spinach in Cd and Cr co-contaminated environments, offering a promising sustainable approach for producing metal-free crops.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Jamilur R Ansari
- Department of Packaging & Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Wasim Javed
- Water Management Research Centre, University of Agriculture Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea.
| |
Collapse
|
11
|
Manzoor N, Ali L, Ahmad T, Khan MY, Ali HM, Liu Y, Wang G. Biochar and nanoscale silicon synergistically alleviate arsenic toxicity and enhance productivity in chili peppers (Capsicum annuum L.). CHEMOSPHERE 2024; 368:143682. [PMID: 39505074 DOI: 10.1016/j.chemosphere.2024.143682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Arsenic (As) contamination in agricultural soils threatens crop productivity and food safety. In this study, we examined the efficacy of biochar (BC) and silicon nanoparticles (SiNPs) as environmentally sustainable soil amendments to alleviate As toxicity in chili (Capsicum annuum L.) plants. Our findings revealed that As stress severely inhibited the growth parameters of Capsicum annuum L., and subsequently reduced yield. However, the application of BC and SiNPs into the contaminated soil significantly reversed these negative effects, promoting plant length and biomass, particularly when applied together in a synergistic manner. Arsenic stress led to increased oxidative damage, as evidenced by a 29% increase in leaf malondialdehyde content as compared to the healthy plants. Nevertheless, the synergistic (BC + SiNPs) application effectively modulated antioxidant enzyme activity, resulting in a remarkable 55% and 66% enhancement in the superoxide dismutase and catalase levels, respectively, boosting chili's resistance against oxidative stress. Similarly, BC + SiNPs amendments improved photosynthesis by 52%, stomatal conductance by 39%, soluble sugars by 42%, and proteins by 30% as compared with those of control treatment. Additionally, the combined BC + SiNPs application significantly reduced root As content by 61% and straw As by 37% as compared with the control one. Transmission electron microscopy confirmed that the synergistic use of BC and SiNPs preserved chili leaf ultrastructure, shielding against As-induced damage. Overall, the supplementation of contaminated soil with BC and SiNPs was proved to be a sustainable strategy for mitigating As toxicity in chili peppers, enhancing plant growth, physiology, and yield, and thereby food safety.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Soil and Water Sciences, National Black Soil and Agriculture Research, China Agricultural University, Beijing, 100193, China
| | - Liaqat Ali
- Department of Soil and Water Sciences, National Black Soil and Agriculture Research, China Agricultural University, Beijing, 100193, China; Advanced Research Centre, European University of Lefke, Lefke Northern Cyprus, TR-10 Mersin, Turkey
| | - Temoor Ahmad
- Xianghu Laboratory, Hangzhou, 311231, China; Institute of Biotechnology, Zhejiang University, Hangzhou, China; Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | | | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ying Liu
- Department of Soil and Water Sciences, National Black Soil and Agriculture Research, China Agricultural University, Beijing, 100193, China.
| | - Gang Wang
- Department of Soil and Water Sciences, National Black Soil and Agriculture Research, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Liu Q, Sheng Y, Liu X, Wang Z. Reclamation of co-pyrolyzed dredging sediment as soil cadmium and arsenic immobilization material: Immobilization efficiency, application safety, and underlying mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122753. [PMID: 39368382 DOI: 10.1016/j.jenvman.2024.122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
The safe management of toxic metal-polluted dredging sediment (DS) is imperative owing to its potential secondary hazards. Herein, the co-pyrolysis product (DS@BC) of polluted DS was creatively applied to immobilize soil Cd and As to achieve DS resource utilization, and the efficiency, safety, and mechanism were investigated. The results revealed that the DS@BC was more effective at reducing soil Cd bioavailability than the DS was (58.9-73.2% vs. 21.8-27.4%), except for the dilution effect, whereas the opposite phenomenon occurred for soil As (25.5-35.7% vs. 35.7-42.8%). The DS@BC immobilization efficiency was dose-dependent for both Cd and As. Soil labile Cd and As were transformed to more stable fractions after DS@BC immobilization. DS@BC immobilization inhibited the transfer of soil Cd and As to Brassica chinensis L. and did not cause excessive accumulation of other toxic metals in the plants. The appropriate addition of the DS@BC (8%) sufficiently alleviated the oxidative stress response of the plants and enhanced their growth. These findings indicate that the DS@BC was safe and effective for soil Cd and As immobilization. DS@BC immobilization decreased the diversity and richness of the rhizosphere soil bacterial community because of the dilution effect. The DS@BC immobilized soil Cd and As via direct adsorption, and indirect increasing soil pH, and regulating the abundance of specific beneficial bacteria (e.g., Bacillus). Therefore, the use of co-pyrolyzed DS as a soil Cd and As immobilization material is a promising resource utilization method for DS. Notably, to verify the long-term effects and safety of DS@BC immobilization, field trials should be conducted to explore the effectiveness and risk of harmful metal release from DS@BC immobilization under real-world conditions.
Collapse
Affiliation(s)
- Qunqun Liu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China.
| | - Yanqing Sheng
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan, 250101, China
| | - Xiaozhu Liu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Han M, Chen Z, Sun G, Feng Y, Guo Y, Bai S, Yan X. Nano-Fe 3O 4: Enhancing the tolerance of Elymus nutans to Cd stress through regulating programmed cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124711. [PMID: 39128602 DOI: 10.1016/j.envpol.2024.124711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Cadmium (Cd) poses a significant threat to plant growth and the environment. Nano-Fe3O4 is effective in alleviating Cd stress in plants. Elymus nutans Griseb. is an important fodder crop on the Qinghai-Tibetan Plateau (QTP). However, the potential mechanism by which nano-Fe3O4 alleviates Cd stress in E. nutans is not well understood. E. nutans were subjected to single Cd, single nano-Fe3O4, and co-treatment with nano-Fe3O4 and Cd, and the effects on morphology, Cd uptake, antioxidant enzyme activity, reactive oxygen species (ROS) levels and programmed cell death (PCD) were studied to clarify the regulatory mechanism of nano-Fe3O4. The results showed that Cd stress significantly decreased the germination percentage and biomass of E. nutans. The photosynthetic pigment content decreased significantly under Cd stress. Cd stress also caused oxidative stress and lipid peroxidation, accumulation of excessive ROS, resulting in PCD, but the effect of nano-Fe3O4 was different. Seed germination, seedling growth, and physiological processes were analyzed to elucidate the regulatory role of nano-Fe3O4 nanoparticles in promoting photosynthesis, reducing Cd accumulation, scavenging ROS, and regulating PCD, to promote seed germination and seedling growth in E. nutans. This report provides a scientific basis for improving the tolerance of Elymus to Cd stress by using nano-Fe3O4.
Collapse
Affiliation(s)
- Mengli Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuxia Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Ijaz M, Lv L, Ahmed T, Noman M, Manan A, Ijaz R, Hafeez R, Shahid MS, Wang D, Ondrasek G, Li B. Immunomodulating melatonin-decorated silica nanoparticles suppress bacterial wilt (Ralstonia solanacearum) in tomato (Solanum lycopersicum L.) through fine-tuning of oxidative signaling and rhizosphere bacterial community. J Nanobiotechnology 2024; 22:617. [PMID: 39395991 PMCID: PMC11470696 DOI: 10.1186/s12951-024-02910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Tomato (Solanum lycopersicum L.) production is severely threatened by bacterial wilt, caused by the phytopathogenic bacterium Ralstonia solanacearum. Recently, nano-enabled strategies have shown tremendous potential in crop disease management. OBJECTIVES This study investigates the efficacy of biogenic nanoformulations (BNFs), comprising biogenic silica nanoparticles (SiNPs) and melatonin (MT), in controlling bacterial wilt in tomato. METHODS SiNPs were synthesized using Zizania latifolia leaves extract. Further, MT containing BNFs were synthesized through the one-pot approach. Nanomaterials were characterized using standard characterization techniques. Greenhouse disease assays were conducted to assess the impact of SiNPs and BNFs on tomato plant immunity and resistance to bacterial wilt. RESULTS The SiNPs and BNFs exhibited a spherical morphology, with particle sizes ranging from 13.02 nm to 22.33 nm for the SiNPs and 17.63 nm to 21.79 nm for the BNFs, indicating a relatively uniform size distribution and consistent shape across both materials. Greenhouse experiments revealed that soil application of BNFs outperformed SiNPs, significantly enhancing plant immunity and reducing bacterial wilt incidence by 78.29% in tomato plants by maintaining oxidative stress homeostasis via increasing the activities of antioxidant enzymes such as superoxide dismutase (31.81%), peroxidase (32.9%), catalase (32.65%), and ascorbate peroxidase (47.37%) compared to untreated infected plants. Additionally, BNFs induced disease resistance by enhancing the production of salicylic acid and activating defense-related genes (e.g., SlPAL1, SlICS1, SlNPR1, SlEDS, SlPD4, and SlSARD1) involved in phytohormones signaling in infected tomato plants. High-throughput 16 S rRNA sequencing revealed that BNFs promoted growth of beneficial rhizosphere bacteria (Gemmatimonadaceae, Ramlibacter, Microscillaceae, Anaerolineaceae, Chloroplast and Phormidium) in both healthy and diseased plants, while suppressing R. solanacearum abundance in infected plants. CONCLUSION Overall, these findings suggest that BNFs offer a more promising and sustainable approach for managing bacterial wilt disease in tomato plants.
Collapse
Affiliation(s)
- Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Luqiong Lv
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Xianghu Laboratory, Hangzhou, 311231, China
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Muhammad Noman
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Arts and Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Abdul Manan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Chin, 310058, China
| | - Rafia Ijaz
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Rahila Hafeez
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud123, Muscat, Oman
| | - Daoze Wang
- Hangzhou Rural Revitalization Service Center, Hangzhou, 310020, China
| | - Gabrijel Ondrasek
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, Zagreb, 10000, Croatia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Li G, Gao Q, Nyande A, Dong Z, Khan EH, Han Y, Wu H. Cerium oxide nanoparticles promoted lateral root formation in Arabidopsis by modulating reactive oxygen species and Ca 2+ level. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24196. [PMID: 39365897 DOI: 10.1071/fp24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Roots play an important role in plant growth, including providing essential mechanical support, water uptake, and nutrient absorption. Nanomaterials play a positive role in improving plant root development, but there is limited knowledge of how nanomaterials affect lateral root (LR) formation. Poly (acrylic) acid coated nanoceria (cerium oxide nanoparticles, PNC) are commonly used to improve plant stress tolerance due to their ability to scavenge reactive oxygen species (ROS). However, its impact on LR formation remains unclear. In this study, we investigated the effects of PNC on LR formation in Arabidopsis thaliana by monitoring ROS levels and Ca2+ distribution in roots. Our results demonstrate that PNC significantly promote LR formation, increasing LR numbers by 26.2%. Compared to controls, PNC-treated Arabidopsis seedlings exhibited reduced H2 O2 levels by 18.9% in primary roots (PRs) and 40.6% in LRs, as well as decreased O 2 · - levels by 47.7% in PRs and 88.5% in LRs. When compared with control plants, Ca2+ levels were reduced by 35.7% in PRs and 22.7% in LRs of PNC-treated plants. Overall, these results indicate that PNC could enhance LR development by modulating ROS and Ca2+ levels in roots.
Collapse
Affiliation(s)
- Guangjing Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Quanlong Gao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ashadu Nyande
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zihao Dong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ehtisham Hassan Khan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuqian Han
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Honghong Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China; and Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 511464, China; and Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| |
Collapse
|
16
|
Batool I, Ayyaz A, Zhang K, Hannan F, Sun Y, Qin T, Athar HUR, Naeem MS, Zhou W, Farooq MA. Chromium uptake and its impact on antioxidant level, photosynthetic machinery, and related gene expression in Brassica napus cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59363-59381. [PMID: 39349895 DOI: 10.1007/s11356-024-35175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
The development of heavy metals, particularly chromium (Cr)-tolerant crop cultivars, is hampered due to lack of understanding of the mechanisms behind Cr stress tolerance. In this study, two Brassica napus cultivars, ZS758 and ZD622, were compared for Cr stress resistance by using the chlorophyll a fluorescence technique and biochemical characteristics. In both cultivars, Cr stress dramatically decreased PSII and PSI efficiency, biomass accumulation, and antioxidant enzyme levels. Although, cultivar ZS758 showed reduction in oxidative stress by decreasing the production of reactive oxygen species (ROS) in terms of reduced H2O2 and MDA content and increased enzymatic activities of key antioxidants enzymes including SOD, APX, CAT, and POD activities that play a crucial role in the regulation of numerous transcriptional pathways involved in oxidative stress responses. Higher non-photochemical quenching (NPQ) and QY were found in tolerant ZS758 cultivar under Cr stress, indicating that tolerant cultivar had a greater capacity to preserve PSII activity under Cr stress by enhancing heat dissipation as a photo-protective component of NPQ. Lower PSI activity and electron transfer from PSII were confirmed by lower PSI efficiency and higher donor end limitation of PSI in both rapeseed cultivars. The Cr concentration was greater in the ZD622 as compared to ZS758, which affected the mineral nutrients profile and damaged the cellular ultrastructure and related gene expression levels. However, current study suggest that cultivar ZS758 is more resistant to Cr stress than ZD622 due to improved metabolism and structural integrity and Cr stress tolerance that is linked with the increased PSII activity, NPQ, and antioxidant potential; these physiological characteristics can be exploited to select cultivars for Cr stress tolerance.
Collapse
Affiliation(s)
- Iram Batool
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Kangni Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Yongqi Sun
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Tongjun Qin
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | | | | | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Ahsan Farooq
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou, 325035, China.
| |
Collapse
|
17
|
Ashraf H, Ghouri F, Zhong M, Cheema SA, Haider FU, Sun L, Ali S, Alshehri MA, Fu X, Shahid MQ. Oryza glumaepatula and calcium oxide nanoparticles enhanced Cr stress tolerance by maintaining antioxidant defense, chlorophyll and gene expression levels in rice. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122239. [PMID: 39182380 DOI: 10.1016/j.jenvman.2024.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Chromium (Cr), a potent heavy metal, threatens rice cultivation due to its escalating presence in soil from human activities. Wild rice contains useful genes for phytoremediation; however, it is difficult to use directly for metal mitigation. Here, a single segment substitution line (SSSL), SG001, was developed by crossing O. glumaepatula and Huajingxian74 (HJX) to evaluate the survival ability of plants against Cr. Further, we explored the potential effect of calcium oxide nanoparticles (CaO-NPs) (50 μM) to minimize the toxic effect of Cr (100 μM) in rice cultivars, SG001 and HJX. The findings of this study indicated that Cr toxicity led to increased oxidative stress. This was shown by higher levels of hydrogen peroxide (H2O2), which was increased by 104% in SG001 and 177% in HJX, and malondialdehyde (MDA) increased by 79% in SG001 and 135% in HJX. Furthermore, it also depicted that Cr toxicity considerably declined shoot and root length, shoot and root fresh weight by 30%, 27%, 25%, and 20% in SG001 and 44%, 51%, 42%, and 45% in HJX, respectively. This mitigation was evidenced by decreased Cr contents, increased calcium (Ca) levels in SG001, and the maintenance of chlorophyll, antioxidant defense, and gene expression levels. Moreover, there was a notable reduction in MDA and H2O2, while the defense mechanisms of key antioxidants, including ascorbate peroxidase, superoxide dismutase, glutathione, catalase, and peroxidase were upregulated, along with an increase in soluble protein contents in both rice cultivars after applying CaO-NPs. CaO-NPs effectively restored cellular and subcellular structural integrity and growth in both lines, which had been seriously disrupted by Cr toxicity. Overall, our findings suggest that SG001, in combination with CaO-NPs, could serve as an effective strategy to mitigate Cr toxicity in plants.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Yuan X, Wang Z, Peijnenburg WJGM. Molecular characterization and transcriptional response of Lactuca sativa seedlings to co-exposure to graphene nanoplatelets and titanium dioxide nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116761. [PMID: 39047370 DOI: 10.1016/j.ecoenv.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The widespread use of nanomaterials in agriculture may introduce multiple engineered nanoparticles (ENPs) into the environment, posing a combined risk to crops. However, the precise molecular mechanisms explaining how plant tissues respond to mixtures of individual ENPs remain unclear, despite indications that their combined toxicity differs from the summed toxicity of the individual ENPs. Here, we used a variety of methods including physicochemical, biochemical, and transcriptional analyses to examine the combined effects of graphene nanoplatelets (GNPs) and titanium dioxide nanoparticles (TiO2 NPs) on hydroponically exposed lettuce (Lactuca sativa) seedlings. Results indicated that the presence of GNPs facilitated the accumulation of Ti as TiO2 NPs in the seedling roots. Combined exposure to GNPs and TiO2 NPs caused less severe oxidative damage in the roots compared to individual exposures. Yet, GNPs and TiO2 NPs alone and in combination did not cause oxidative damage in the shoots. RNA sequencing data showed that the mixture of GNPs and TiO2 NPs led to a higher number of differentially expressed genes (DEGs) in the seedlings compared to exposure to the individual ENPs. Moreover, the majority of the DEGs encoding superoxide dismutase displayed heightened expression levels in the seedlings exposed to the combination of GNPs and TiO2 NPs. The level of gene ontology (GO) enrichment in the seedlings exposed to the mixture of GNPs and TiO2 NPs was found to be greater than the level of GO enrichment observed after exposure to isolated GNPs or TiO2 NPs. Furthermore, the signaling pathways, specifically the "MAPK signaling pathway-plant" and "phenylpropanoid biosynthesis," exhibited a close association with oxidative stress. This study has provided valuable insights into the molecular mechanisms underlying plant resistance against multiple ENPs.
Collapse
Affiliation(s)
- Xuancheng Yuan
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands
| |
Collapse
|
19
|
Ďúranová H, Kšiňan S, Kuželová L, Šimora V, Ďurišová Ľ, Olexíková L, Ernst D, Kolenčík M. Nanoparticle-plant interactions: Physico-chemical characteristics, application strategies, and transmission electron microscopy-based ultrastructural insights, with a focus on stereological research. CHEMOSPHERE 2024; 363:142772. [PMID: 38971445 DOI: 10.1016/j.chemosphere.2024.142772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Ensuring global food security is pressing among challenges like population growth, climate change, soil degradation, and diminishing resources. Meeting the rising food demand while reducing agriculture's environmental impact requires innovative solutions. Nanotechnology, with its potential to revolutionize agriculture, offers novel approaches to these challenges. However, potential risks and regulatory aspects of nanoparticle (NP) utilization in agriculture must be considered to maximize their benefits for human health and the environment. Understanding NP-plant cell interactions is crucial for assessing risks of NP exposure and developing strategies to control NP uptake by treated plants. Insights into NP uptake mechanisms, distribution patterns, subcellular accumulation, and induced alterations in cellular architecture can be effectively drawn using transmission electron microscopy (TEM). TEM allows direct visualization of NPs within plant tissues/cells and their influence on organelles and subcellular structures at high resolution. Moreover, integrating TEM with stereological principles, which has not been previously utilized in NP-plant cell interaction assessments, provides a novel and quantitative framework to assess these interactions. Design-based stereology enhances TEM capability by enabling precise and unbiased quantification of three-dimensional structures from two-dimensional images. This combined approach offers comprehensive data on NP distribution, accumulation, and effects on cellular morphology, providing deeper insights into NP impact on plant physiology and health. This report highlights the efficient use of TEM, enhanced by stereology, in investigating diverse NP-plant tissue/cell interactions. This methodology facilitates detailed visualization of NPs and offers robust quantitative analysis, advancing our understanding of NP behavior in plant systems and their potential implications for agricultural sustainability.
Collapse
Affiliation(s)
- Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Samuel Kšiňan
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
| | - Lenka Kuželová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Lucia Olexíková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 95141, Lužianky, Slovakia
| | - Dávid Ernst
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| |
Collapse
|
20
|
Ali MA, Sardar MF, Dar AA, Niaz M, Ali J, Wang Q, Zheng Y, Luo Y, Albasher G, Li F. Integrative approach to mitigate chromium toxicity in soil and enhance antioxidant activities in rice (Oryza sativa L.) using magnesium-iron nanocomposite and Staphylococcus aureus strains. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:398. [PMID: 39190219 DOI: 10.1007/s10653-024-02145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Pollutants in soil, particularly chromium (Cr), pose high environmental and health risks due to their persistence, bioavailability, and potential for causing toxicity. Cr impairment in plants act as a deleterious environmental pollutant that enters the food chain and eventually disturbs human health. Current study demonstrated the potential of integrative foliar application of magnesium-iron (Mg + Fe) nanocomposite with Staphylococcus aureus strains to alleviate Cr toxicity in rice (Oryza sativa) crops by improving yield and defense system. Growth and yield traits such as shoot length (15%), root length (17%), shoot fresh weight (14%), shoot dry weight (9%), root fresh weight (23%), root dry weight (7%), number of tillers (33%), number of grains (10%) and spike length (13%) improved by combined application of Mg + Fe (20 mg L-1) nanocomposite and S. aureus strains with Cr (110 mg kg-1), compared to when applied alone. Mutual Mg + Fe and S. aureus strains application augmented the SPAD value (9%), total chlorophyll (11%), a (12%), b (17%), and carotenoids (32%), with Cr (110 mg kg-1), compared to alone. Malondialdehyde (13%), hydrogen peroxide (H2O2) (11%), and electrolyte leakage (7%) were significantly regulated in shoots with combined Mg + Fe and S. aureus strains application with Cr (110 mg kg-1) contrasted to alone. Peroxidase (20%), superoxide dismutase (17%), ascorbate peroxidase (18%), and catalase (20%) were increased in shoots with combined Mg + Fe and S. aureus strains application with Cr (110 mg kg-1) in comparison to alone. The combined application of Mg + Fe (20 mgL-1) nanocomposite and S. aureus strains with Cr (110 mg kg-1) enhanced the macro-micronutrients in shoots compared to alone. Cr accumulation in roots (21%), shoots (25%), and grains (47%) were significantly reduced under Cr (110 mg kg-1) with combined Mg + Fe and S. aureus strains application, compared to alone. Subsequently, applying combined Mg + Fe and S. aureus strains is a sustainable solution to boost crop production under Cr toxicity.
Collapse
Affiliation(s)
- Muhammad Azhar Ali
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Afzal Ahmed Dar
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Mohsin Niaz
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, China
| | - Jawad Ali
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Qian Wang
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
| | - Yu Zheng
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
| | - Yadan Luo
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
21
|
Ahsan M, Radicetti E, Jamal A, Ali HM, Sajid M, Manan A, Bakhsh A, Naeem M, Khan JA, Valipour M. Silicon nanoparticles and indole butyric acid positively regulate the growth performance of Freesia refracta by ameliorating oxidative stress under chromium toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1437276. [PMID: 39157509 PMCID: PMC11327035 DOI: 10.3389/fpls.2024.1437276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024]
Abstract
Chromium (Cr) toxicity hampers ornamental crops' growth and post-harvest quality, especially in cut flower plants. Nano-enabled approaches have been developing with phenomenal potential towards improving floricultural crop production under heavy metal-stressed conditions. The current pot experiment aims to explore the ameliorative impact of silicon nanoparticles (Si-NPs; 10 mM) and indole butyric acid (IBA; 20 mM) against Cr stress (0.8 mM) in Freesia refracta. The results showed that Cr stress significantly reduced morphological traits, decreased roots-stems biomass, abridged chlorophyll (14.7%) and carotenoid contents (27.2%), limited gas exchange attributes (intercellular CO2 concentration (Ci) 24.8%, stomatal conductance (gs) 19.3% and photosynthetic rate (A) 28.8%), condensed proline (39.2%) and total protein (40%) contents and reduced vase life (15.3%) of freesia plants by increasing oxidative stress. Contrarily, antioxidant enzyme activities, MDA and H2O2 levels, and Cr concentrations in plant parts were remarkably enhanced in Cr-stressed plants than in the control. However, foliar supplementation of Si-NPs + IBA (combined form) to Cr-stressed plants increased defense mechanism and tolerance as revealed by improved vegetative and reproductive traits, increased biomass, photosynthetic pigments (chlorophyll 30.3%, carotenoid 57.2%) and gaseous exchange attributes (Ci 33.3%, gs 25.6%, A 31.1%), proline (54.5%), total protein (55.1%), and vase life (34.9%) of metal contaminated plants. Similarly, the improvement in the activities of peroxidase, catalase, and superoxide dismutase was recorded by 30.8%, 52.4%, and 60.8%, respectively, compared with Cr-stressed plants. Meanwhile, MDA (54.3%), H2O2 (32.7%) contents, and Cr levels in roots (43.3), in stems (44%), in leaves (52.8%), and in flowers (78.5%), were remarkably reduced due to combine application of Si-NPs + IBA as compared with Cr-stressed nontreated freesia plants. Thus, the hypothesis that the synergistic application of Si-NPs + IBA will be an effective approach in ameliorating Cr stress is authenticated from the results of this experiment. Furthermore, the study will be significant since it will demonstrate how Si-NPs and IBA can work synergistically to combat Cr toxicity, and even when added separately, they can improve growth characteristics both under stressed and un-stressed conditions.
Collapse
Affiliation(s)
- Muhammad Ahsan
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferara, Ferrara, Italy
| | - Aftab Jamal
- Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mateen Sajid
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Abdul Manan
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Ali Bakhsh
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Naeem
- Department of Pharmacy, Shah Abdul Latif University Khairpur, Khairpur, Pakistan
| | - Jawad Ahmad Khan
- Department of Pharmacy, Shah Abdul Latif University Khairpur, Khairpur, Pakistan
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO, United States
| |
Collapse
|
22
|
Wu T, Zhou J, Zhou J. Comparison of soil addition, foliar spraying, seed soaking, and seed dressing of selenium and silicon nanoparticles effects on cadmium reduction in wheat (Triticum turgidum L.). CHEMOSPHERE 2024; 362:142681. [PMID: 38914290 DOI: 10.1016/j.chemosphere.2024.142681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Wheat cadmium (Cd) contamination is a critical food security issue worldwide, and selenium (Se) and silicon (Si) are widely reported to reduce Cd accumulation in cereal crops. However, few studies have compared the most effective pathway to reduce Cd accumulation in crops using Se nanoparticles (nano-Se), Si nanoparticles (nano-Si), and their mixtures. Here, we investigated the concentrations of Cd in wheat using four application modes: soil addition, foliar spraying, seed soaking, and seed dressing combined with three different materials. The concentration of Cd in wheat grains can be significantly reduced by 31.30-62.99% and 36.96-51.04% through four applications of nano-Se and soil application and seed soaking of nano-Si, respectively. However, all treatments involving mixtures of nano-Si and nano-Se did not show a reduction in Cd concentration. The applications of both nano-Se and nano-Si can enhance antioxidant enzyme systems and regulate Cd-related gene expression to safeguard wheat tissues from Cd stress. Downregulation of the influx transporter from soil to root (TaNramp5) and from root to shoot (TaLCT1), along with the upregulation of the efflux transporter from cytoplasm to vacuole (TaHMA3), contributed to the nano-Si/nano-Se dependent Cd transport and reduced Cd accumulation in wheat grains. Overall, the application of nano-Se instead of nano-Si, and soil addition rather than foliar spraying, seed soaking, and seed dressing, can be efficiently utilized to reduce grain Cd accumulation from Cd-contaminated soils.
Collapse
Affiliation(s)
- Tianyi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
23
|
Hatami M, Ghorbanpour M. Metal and metal oxide nanoparticles-induced reactive oxygen species: Phytotoxicity and detoxification mechanisms in plant cell. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108847. [PMID: 38889532 DOI: 10.1016/j.plaphy.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Nanotechnology is advancing rapidly in this century and the industrial use of nanoparticles for new applications in the modernization of different industries such as agriculture, electronic, food, energy, environment, healthcare and medicine is growing exponentially. Despite applications of several nanoparticles in different industries, they show harmful effects on biological systems, especially in plants. Various mechanisms for the toxic effects of nanoparticles have already been proposed; however, elevated levels of reactive oxygen species (ROS) molecules including radicals [(e.g., superoxide (O2•‒), peroxyl (HOO•), and hydroxyl (HO•) and non-radicals [(e.g., hydrogen peroxide (H2O2) and singlet oxygen (1O2) is more important. Excessive production/and accumulation of ROS in cells and subsequent induction of oxidative stress disrupts the normal functioning of physiological processes and cellular redox reactions. Some of the consequences of ROS overproduction include peroxidation of lipids, changes in protein structure, DNA strand breaks, mitochondrial damage, and cell death. Key enzymatic antioxidants with ROS scavenging ability comprised of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), and glutathione reductase (GR), and non-enzymatic antioxidant systems including alpha-tocopherol, flavonoids, phenolic compounds, carotenoids, ascorbate, and glutathione play vital role in detoxification and maintaining plant health by balancing redox reactions and reducing the level of ROS. This review provides compelling evidence that phytotoxicity of nanoparticles, is mainly caused by overproduction of ROS after exposure. In addition, the present review also summarizes the intrinsic detoxification mechanisms in plants in response to nanoparticles accumulation within plant cells.
Collapse
Affiliation(s)
- Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran; Institute of Nanoscience and Nanotechnology, Arak University, 38156-8-8349, Arak, Iran.
| |
Collapse
|
24
|
Ahmed T, Shou L, Guo J, Noman M, Qi Y, Yao Y, Masood HA, Rizwan M, Ali MA, Ali HM, Li B, Qi X. Modulation of rhizosphere microbial community and metabolites by bio-functionalized nanoscale silicon oxide alleviates cadmium-induced phytotoxicity in bayberry plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173068. [PMID: 38723965 DOI: 10.1016/j.scitotenv.2024.173068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Cadmium (Cd) is an extremely toxic heavy metal that can originate from industrial activities and accumulate in agricultural soils. This study investigates the potential of biologically synthesized silicon oxide nanoparticles (Bio-SiNPs) in alleviating Cd toxicity in bayberry plants. Bio-SiNPs were synthesized using the bacterial strain Chryseobacterium sp. RTN3 and thoroughly characterized using advanced techniques. A pot experiment results demonstrated that Cd stress substantially reduced leaves biomass, photosynthesis efficiency, antioxidant enzyme activity, and induced oxidative damage in bayberry (Myrica rubra) plants. However, Bio-SiNPs application at 200 mg kg-1 significantly enhanced plant biomass, chlorophyll content (26.4 %), net photosynthetic rate (8.6 %), antioxidant enzyme levels, and mitigated reactive oxygen species production under Cd stress. Bio-SiNPs modulated key stress-related phytohormones by increasing salicylic acid (13.2 %) and abscisic acid (13.7 %) contents in plants. Bio-SiNPs augmented Si deposition on root surfaces, preserving normal ultrastructure in leaf cells. Additionally, 16S rRNA gene sequencing demonstrated that Bio-SiNPs treatment favorably reshaped structure and abundance of specific bacterial groups (Proteobacteria, Actinobacteriota, and Acidobacteriota) in the rhizosphere. Notably, Bio-SiNPs application significantly modulated the key metabolites (phenylacetaldehyde, glycitein, maslinic acid and methylmalonic acid) under both normal and Cd stress conditions. Overall, this study highlights that bio-nanoremediation using Bio-SiNPs enhances tolerance to Cd stress in bayberry plants by beneficially modulating biochemical, microbial, and metabolic attributes.
Collapse
Affiliation(s)
- Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Linfei Shou
- Station for the Plant Protection & Quarantine and Control of Agrochemicals Zhejiang Province, Hangzhou 310004, China
| | - Junning Guo
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Noman
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yetong Qi
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China; Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Md Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | | |
Collapse
|
25
|
Di X, Jing R, Qin X, Liang X, Wang L, Xu Y, Sun Y, Huang Q. The role and transcriptomic mechanism of cell wall in the mutual antagonized effects between selenium nanoparticles and cadmium in wheat. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134549. [PMID: 38733789 DOI: 10.1016/j.jhazmat.2024.134549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Selenium nanoparticles (SeNPs) has been reported as a beneficial role in alleviating cadmium (Cd) toxicity in plant. However, underlying molecular mechanisms about SeNPs reducing Cd accumulation and alleviating Cd toxicity in wheat are not well understood. A hydroponic culture was performed to evaluate Cd and Se accumulation, cell wall components, oxidative stress and antioxidative system, and transcriptomic response of wheat seedlings after SeNPs addition under Cd stress. Results showed that SeNPs application notably reduced Cd concentration in root and in shoot by 56.9% and 37.3%, respectively. Additionally, SeNPs prompted Cd distribution in root cell wall by 54.7%, and increased lignin, pectin and hemicellulose contents by regulating cell wall biosynthesis and metabolism-related genes. Further, SeNPs alleviated oxidative stress caused by Cd in wheat through signal transduction pathways. We also observed that Cd addition reduced Se accumulation by downregulating the expression level of aquaporin 7. These results indicated that SeNPs alleviated Cd toxicity and reduced Cd accumulation in wheat, which were associated with the synergetic regulation of cell wall biosynthesis pathway, uptake transporters, and antioxidative system via signaling pathways.
Collapse
Affiliation(s)
- Xuerong Di
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Rui Jing
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xu Qin
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xuefeng Liang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Lin Wang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yingming Xu
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yuebing Sun
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| | - Qingqing Huang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
26
|
Tripathi S, Tiwari K, Mahra S, Victoria J, Rana S, Tripathi DK, Sharma S. Nanoparticles and root traits: mineral nutrition, stress tolerance and interaction with rhizosphere microbiota. PLANTA 2024; 260:34. [PMID: 38922515 DOI: 10.1007/s00425-024-04409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/07/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION This review article highlights a broader perspective of NPs and plant-root interaction by focusing on their beneficial and deleterious impacts on root system architecture (RSA). The root performs a vital function by securing itself in the soil, absorbing and transporting water and nutrients to facilitate plant growth and productivity. In dicots, the architecture of the root system (RSA) is markedly shaped by the development of the primary root and its branches, showcasing considerable adaptability in response to changes in the environment. For promoting agriculture and combating global food hunger, the use of nanoparticles (NPs) may be an exciting option, for which it is essential to understand the behaviour of plants under NPs exposure. The nature of NPs and their physicochemical characteristics play a significant role in the positive/negative response of roots and shoots. Root morphological features, such as root length, root mass and root development features, may regulated positively/negatively by different types of NPs. In addition, application of NPs may also enhance nutrient transport and soil fertility by the promotion of soil microorganisms including plant growth-promoting rhizobacteria (PGPRs) and also soil enzymes. Interestingly the interaction of nanomaterials (NMs) with rhizospheric bacteria can enhance plant development and soil health. However, some studies also suggested that the increased use of several types of engineered nanoparticles (ENPs) may disrupt the equilibrium of the soil-root interface and unsafe morphogenesis by causing the browning of roots and suppressing the growth of root and soil microbes. Thus, this review article has sought to compile a broader perspective of NPs and plant-root interaction by focusing on their beneficial or deleterious impacts on RSA.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - J Victoria
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shweta Rana
- Departments of Physical and Natural Sciences, FLAME University, Pune, India
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
27
|
Ashraf H, Ghouri F, Liang J, Xia W, Zheng Z, Shahid MQ, Fu X. Silicon Dioxide Nanoparticles-Based Amelioration of Cd Toxicity by Regulating Antioxidant Activity and Photosynthetic Parameters in a Line Developed from Wild Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1715. [PMID: 38931146 PMCID: PMC11207486 DOI: 10.3390/plants13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
An extremely hazardous heavy metal called cadmium (Cd) is frequently released into the soil, causing a considerable reduction in plant productivity and safety. In an effort to reduce the toxicity of Cd, silicon dioxide nanoparticles were chosen because of their capability to react with metallic substances and decrease their adsorption. This study examines the processes that underlie the stress caused by Cd and how SiO2NPs may be able to lessen it through modifying antioxidant defense, oxidative stress, and photosynthesis. A 100 μM concentration of Cd stress was applied to the hydroponically grown wild rice line, and 50 μM of silicon dioxide nanoparticles (SiO2NPs) was given. The study depicted that when 50 μM SiO2NPs was applied, there was a significant decrease in Cd uptake in both roots and shoots by 30.2% and 15.8% under 100 μM Cd stress, respectively. The results illustrated that Cd had a detrimental effect on carotenoid and chlorophyll levels and other growth-related traits. Additionally, it increased the levels of ROS in plants, which reduced the antioxidant capability by 18.8% (SOD), 39.2% (POD), 32.6% (CAT), and 25.01% (GR) in wild rice. Nevertheless, the addition of silicon dioxide nanoparticles reduced oxidative damage and the overall amount of Cd uptake, which lessened the toxicity caused by Cd. Reduced formation of reactive oxygen species (ROS), including MDA and H2O2, and an increased defense system of antioxidants in the plants provided evidence for this. Moreover, SiO2NPs enhanced the Cd resistance, upregulated the genes related to antioxidants and silicon, and reduced metal transporters' expression levels.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiabin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiming Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
28
|
Kumar D, Mariyam S, Gupta KJ, Thiruvengadam M, Sampatrao Ghodake G, Xing B, Seth CS. Comparative investigation on chemical and green synthesized titanium dioxide nanoparticles against chromium (VI) stress eliciting differential physiological, biochemical, and cellular attributes in Helianthus annuus L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172413. [PMID: 38631632 DOI: 10.1016/j.scitotenv.2024.172413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Nanotechnology is a new scientific area that promotes unique concepts to comprehend the optimal mechanics of nanoparticles (NPs) in plants under heavy metal stress. The present investigation focuses on effects of synthetic and green synthesized titanium dioxide nanoparticles (TiO2 NPs and gTiO2 NPs) against Cr(VI). Green TiO2 NPs have been produced from plant leaf extract (Ricinus communis L.). Synthesis was confirmed employing an array of optical spectroscopic and electron microscopic techniques. Chromium strongly accelerated H2O2 and MDA productions by 227 % and 266 % at highest chromium concentration (60 mg/kg of soil), respectively, and also caused DNA damage, and decline in photosynthesis. Additionally, anomalies were observed in stomatal cells with gradual increment in chromium concentrations. Conversely, foliar applications of TiO2 NPs and gTiO2 NPs considerably mitigated chromium stress. Sunflower plants treated with modest amounts of green TiO2 NPs had significantly better growth index compared to chemically synthesized ones. Principal component analysis highlighted the variations among photosynthetic attributes, oxidative stress markers, and antioxidant defense systems. Notably, gTiO2 supplementation to the Cr(VI) strained plants minimized PC3 production which is a rare report so far. Conclusively, gTiO2 NPs have been identified to be promising nano-based nutrition resource for farming applications.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Department of Botany, University of Delhi, New Delhi 110007, Delhi, India
| | - Safoora Mariyam
- Department of Botany, University of Delhi, New Delhi 110007, Delhi, India
| | | | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
29
|
Biswas A, Pal S. Plant-nano interactions: A new insight of nano-phytotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108646. [PMID: 38657549 DOI: 10.1016/j.plaphy.2024.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Whether nanoparticles (NPs) are boon or bane for society has been a centre of in-depth debate and key consideration in recent times. Exclusive physicochemical properties like small size, large surface area-to-volume ratio, robust catalytic activity, immense surface energy, magnetism and superior biocompatibility make NPs obligatory in many scientific, biomedical and industrial ventures. Nano-enabled products are newer entrants in the present era. To attenuate environmental stress and maximize crop yields, scientists are tempted to introduce NPs as augmented supplements in agriculture. The feasible approaches for NPs delivery are irrigation, foliar spraying or seed priming. Internalization of excessive NPs to plants endorses negative implications at higher trophic levels via biomagnification. The characteristics of NPs (dimensions, type, solubility, surface charge), applied concentration and duration of exposure are prime factors conferring nanotoxicity in plants. Several reports approved NPs persuaded toxicity can precisely mimic abiotic stress effects. The signature effects of nanotoxicity include poor root outgrowth, biomass reduction, oxidative stress evolution, lipid peroxidation, biomolecular damage, perturbed antioxidants, genotoxicity and nutrient imbalance in plants. NPs stress impels mitogen-activated protein kinase signaling cascade and urges stress responsive defence gene expression to counteract stress in plants. Exogenous supplementation of nitric oxide (NO), arbuscular mycorrhizal fungus (AMF), phytohormones, and melatonin (ME) is novel strategy to circumvent nanotoxicity. Briefly, this review appraises plants' physio-biochemical responses and adaptation scenarios to endure NPs stress. As NPs stress represents large-scale contaminants, advanced research is indispensable to avert indiscriminate NPs usage for synchronizing nano-security in multinational markets.
Collapse
Affiliation(s)
- Ankita Biswas
- Department of Botany, Lady Brabourne College, P-1/2, Suhrawardy Ave, Beniapukur, Kolkata, West Bengal, 700017, India
| | - Suparna Pal
- Department of Botany, Lady Brabourne College, P-1/2, Suhrawardy Ave, Beniapukur, Kolkata, West Bengal, 700017, India.
| |
Collapse
|
30
|
Mukarram M, Ahmad B, Choudhary S, Konôpková AS, Kurjak D, Khan MMA, Lux A. Silicon nanoparticles vs trace elements toxicity: Modus operandi and its omics bases. FRONTIERS IN PLANT SCIENCE 2024; 15:1377964. [PMID: 38633451 PMCID: PMC11021597 DOI: 10.3389/fpls.2024.1377964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la Republica, Montevideo, Uruguay
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Bilal Ahmad
- Plant Physiology Section, Department of Botany, Government Degree College for Women, Pulwama, Jammu and Kashmir, India
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
31
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
32
|
Kanwal H, Raza SH, Ali S, Iqbal M, Shad MI. Effect of riboflavin on redox balance, osmolyte accumulation, methylglyoxal generation and nutrient acquisition in indian squash (Praecitrullus fistulosus L.) under chromium toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20881-20897. [PMID: 38381295 DOI: 10.1007/s11356-024-32516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
The presence of high chromium (Cr) levels induces the buildup of reactive oxygen species (ROS), resulting in hindered plant development. Riboflavin (vitamin B2) is produced by plants, fungi, and microbes. It serves as a precursor to the coenzymes flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), which play a crucial role in cellular metabolism. The objective of this work was to clarify the underlying mechanisms by which riboflavin alleviates Cr stress in Praecitrullus fistulosus L. Further, the role of riboflavin in growth, ions homeostasis, methylglyoxal detoxification, and antioxidant defense mechanism are not well documented in plants under Cr toxicity. We found greater biomass and minimal production of ROS in plants pretreated with riboflavin under Cr stress. Results manifested a clear abridge in growth, chlorophyll content, and nutrient uptake in Indian squash plants exposed to Cr stress. Findings displayed that Cr stress visibly enhanced oxidative injury reflected as higher malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide radical (O2•‒), methylglyoxal (MG) levels alongside vivid lipoxygenase activity. Riboflavin strengthened antioxidant system, enhanced osmolyte production and improved membrane integrity. Riboflavin diminished Cr accumulation in aerial parts that led to improved nutrient acquisition. Taken together, riboflavin abridged Cr phytotoxic effects by improving redox balance because plants treated with riboflavin had strong antioxidant system that carried out effective ROS detoxification. Riboflavin protected membrane integrity that, in turn, improved nutrient uptake in plants.
Collapse
Affiliation(s)
- Habiba Kanwal
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Syed Hammad Raza
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Mudassir Iqbal Shad
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|