1
|
Chen G, Huang T, Dai Y, Huo X, Xu X. Effects of POPs-induced SIRT6 alteration on intestinal mucosal barrier function: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117705. [PMID: 39805197 DOI: 10.1016/j.ecoenv.2025.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Persistent organic pollutants (POPs) are pervasive organic chemicals with significant environmental and ecological ramifications, extending to adverse human health effects due to their toxicity and persistence. The intestinal mucosal barrier, a sophisticated defense mechanism comprising the epithelial layer, mucosal chemistry, and cellular immunity, shields the host from external threats and fosters a symbiotic relationship with intestinal bacteria. Sirtuin 6 (SIRT6), a sirtuin family member, is pivotal in genome and telomere stability, inflammation regulation, and metabolic processes. Result shows POPs have been implicated in the intestinal diseases, particularly in intestinal barrier dysfunction, through mechanisms such as cellular damage, epigenetic alterations, inflammation, microbiota changes, and metabolic disruptions. While the impact of SIRT6 expression changes on intestinal barrier functions has been reviewed, the mechanisms linking POPs to SIRT6 remain elusive. This review summarized the latest research results on the effects of POPs on intestinal barrier, discussed the role of SIRT6 from multiple mechanism perspectives, proposed new research directions on POPs, SIRT6 and intestinal health, and explored the therapeutic potential of SIRT6.
Collapse
Affiliation(s)
- Guangcan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Tengyang Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangdong, Guangzhou 511443, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
2
|
Li R, Wu Y, Wen N, Wei W, Zhao W, Li Y, Zhou L, Wang M. Assessing environmental and human health risks: Insight from the enantioselective metabolism and degradation of fenpropidin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124214. [PMID: 38801883 DOI: 10.1016/j.envpol.2024.124214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Fenpropidin (FPD), a widely employed chiral fungicide, is frequently detected in diverse environments. In an in vitro rat liver microsomes cultivation (RLMs), the metabolism exhibited the order of R-FPD > S-FPD, with respective half-lives of 10.42 ± 0.11 and 12.06 ± 0.15 min, aligning with kinetic analysis results. CYP3A2 has been demonstrated to be the most significant oxidative enzyme through CYP450 enzyme inhibition experiments. Molecular dynamics simulations unveiled the enantioselective metabolic mechanism, demonstrating that R-FPD forms hydrogen bonds with the CYP3A2 protein, resulting in a higher binding affinity (-6.58 kcal mol-1) than S-FPD. Seven new metabolites were identified by Liquid chromatography time-of-flight high-resolution mass spectrometry, which were mainly generated through oxidation, reduction, hydroxylation, and N-dealkylation reactions. The toxicity of the major metabolites predicted by the TEST procedure was found to be stronger than the predicted toxicity of FPD. Moreover, the enantioselective fate of FPD was studied by examining its degradation in three soils with varying physical and chemical properties under aerobic, anaerobic, and sterile conditions. Enantioselective degradation of FPD occurred in soils without enantiomeric transformation, displaying a preference for R-FPD degradation. R-FPD is a low-risk stereoisomer both in the environment and in mammals. The research presented a systematic and comprehensive method for analyzing the metabolic and degradation system of FPD enantiomers. This approach aids in understanding the behavior of FPD in the environment and provides valuable insights into their potential risks to human health.
Collapse
Affiliation(s)
- Rui Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yingying Wu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Nuanhui Wen
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Wenjie Wei
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Wei Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanhong Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Liangliang Zhou
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
3
|
Chen XX, Li C, Selvaraj KK, Ji QS, Fang ZH, Yang SG, Li SY, Zhang LM, He H. Correlation analysis between the in vivo bioavailability and in vitro bioaccessibility of nitro PAHs in soil: Application of simplified FOREhST in vitro methods based on the Chinese pharmacopoeia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168722. [PMID: 38008317 DOI: 10.1016/j.scitotenv.2023.168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
In this study, the relative bioavailability (RBA) of nitrated polycyclic aromatic hydrocarbons (NPAHs) in soil samples (n = 30) was assessed using an in vivo mouse model. Based on the correlation between the bioaccessibility data obtained from the Tenax improved traditional Fed ORganic Estimation human Simulation Test (FOREhST) in vitro method (TITF) and the bioavailability data obtained from in vivo experiments, the TITF method was further optimized and simplified by referring to the "Pharmacopoeia of the People's Republic of China: Volume IV, 2020" to adjust the formulation and parameters of the gastrointestinal fluid (GIF) in order to establish a simpler and lower cost in vitro method for the determination of the bioaccessibilities of NPAHs. The dose-accumulation relationship of the in vivo experiment showed that the linear dose-response was better in adipose tissue (R2 = 0.77-0.93), and the accumulation of NPAHs in adipose tissue was higher than that in kidney or liver tissue. Depending on the mouse adipose model, the NPAHs-RBA ranged from 1.88 % to 73.92 %, and a strongly significant negative relationship (R2 = 0.94, p < 0.05) was found between the NPAHs-RBA and Log Kow. The simplified experiment of the TITF showed that the composition of the GIF medium had a significant effect on the bioaccessibilities of NPAHs. The NPAH bioaccessibilities measured by the Tenax improved simplified FOREhST method (TISF) (9.0-36.5 %) were higher than that of the traditional FOREhST method (6.8-22.8 %) but significantly lower than that of the TITF method (16.8-55.2 %). With an increase in the bile concentration in the GIF (from 6 to 10 g/L), the bioaccessibilities of NPAHs increased from 9.0 to 36.5 % to 12.9-42.4 %. The accuracies of the four in vitro methods for predicting the bioavailabilities of NPAHs was in the following order: Tenax improved simplified FOREhST method with increased bile concentration (TITF-IB) (R2 = 0.54-0.87) ≈ TITF (R2 = 0.55-0.85) > TISF (R2 = 0.41-0.77) > FOREhST (R2 = 0.02-0.68). These results indicated that the simple in vitro method could also effectively predict the bioavailabilities of NPAHs.
Collapse
Affiliation(s)
- Xian-Xian Chen
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Krishna Kumar Selvaraj
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Qing-Song Ji
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Zhi-Hong Fang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Shao-Gui Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Shi-Yin Li
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Li-Min Zhang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan 354300, China.
| |
Collapse
|
4
|
Georgiev P, Belka M, Bączek T, Płotka-Wasylka J. The presence of polycyclic aromatic hydrocarbons in disposable baby diapers: A facile determination method via salting-out assisted liquid-liquid extraction coupled with gas chromatography-mass spectrometry. J Chromatogr A 2023; 1698:463981. [PMID: 37098291 DOI: 10.1016/j.chroma.2023.463981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/27/2023]
Abstract
In this paper we demonstrate the development of the extraction procedure of polycyclic aromatic hydrocarbons from baby diapers along with their quantification by gas chromatography-mass spectrometry. Apart from covering plastic foil, disposable baby diapers contain sorbents intended to absorb urine and feces. A hygroscopic, adsorptive, and tough-to-homogenize fibrous sorbent, represents an analytical challenge to analytical chemists. To address this issue we optimized and validated a novel extraction protocol including cryogenic homogenization, liquid-liquid extraction and further preconcentration by evaporation. By using deuterated internal standards in conjunction with matrix-matched calibration, high precision and accuracy were achieved. The limit of detection is estimated in the range of 0.041-0.221 ng/g (for fluorene and fluoranthene, respectively), which is far below the concentration currently assumed to be dangerous for children. The method was successfully applied to real samples available on the Polish market, and it was found that the amount of PAH compounds varies between manufacturers. Most diapers do not have all 15 polycyclic aromatic hydrocarbons in their composition, but there is no diaper that is free of these compounds. The most abundant in diapers was acenaphthalene, where the concentration ranged from 1.6 ng/g diaper up to 362.4 ng/g. The lowest concentration in diapers is chrysene, which is not detected in most diapers. The article is a response to the lack of a harmonized analytical method for the determination of polycyclic aromatic hydrocarbons in disposable sanitary products for children.
Collapse
Affiliation(s)
- Paweł Georgiev
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk 80-233, Poland; BioTechMed Center, Research Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdańsk 80-233, Poland.
| |
Collapse
|
5
|
Huang M, Zeng Y, Luo K, Lan B, Luo J, Zeng L, Kang Y. Inhalation bioacessibility and lung cell penetration of indoor PM 2.5-bound PAEs and its implication in risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121216. [PMID: 36746290 DOI: 10.1016/j.envpol.2023.121216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/11/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Several studies have evaluated the human exposure of phthalate esters (PAEs) in PM2.5 via inhalation route, however, inhalation bioaccessibility and the lung cell penetration of PAEs were barely considered in risk assessment. In the present study, PM2.5 samples collected from indoor environments were investigated for inhalation bioaccessibility of PAEs using two simulated lung fluids (gamble's solution (GMB) and artificial lysosomal fluid (ALF)). The results showed that the inhalation bioaccessibility of PAEs (except for diethyl phthalate) under healthy state (GMB: 8.9%-62.8%) was lower than that under the inflammatory condition (ALF: 14.5%-67.6%). Lung cell permeation and metabolism of three selected PAEs (diethyl phthalate, di(n-butyl)phthalate and di-2-ethylhexyl phthalate) was tested using equivalent lung cell (A549) model. The inhalation bioavailability obtained by combination of the bioaccessibility of PAEs in indoor PM2.5 and permeability data of A549 cell ranged from 11.7% to 51.1% in health condition, and 13.5%-55.0% in inflammatory state. The calibration parameter (Fc) based on the inhalation bioavailability was established in present study and could provide a reference for a more accurate risk assessment of PM2.5-bound PAEs.
Collapse
Affiliation(s)
- Mantuo Huang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yuqi Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Kesong Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Bingyan Lan
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jiwen Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Lixuan Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yuan Kang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Xi X, Ye Q, Fan D, Cao X, Wang Q, Wang X, Zhang M, Xu Y, Xiao C. Polycyclic Aromatic Hydrocarbons Affect Rheumatoid Arthritis Pathogenesis via Aryl Hydrocarbon Receptor. Front Immunol 2022; 13:797815. [PMID: 35392076 PMCID: PMC8981517 DOI: 10.3389/fimmu.2022.797815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA), the most common autoimmune disease, is characterized by symmetrical synovial inflammation of multiple joints with the infiltration of pro-inflammatory immune cells and increased cytokines (CKs) levels. In the past few years, numerous studies have indicated that several factors could affect RA, such as mutations in susceptibility genes, epigenetic modifications, age, and race. Recently, environmental factors, particularly polycyclic aromatic hydrocarbons (PAHs), have attracted increasing attention in RA pathogenesis. Therefore, exploring the specific mechanisms of PAHs in RA is vitally critical. In this review, we summarize the recent progress in understanding the mechanisms of PAHs and aryl hydrocarbon receptors (AHRs) in RA. Additionally, the development of therapeutic drugs that target AHR is also reviewed. Finally, we discuss the challenges and perspectives on AHR application in the future.
Collapse
Affiliation(s)
- Xiaoyu Xi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qinbin Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qiong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of Traditional Chinese Medicine (TCM) Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
7
|
Wang Z, Li R, Wu Q, Duan J, Tan Y, Sun X, Chen R, Shi H, Wang M. Enantioselective Metabolic Mechanism and Metabolism Pathway of Pydiflumetofen in Rat Liver Microsomes: In Vitro and In Silico Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2520-2528. [PMID: 35184556 DOI: 10.1021/acs.jafc.1c06928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pydiflumetofen (PYD) has been used worldwide. However, the enantioselective fate of PYD within mammals is not clear. Thus, the enantioselective metabolism and its potential mechanisms of PYD were explored via in vitro and in silico. Consistent results were observed between metabolism and enzyme kinetics experiments, with S-PYD metabolizing faster than R-PYD in rat liver microsomes. Moreover, CYP3A1 and carboxylesterase 1 were found to be major enzymes participating in the metabolism of PYD. Based on the computational results, S-PYD bound with CYP3A1 and carboxylesterase 1 more tightly with lower binding free energy than R-PYD, explaining the mechanism of enantioselective metabolism. Nine phase I metabolites of PYD were identified, and metabolic pathways of PYD were speculated. This study is the first to clarify the metabolism of PYD in mammals, and further research to evaluate the toxicological implications of these metabolites will help in assessing the risk of PYD.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiqi Wu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yuting Tan
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaofang Sun
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Rou Chen
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Jin X, Hua Q, Liu Y, Wu Z, Xu D, Ren Q, Zhao W, Guo X. Organ and tissue-specific distribution of selected polycyclic aromatic hydrocarbons (PAHs) in ApoE-KO mouse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117219. [PMID: 33984772 DOI: 10.1016/j.envpol.2021.117219] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most prevalent classes of environmental pollutants resulting from the incomplete combustion of hydrocarbons. Exposure to PAHs is implicated in the pathogenesis of the cardiovascular disease, pulmonary disease, and even cancer. However, little is known about organ- and tissue-specific distribution patterns of PAHs in animals at macro-tissue and microscopic levels. Here, by combining GC-MS and single-molecule fluorescence microscopy (SMFM), we revealed the distribution characteristics of four different PAHs (phenanthrene (Phe), pyrene (Pyr), perylene (Per), and benzo[a]pyrene (BaP)) in atherosclerosis model mice (ApoE-KO mice) at macro-tissue and micro-region level after long-term oral exposure. Average PAH concentrations detected by GC-MS in seven tissues ranged from 6.44 to 441 ng/g. The gastrointestinal tract, epididymal fat pat, and lung accumulated higher levels of PAHs, whereas relatively lower PAH residuals were found in the liver, brain, and kidney. Correlation analysis showed that PAHs with higher molecular weight (r: -0.972 to -0.746), Log Kow (r: -0.984 to -0.746) and lower water solubility (r: 0.720 to 0.994) were less prone to bioaccumulate. For the first time, SMFM demonstrated a distinct heterogeneous distribution of Per in the tissue slices. More interestingly, we observed many micro-cluster regions, namely hotspots, showed much higher Per fluorescent intensity than the other common regions. In the area of atherosclerotic plaque, the Per hotspots were colocalized with the micro-regions with the most severe inflammatory response. The hotspots with very high enrichment in PAHs were likely to stimulate the local inflammation and cause excessive damage of the aorta, which resulted in a significant increase of the relative area of atherosclerosis lesion and aggravated atherosclerosis, as observed in PAH exposed mice.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China; Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, No.5 Yiheyuan Street, Beijing, 100871, China
| | - Qiaoyi Hua
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Yanan Liu
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Zhijun Wu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Street, Beijing, 100050, China
| | - Deshu Xu
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Qidong Ren
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Wenjin Zhao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Street, Beijing, 100050, China
| | - Xuejun Guo
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China.
| |
Collapse
|
9
|
Tooker BC, Quinn K, Armstrong M, Bauer AK, Reisdorph N. Comparing the effects of an exposure to a polycyclic aromatic hydrocarbon mixture versus individual polycyclic aromatic hydrocarbons during monocyte to macrophage differentiation: Mixture exposure results in altered immune metrics. J Appl Toxicol 2021; 41:1568-1583. [PMID: 33559210 PMCID: PMC8349383 DOI: 10.1002/jat.4147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 11/08/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are generated by the incomplete combustion of carbon. Exposures correlate with systemic immune dysfunction and overall immune suppression. Real-world exposures to PAHs are almost always encountered as mixtures; however, research overwhelmingly centers on isolated exposures to a single PAH, benzo[a]pyrene (B[a]P). Here, a human monocyte line (U937) was exposed to B[a]P, benz[a]anthracene (B[a]A), or a mixture of six PAHs (6-MIX) to assess the differential toxicity on monocytes. Further, monocytes were exposed to PAHs with and without CYP1A1 inhibitors during macrophage differentiation to delineate PAH exposure and PAH metabolism-driven alterations to the immune response. U937 monocytes exposed to B[a]P, B[a]A, or 6-MIX had higher levels of cellular health and growth not observed following equimolar exposures to other individual PAHs. PAH exposures during differentiation did not alter monocyte-derived macrophage (MDM) numbers; however, B[a]A and 6-MIX exposures significantly altered M1/M2 polarization in a CYP1A1-dependent manner. U937-MDM adherence was differentially suppressed by all three PAH treatments with 6-MIX exposed U937-MDM having significantly more adhesion than U937-MDM exposed to either individual PAH. Finally, 6-MIX exposures during differentiation reduced U937-MDM endocytic function significantly less than B[a]A exposed cells. Exposure to a unique PAH mixture during U937-MDM differentiation resulted in mixture-specific alterations of pro-inflammatory markers compared to individual PAH exposures. While subtle, these differences highlight the probability that using a model PAH, B[a]P, may not accurately reflect the effects of PAH mixture exposures. Therefore, future studies should include various PAH mixtures that encompass probable real-world PAH exposures for the endpoints under investigation.
Collapse
Affiliation(s)
- Brian C. Tooker
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin Quinn
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alison K. Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
10
|
Luo K, Zeng Y, Li M, Man Y, Zeng L, Zhang Q, Luo J, Kang Y. Inhalation bioacessibility and absorption of polycyclic aromatic hydrocarbons (PAHs) in indoor PM 2.5 and its implication in risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145770. [PMID: 33610976 DOI: 10.1016/j.scitotenv.2021.145770] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/20/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Inhalation bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 was assessed in numerous studies, however, the lung cell uptake and penetration of PAHs was seldom taken into account in risk assessment. In the present study, eighteen indoor PM2.5 samples collected from Guangzhou, China were analyzed for the inhalation bioavailability of PAHs combining the inhalation bioaccessibility and cell absorption of PAHs. Two simulated epithelial lung fluid mimicking the healthy condition (as represented by gamble's solution (GMB), pH = 7.4) and the inflammatory condition (as represented by artificial lysosomal fluid (ALF), pH = 4.5) were employed to evaluate the inhalation bioaccessibility. The results indicated that the bioaccessibility of PAHs under the inflammatory condition (1.28%-87.7%) was higher than that under healthy condition (0.88%-87.6%). Naphthalene, phenanthrene, pyrene and benzo[a]pyrene were selected for absorption assay of lung epithelial cells (A549). The absorption rate of PAHs ranged from 64.7 to 90.7% and it was inversely proportional to the number of aromatic rings. Taken together, the inhalation bioavailability based on the bioaccessibility of PAHs and the lung cell absorption ratio ranged from 9.9 to 56.9% under the healthy state, from 12.7 to 65.6% under inflammatory condition. The correction parameter (Fc) was thus established and can be used to improve the risk assessment of human exposure to PAHs via PM2.5 inhalation in future work.
Collapse
Affiliation(s)
- Kesong Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yuqi Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Meihui Li
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | - Yubon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, People's Republic of China
| | - Lixuan Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Qiuyun Zhang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jiwen Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Yuan Kang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
11
|
Pan W, Zeng D, Ding N, Luo K, Man YB, Zeng L, Zhang Q, Luo J, Kang Y. Percutaneous Penetration and Metabolism of Plasticizers by Skin Cells and Its Implication in Dermal Exposure to Plasticizers by Skin Wipes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10181-10190. [PMID: 32678582 DOI: 10.1021/acs.est.0c02455] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Numerous studies focused on the human exposure to plasticizers via dermal contact; however, the percutaneous penetration of plasticizers was seldom considered in exposure assessment. In the present study, skin wipes of palms, back-of-hands, and forehead were collected from 114 participants (ages: 18-27). There was no significant difference between the levels of phthalates from palms and back-of-hand, while all phthalates collected from the forehead were significantly higher than those from palms and back-of-hand (p < 0.001); di(2-ethylhexyl)phthalate levels were substantially higher than other detected phthalates followed by di(n-butyl)phthalate and di(isobutyl)phthalate (DiBP), and for alternative plasticizers, bis-2-ethylhexyl terephthalate levels were substantially higher than acetyltributyl citrate and bis-2-ethylhexyladipate. Skin permeation and metabolism of phthalates was assessed using human skin equivalent models. The permeability coefficient (kp) values of phthalates were significantly negatively correlated with their log octanol-water partition coefficient (log Kow), while a significantly positive correlation was found between the log Kow and the cumulative amounts of phthalates in the cells. The proportion of phthalate intake via dermal exposure to skin wipes ranges from 1.3% (for dimethyl phthalate) to 8.6% (for DiBP) and suggests that dermal absorption is a significant route for adult phthalate exposure.
Collapse
Affiliation(s)
- Weijian Pan
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- School of Chemistry, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Diya Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Na Ding
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Kesong Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, People's Republic of China
| | - Lixuan Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Qiuyun Zhang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jiwen Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yuan Kang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
12
|
Wang H, Xia X, Liu R, Wang Z, Lin X, Muir DCG, Wang WX. Multicompartmental Toxicokinetic Modeling of Discrete Dietary and Continuous Waterborne Uptake of Two Polycyclic Aromatic Hydrocarbons by Zebrafish Danio rerio. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1054-1065. [PMID: 31841317 DOI: 10.1021/acs.est.9b05513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present study, we developed a multicompartmental toxicokinetic model for two polycyclic aromatic hydrocarbons (phenanthrene and anthracene) in their deuterated form (PAHs-d10) in zebrafish considering continuous waterborne uptake and discrete dietary uptake. We quantified the bioconcentration, bioaccumulation, and depuration of these two PAHs-d10 in zebrafish, and then estimated the kinetic parameters by fitting the model into the experimental data. The experimental and fitting results both showed that there was a peak concentration in each compartment of zebrafish after every dietary uptake, while the peak value depended on the ingestion amount of the PAH-d10 and varied among different compartments. The PAH-d10 amount in the blood reached 20-27% of the total amount bioaccumulated in zebrafish at steady-state, followed by skin (20-26%), and fillet (16-22%). The rank of PAH-d10 steady-state concentrations in each compartment showed inconsistency with its lipid contents, indicating that the distribution of the PAHs-d10 in zebrafish was not merely affected by the lipid content in each compartment, but also affected by their kinetics and biotransformation. This study suggests that discrete dietary uptake caused by intermittent food ingestion significantly affects the bioaccumulation of PAHs in fish. Further studies are needed to investigate such effect on other toxicants that are more resistant to biotransformation than PAHs in fish.
Collapse
Affiliation(s)
- Haotian Wang
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing , 100875 , China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing , 100875 , China
| | - Ran Liu
- Department of Mathematics , Hong Kong Baptist University , Hong Kong SWT 802 , China
| | - Zixuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing , 100875 , China
| | - Xiaohan Lin
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing , 100875 , China
| | - Derek C G Muir
- Aquatic Contaminants Research Division , Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 Canada
| | - Wen-Xiong Wang
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
| |
Collapse
|
13
|
Hou R, Huang C, Rao K, Xu Y, Wang Z. Characterized in Vitro Metabolism Kinetics of Alkyl Organophosphate Esters in Fish Liver and Intestinal Microsomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3202-3210. [PMID: 29439571 DOI: 10.1021/acs.est.7b05825] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tris(2-butoxyethyl) phosphate (TBOEP) and tris( n-butyl) phosphate (TNBP) are the most commonly used alkyl organophosphate esters (alkyl-OPEs), and they increasingly accumulate in organisms and create potential health hazards. This study examined the metabolism of TNBP and TBOEP in Carassius carassius liver and intestinal microsomes and the production of their corresponding monohydroxylated and dealkylated metabolites. After 140 min of incubation with fish liver microsomes, the rapid depletion of TNBP and TBOEP were both best fitted to the Michaelis-Menten model (at administrated concentrations ranging from 0.5 to 200 μM), with a CLint (intrinsic clearance) of 3.1 and 3.9 μL·min-1·mg-1 protein, respectively. But no significant ( P > 0.05) biotransformation was observed for these compounds in intestinal microsomes at any administrated concentrations. In fish liver microsomes assay, bis(2-butoxyethyl) hydroxyethyl phosphate (BBOEHEP) and bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate (3-OH-TBOEP) were the most abundant metabolites of TBOEP, and dibutyl-3-hydroxybutyl phosphate (3-OH-TNBP) was the predominant metabolite of TNBP. Similarly, the apparent Vmax values (maximum metabolic rate) of BBOEHEP and 3-OH-TNBP were also respectively highest among those of other metabolites. Further inhibition studies were conducted to identify the specific cytochrome P450 (CYP450) isozymes involved in the metabolism of TNBP and TBOEP in liver microsomes. It was confirmed that CYP3A4 and CYP1A were the significant CYP450 isoforms catalyzing the metabolism of TNBP and TBOEP in fish liver microsomes. Overall, this study emphasized the importance of hydroxylated metabolites as biomarkers for alkyl-OPEs exposure, and further research is needed to validate the in vivo formation and toxicological implications of these metabolites.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Kaifeng Rao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
14
|
Arnot JA, Mackay D. The influence of chemical degradation during dietary exposures to fish on biomagnification factors and bioaccumulation factors. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:86-97. [PMID: 29300412 DOI: 10.1039/c7em00539c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The chemical dietary absorption efficiency (ED) quantifies the amount of chemical absorbed by an organism relative to the amount of chemical an organism is exposed to following ingestion. In particular, ED can influence the extent of bioaccumulation and biomagnification for hydrophobic chemicals. A new ED model is developed to quantify chemical process rates in the gastrointestinal tract (GIT). The new model is calibrated with critically evaluated measured ED values (n = 250) for 80 hydrophobic persistent chemicals. The new ED model is subsequently used to estimate chemical reaction rate constants (kR) assumed to occur in the lumen of the GIT from experimental dietary exposure tests (n = 255) for 165 chemicals. The new kR estimates are corroborated with kR estimates for the same chemicals from the same data derived previously by other methods. The roles of kR and the biotransformation rate constant (kB) on biomagnification factors (BMFs) determined under laboratory test conditions and on BMFs and bioaccumulation factors (BAFs) in the environment are examined with the new model. In this regard, differences in lab and field BMFs are highlighted. Recommendations to address uncertainty in ED and kR data are provided.
Collapse
Affiliation(s)
- Jon A Arnot
- ARC Arnot Research and Consulting, 36 Sproat Ave., Toronto, ON M4M 1W4, Canada.
| | | |
Collapse
|
15
|
de Gelder S, Sundh H, Pelgrim TNM, Rasinger JD, van Daal L, Flik G, Berntssen MHG, Klaren PHM. Transepithelial transfer of phenanthrene, but not of benzo[a]pyrene, is inhibited by fatty acids in the proximal intestine of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:97-105. [PMID: 29223736 DOI: 10.1016/j.cbpc.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/20/2022]
Abstract
The inclusion of vegetable oils in aquafeeds introduces contaminating polycyclic aromatic hydrocarbons (PAHs) in salmonids. Since lipophilic PAHs solubilize in micelles composed of lipids, bile salts and fatty acids, dietary lipid composition can alter intestinal transepithelial PAH transfer. We studied the uptake of two PAHs, viz. benzo[a]pyrene (BaP) and phenanthrene (PHE), in rainbow trout (Oncorhynchus mykiss) intestine. We also investigated the effects of two fatty acids, viz. fish oil-derived eicosapentaenoic acid (EPA, 20:5n-3) and vegetable oil-derived oleic acid (18:1n-9) on intestinal uptake. Radiolabeled PAHs were solubilized in micelles composed of tritiated EPA and oleic acid, respectively, and administrated to intestinal segments mounted in Ussing chambers. In the absence of micelles, PHE accumulation was two times higher than BaP in the mucosal and serosal layers of proximal and distal intestine. Administration of PHE in micelles composed of oleic acid resulted in a 50% lower accumulation of PHE in the mucosal layers of the proximal intestine compared to EPA-composed micelles. Accumulation of EPA and oleic acid in the proximal intestinal mucosa correlated negatively with the transepithelial transfer of these fatty acids across the proximal intestinal epithelium. Transepithelial PHE transfer across the proximal intestine was reduced by 30% in co-exposure with EPA-composed micelles compared to 80% with oleic acid micelles. BaP was not transferred across the intestine. We conclude that the lipid composition of an aquafeed is an important determinant of PAH bioavailability. Therefore, lipid composition should be an important consideration in choosing vegetable oils as alternatives for fish oil in aquafeeds.
Collapse
Affiliation(s)
- Stefan de Gelder
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands; National Institute of Nutrition and Seafood Research, P.O. Box 2029, Nordnes, 5817 Bergen, Norway
| | - Henrik Sundh
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden
| | - Thamar N M Pelgrim
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Josef D Rasinger
- National Institute of Nutrition and Seafood Research, P.O. Box 2029, Nordnes, 5817 Bergen, Norway
| | - Lotte van Daal
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Gert Flik
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Marc H G Berntssen
- National Institute of Nutrition and Seafood Research, P.O. Box 2029, Nordnes, 5817 Bergen, Norway
| | - Peter H M Klaren
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Nogueira DJ, Mattos JJ, Dybas PR, Flores-Nunes F, Sasaki ST, Taniguchi S, Schmidt ÉC, Bouzon ZL, Bícego MC, Melo CMR, Toledo-Silva G, Bainy ACD. Effects of phenanthrene on early development of the Pacific oyster Crassostrea gigas (Thunberg, 1789). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:50-61. [PMID: 28800408 DOI: 10.1016/j.aquatox.2017.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Phenanthnere (PHE) is a polycyclic aromatic hydrocarbon continuously discarded in the marine environment and bioavailable to many aquatic species. Although studies about PHE toxicity have been documented for adult oysters, the effects on early developmental stages are poorly characterized in bivalves. In this study, the effects of PHE (0.02 and 2.0μg.L-1) were evaluated on the embryogenesis and larval development of Crassostrea gigas. Toxicity bioassays, growth and deformities assessment, analysis of shell calcium abundance and transcript levels of genes related to xenobiotic biotransformation (CYP2AU2, CYP30C1), immune system (Cg-Tal) and tissue growth and shell formation (Ferritin, Insulin-like, Cg-Try, Calmodulin and Nacrein) were assayed in D-shape larvae after 24h of PHE exposure. At the highest concentration (2.0μg.L-1), PHE decreased the frequency of normal development (19.7±2.9%) and shell size (53.5±2.8mm). Developmental deformities were mostly related to abnormal mantle and shell formation. Lower calcium levels in oyster shells exposed to PHE 2.0μg.L-1 were observed, suggesting effects on shell structure. At this same PHE concentration, CYP30C1, Cg-Tal, Cg-Tyr, Calmodulin were upregulated and CYP2AU2, Ferritin, Nacrein, and Insulin-Like were downregulated compared to control larvae. At the lowest PHE concentration (0.02μg.L-1), it was observed a minor decrease in normal larval development (89,6±6%) and the remaining parameters were not affected. This is the first study to provide evidences that exposure to PHE can affect early oyster development at the molecular and morphological levels, possibly threatening this bivalve species.
Collapse
Affiliation(s)
- Diego J Nogueira
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Patrick R Dybas
- Laboratory of Marine Mollusks, Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, SC 88051-000, Brazil
| | - Fabrıcio Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Silvio Tarou Sasaki
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil
| | - Éder C Schmidt
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | - Zenilda L Bouzon
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil
| | - Claudio M R Melo
- Laboratory of Marine Mollusks, Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, SC 88051-000, Brazil
| | - Guilherme Toledo-Silva
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil.
| |
Collapse
|
17
|
de Gelder S, van Och L, Zethof J, Pelgrim TNM, Rasinger JD, Flik G, Berntssen MHG, Klaren PHM. Uptake of benzo[a]pyrene, but not of phenanthrene, is inhibited by fatty acids in intestinal brush border membrane vesicles of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2017; 195:1-8. [PMID: 28216010 DOI: 10.1016/j.cbpc.2017.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/31/2022]
Abstract
Partial replacement of fish ingredients with vegetable ingredients has elevated levels of polycyclic aromatic hydrocarbons (PAHs) in Atlantic salmon reared on these feeds. PAH uptake in the intestinal tract is postulated to occur in association with lipid absorption and could well be affected by fatty acid composition. We therefore investigated the effects of a fish oil and vegetable oil fatty acid, eicosapentaenoic acid (EPA; 20:5n-3) and oleic acid (18:1n-9) respectively, on the uptake of benzo[a]pyrene (BaP) and phenanthrene (PHE) across the intestinal brush border membrane in the salmonid species rainbow trout (Oncorhynchus mykiss). BaP and PHE were solubilized in mixed micelles composed of either EPA or oleic acid and administrated to isolated brush border membrane vesicles (BBMV) derived from the pyloric caeca, proximal intestine and distal intestine. In the absence of free fatty acids (FFA) trans-membrane uptake of BaP and PHE was 2-7 times lower than the fraction associated to or in the membrane. In the presence of FFA, trans-membrane BaP uptake had decreased by 80 and 40% at the highest EPA and oleic acid concentration, respectively, whereas PHE uptake was virtually unaffected. In the presence of BaP, but not PHE, trans-membrane EPA uptake in BBMV had decreased. This study obtained evidence for PAH-dependent interactions with FFA uptake. We conclude that intestinal BaP uptake is reduced by luminal FFA contents whereas PHE uptake is not. A large fraction of the administrated BaP and PHE remains associated with the cellular membrane of enterocytes and may interfere with uptake of nutrients.
Collapse
Affiliation(s)
- Stefan de Gelder
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands; National Institute of Nutrition and Seafood Research, P.O. Box 2029, Nordnes, 5817 Bergen, Norway.
| | - Liselot van Och
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Jan Zethof
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Thamar N M Pelgrim
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Josef D Rasinger
- National Institute of Nutrition and Seafood Research, P.O. Box 2029, Nordnes, 5817 Bergen, Norway
| | - Gert Flik
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Marc H G Berntssen
- National Institute of Nutrition and Seafood Research, P.O. Box 2029, Nordnes, 5817 Bergen, Norway
| | - Peter H M Klaren
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
18
|
Fanali LZ, Valverde BSDL, Franco-Belussi L, Provete D, de Oliveira C. Response of digestive organs of Hypsiboas albopunctatus (Anura: Hylidae) to benzo[α]pyrene. AMPHIBIA-REPTILIA 2017. [DOI: 10.1163/15685381-00003101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anurans are exposed to several pollutants. One of these is benzo[α]pyrene (BaP). This compound is produced by incomplete combustion and is toxic to the liver and intestine, where it is metabolized. Here, we tested how different concentrations of BaP affect the thickness of small intestine and liver melanomacrophages (MMCs) ofHypsiboas albopunctatusduring short- and long-term exposures. We conducted an experiment with a 3 × 2 factorial design to answer these two questions. Male specimens were separated into groups injected with either 3 or 7 mg/kg of BaP and euthanized after either 72 or 168 h. Then, we measured the thickness of the intestinal epithelium and the area occupied by MMCs. The thickness of intestinal epithelium decreased in both high and low concentration for short-term exposure compared to control, and increased in the long-term group in both low and high concentrations. The short-term decrease in thickness is due to the damage caused by BaP on the absorptive capacity of the epithelium, whereas the epithelium increased its thickness and recovered normal activity in the long-term. High BaP concentration decreased the area of MMCs in the short-term group. The increase in MMCs is associated with the detoxifying role of these cells, while the decrease was triggered by cellular stress due to high BaP concentration. The concentrations of BaP we used are close to those found in polluted environments. Therefore, water contaminated with BaP can potentially affect the morphology of internal organs of anurans.
Collapse
Affiliation(s)
- Lara Zácari Fanali
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Bruno Serra de Lacerda Valverde
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Lilian Franco-Belussi
- Department of Biology, Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
- Current address: Graduate program in Biotechnology and Environmental monitoring, CCTS, Federal University of São Carlos (UFSCar), 18052-780 Sorocaba, São Paulo, Brazil
| | - Diogo B. Provete
- FAPESP post-doctoral fellow, Department of Environmental Sciences, Federal University of São Carlos (UFSCar), 18052-780 Sorocaba, São Paulo, Brazil
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Göteborg, Sweden
| | - Classius de Oliveira
- Department of Biology, Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
19
|
Butyrate alters expression of cytochrome P450 1A1 and metabolism of benzo[a]pyrene via its histone deacetylase activity in colon epithelial cell models. Arch Toxicol 2016; 91:2135-2150. [PMID: 27830268 DOI: 10.1007/s00204-016-1887-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 11/02/2016] [Indexed: 01/24/2023]
Abstract
Butyrate, a short-chain fatty acid produced by fermentation of dietary fiber, is an important regulator of colonic epithelium homeostasis. In this study, we investigated the impact of this histone deacetylase (HDAC) inhibitor on expression/activity of cytochrome P450 family 1 (CYP1) and on metabolism of carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP), in colon epithelial cells. Sodium butyrate (NaBt) strongly potentiated the BaP-induced expression of CYP1A1 in human colon carcinoma HCT116 cells. It also co-stimulated the 7-ethoxyresorufin-O-deethylase (EROD) activity induced by the 2,3,7,8-tetrachlorodibenzo-p-dioxin, a prototypical ligand of the aryl hydrocarbon receptor. Up-regulation of CYP1A1 expression/activity corresponded with an enhanced metabolism of BaP and formation of covalent DNA adducts. NaBt significantly potentiated CYP1A1 induction and/or metabolic activation of BaP also in other human colon cell models, colon adenoma AA/C1 cells, colon carcinoma HT-29 cells, or in NCM460D cell line derived from normal colon mucosa. Our results suggest that the effects of NaBt were due to its impact on histone acetylation, because additional HDAC inhibitors (trichostatin A and suberanilohydroxamic acid) likewise increased both the induction of EROD activity and formation of covalent DNA adducts. NaBt-induced acetylation of histone H3 (at Lys14) and histone H4 (at Lys16), two histone modifications modulated during activation of CYP1A1 transcription, and it reduced binding of HDAC1 to the enhancer region of CYP1A1 gene. This in vitro study suggests that butyrate, through modulation of histone acetylation, may potentiate induction of CYP1A1 expression, which might in turn alter the metabolism of BaP within colon epithelial cells.
Collapse
|
20
|
de Gelder S, Bakke MJ, Vos J, Rasinger JD, Ingebrigtsen K, Grung M, Ruus A, Flik G, Klaren PHM, Berntssen MHG. The effect of dietary lipid composition on the intestinal uptake and tissue distribution of benzo[a]pyrene and phenanthrene in Atlantic salmon (Salmo salar). Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:65-76. [PMID: 26972757 DOI: 10.1016/j.cbpc.2016.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/02/2016] [Accepted: 03/09/2016] [Indexed: 01/28/2023]
Abstract
Uptake of polycyclic aromatic hydrocarbons (PAHs) across the intestine is suggested to occur in association with dietary lipids. Partial replacement of fish ingredients by vegetable ingredients in aquafeeds has led to increased levels of PAHs in marine farmed fish. We therefore investigated, intestinal uptake, tissue distribution and PAH metabolism after a single dose of (14)C-benzo[a]pyrene (BaP) or (14)C-phenanthrene (PHE) given to Atlantic salmon (Salmo salar) acclimatized to a fish oil or vegetable oil based diet. Both BaP and PHE were absorbed along the intestine. Fish oil based feed increased BaP concentration in the pyloric caeca and that of PHE in the proximal intestine. In contrast, vegetable oil increased BaP concentrations in the distal intestine. Extraction of whole body autoradiograms removed PHE-associated radiolabeling almost completely from the intestinal mucosa, but not BaP-associated radiolabeling, indicating the presence of BaP metabolites bound to cellular macromolecules. This observation correlates with the increased cyp1a expression in the proximal intestine, distal intestine and liver in the BaP exposed group. Furthermore, BaP-induced cyp1a expression was higher in the distal intestine of salmon fed fish oil compared to the vegetable oil fed group. PHE had no significant effect on cyp1a expression in any of these tissues. We conclude that dietary lipid composition affects intestinal PAH uptake. Fish oil based feed increased intestinal PAH concentrations probably due to an enhanced solubility in micelles composed of fish oil fatty acids. Increased BaP accumulation in the distal intestine of vegetable oil fed fish seems to be associated with a reduced Cyp1a-mediated BaP metabolism.
Collapse
Affiliation(s)
- Stefan de Gelder
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands; National Institute of Nutrition and Seafood Research, P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
| | - Marit J Bakke
- University of Life Science (NMBU), Faculty of Veterinary Medicine and Biosciences, Department of Food Safety and Infection Biology, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Joëlle Vos
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Josef D Rasinger
- National Institute of Nutrition and Seafood Research, P.O. Box 2029 Nordnes, 5817 Bergen, Norway
| | - Kristian Ingebrigtsen
- University of Life Science (NMBU), Faculty of Veterinary Medicine and Biosciences, Department of Food Safety and Infection Biology, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Merete Grung
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| | - Anders Ruus
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| | - Gert Flik
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Peter H M Klaren
- Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Physiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Marc H G Berntssen
- National Institute of Nutrition and Seafood Research, P.O. Box 2029 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
21
|
James K, Peters RE, Cave MR, Wickstrom M, Lamb EG, Siciliano SD. Predicting Polycyclic Aromatic Hydrocarbon Bioavailability to Mammals from Incidentally Ingested Soils Using Partitioning and Fugacity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1338-1346. [PMID: 26741299 DOI: 10.1021/acs.est.5b05317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Soil and dust ingestion is one of the major human exposure pathways to contaminated soil; however, pollutant transfer from ingested substances to humans cannot currently be confidently predicted. Soil polycyclic aromatic hydrocarbon (PAH) bioavailability is likely dependent upon properties linked to chemical potential and partitioning such as fugacity, fugacity capacity, soil organic carbon, and partitioning to simulated intestinal fluids. We estimated the oral PAH bioavailability of 19 historically contaminated soils fed to juvenile swine. Between soils, PAH blood content, with the exception of benzo(a)pyrene, was not linked to fugacity. In contrast, between individual PAHs, using partitioning explained PAH blood content (area under the curve = 0.47 log fugacity + 0.34, r(2) = 0.68, p < 0.005, n = 14). Soil fugacity capacity predicts PAH soil concentration with an average slope of 0.30 (μg PAH g(-1) soil) Pa(-1) and r(2)'s of 0.61-0.73. Because PAH blood content was independent of soil concentration, soil fugacity correlated to PAH bioavailability via soil fugacity's link to soil concentration. In conclusion, we can use fugacity to explain PAH uptake from a soil into blood. However, something other than partitioning is critical to explain the differences in PAH uptake into blood between soils.
Collapse
Affiliation(s)
- Kyle James
- Department of Soil Science, University of Saskatchewan , Saskatoon S7N 5A8, Canada
- Toxicology Graduate Program, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | - Rachel E Peters
- Department of Soil Science, University of Saskatchewan , Saskatoon S7N 5A8, Canada
- Toxicology Graduate Program, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | - Mark R Cave
- British Geological Survey, Nottingham, United Kingdom
| | - Mark Wickstrom
- Veterinary Biomedical Sciences, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | - Eric G Lamb
- Department of Plant Sciences, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan , Saskatoon S7N 5A8, Canada
| |
Collapse
|
22
|
Juhasz AL, Tang W, Smith E. Using in vitro bioaccessibility to refine estimates of human exposure to PAHs via incidental soil ingestion. ENVIRONMENTAL RESEARCH 2016; 145:145-153. [PMID: 26697808 DOI: 10.1016/j.envres.2015.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
PAH bioaccessibility in contaminated soil was determined using the organic physiologically based extraction test with the inclusion of a sorption sink. Silicone cord was incorporated into the assay in order to overcome the limited capacity of the in vitro medium to accommodate desorbable PAHs. Initially, silicone cord sorption efficacy was determined by assessing sorption kinetics using PAH-spiked sand (phenanthrene, pyrene and benzo[a]pyrene; 10-1000mgkg(-1)). Irrespective of PAH and concentration, >95% of the initial PAH mass partitioned into the silicone cord within 12h although rates were lower at higher concentration and with increasing hydrophobicity. When PAH bioaccessibility was assessed in contaminated soil (n=18), contamination source (i.e. pyrogenic versus petrogenic) influenced PAH bioaccessibility. Individual PAH bioaccessibility ranged up to 81.7±2.7% although mean values ranged from 2.1 (acenaphthalene) to 20.8% (benzo[k]fluoranthene) with upper 95% confidence intervals of the means of 4.5 and 28.3% respectively. Although a PAH in vivo-in vitro correlation is yet to be established, bioaccessibility approaches incorporating sorption sinks represent a robust approach for estimating PAH bioavailability as the desorbable fraction may be a conservative measure of the absorbable fraction.
Collapse
Affiliation(s)
- Albert L Juhasz
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Wayne Tang
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Euan Smith
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
23
|
Kabátková M, Zapletal O, Tylichová Z, Neča J, Machala M, Milcová A, Topinka J, Kozubík A, Vondráček J. Inhibition of β-catenin signalling promotes DNA damage elicited by benzo[a]pyrene in a model of human colon cancer cells via CYP1 deregulation. Mutagenesis 2015; 30:565-76. [PMID: 25805023 DOI: 10.1093/mutage/gev019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Deregulation of Wnt/β-catenin signalling plays an important role in the pathogenesis of colorectal cancer. Interestingly, this pathway has been recently implicated in transcriptional control of cytochrome P450 (CYP) family 1 enzymes, which are responsible for bioactivation of a number of dietary carcinogens. In the present study, we investigated the impact of inhibition of Wnt/β-catenin pathway on metabolism and genotoxicity of benzo[a]pyrene (BaP), a highly mutagenic polycyclic aromatic hydrocarbon and an efficient ligand of the aryl hydrocarbon receptor, which is known as a primary regulator of CYP1 expression, in cellular models derived from colorectal tumours. We observed that a synthetic inhibitor of β-catenin, JW74, significantly increased formation of BaP-induced DNA adducts in both colorectal adenoma and carcinoma-derived cell lines. Using the short interfering RNA (siRNA) targeting β-catenin, we then found that β-catenin knockdown in HCT116 colon carcinoma cells significantly enhanced formation of covalent DNA adducts by BaP and histone H2AX phosphorylation, as detected by (32)P-postlabelling technique and immunocytochemistry, respectively, and it also induced expression of DNA damage response genes, such as CDKN1A or DDB2. The increased formation of DNA adducts formed by BaP upon β-catenin knockdown corresponded with enhanced production of major BaP metabolites, as well as with an increased expression/activity of CYP1 enzymes. Finally, using siRNA-mediated knockdown of CYP1A1, we confirmed that this enzyme plays a major role in formation of BaP-induced DNA adducts in HCT116 cells. Taken together, the present results indicated that the siRNA-mediated inhibition of β-catenin signalling, which is aberrantly activated in a majority of colorectal cancers, modulated genotoxicity of dietary carcinogen BaP in colon cell model in vitro, via a mechanism involving up-regulation of CYP1 expression and activity.
Collapse
Affiliation(s)
- Markéta Kabátková
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno 61265, Czech Republic, Institute of Experimental Biology, Faculty of Science, Kotlarska 2, Brno 61137, Czech Republicx
| | - Ondřej Zapletal
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno 61265, Czech Republic, Institute of Experimental Biology, Faculty of Science, Kotlarska 2, Brno 61137, Czech Republicx
| | - Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno 61265, Czech Republic, Institute of Experimental Biology, Faculty of Science, Kotlarska 2, Brno 61137, Czech Republicx
| | - Jiří Neča
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic and
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic and
| | - Alena Milcová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno 61265, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno 61265, Czech Republic,
| |
Collapse
|
24
|
Juhasz AL, Weber J, Stevenson G, Slee D, Gancarz D, Rofe A, Smith E. In vivo measurement, in vitro estimation and fugacity prediction of PAH bioavailability in post-remediated creosote-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 473-474:147-154. [PMID: 24368196 DOI: 10.1016/j.scitotenv.2013.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/03/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
In this study, PAH bioavailability was assessed in creosote-contaminated soil following bioremediation in order to determine potential human health exposure to residual PAHs from incidental soil ingestion. Following 1,000 days of enhanced natural attenuation (ENA), a residual PAH concentration of 871 ± 8 mg kg(-1) (∑16 USEPA priority PAHs in the <250 μm soil particle size fraction) was present in the soil. However, when bioavailability was assessed to elucidate potential human exposure using an in vivo mouse model, the upper-bound estimates of PAH absolute bioavailability were in excess of 65% irrespective of the molecular weight of the PAH. These results indicate that a significant proportion of the residual PAH fraction following ENA may be available for absorption following soil ingestion. In contrast, when PAH bioavailability was estimated/predicted using an in vitro surrogate assay (FOREhST assay) and fugacity modelling, PAH bioavailability was up to 2000 times lower compared to measured in vivo values depending on the methodology used.
Collapse
Affiliation(s)
- Albert L Juhasz
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - John Weber
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia
| | | | - Daniel Slee
- National Measurement Institute, Pymble, NSW 2073, Australia
| | - Dorota Gancarz
- South Australian Health and Medical Research Institute, Gilles Plains, SA 5086, Australia
| | - Allan Rofe
- South Australian Health and Medical Research Institute, Gilles Plains, SA 5086, Australia
| | - Euan Smith
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
25
|
Sinaei M. Effect of 16 pure hydrocarbons on the stabilization and lysis of fish (mudskipper: Boleophthalmus dussumieri) erythrocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:257-265. [PMID: 24084411 DOI: 10.1016/j.ecoenv.2013.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 07/03/2013] [Accepted: 07/13/2013] [Indexed: 06/02/2023]
Abstract
The in vitro effects of polycyclic aromatic hydrocarbons (PAHs) on erythrocyte membrane stability of the mudskipper (i.e., Boleophthalmus dussumieri) were tested by using field concentrations, acute and chronic potency divisor concentrations. This was achieved by studying their lytic or antilytic effects on fish erythrocytes in critical hypotonic saline media. The interaction of PAHs acute potency divisor concentrations with mudskipper erythrocyte causes dramatic changes in the structure of the membrane. A significant difference (p<0.05) was found between the control and treatment groups of mudskipper erythrocyte exposed to acute potency divisor concentrations. No significant difference (p>0.05) was observed between the control and the treatment groups of mudskipper erythrocyte exposed to field concentrations. The results showed that chronic potency divisor concentrations of PAHs protect mudskipper erythrocyte against osmotic hemolysis. Our results could be extended to the use of Erythrocyte Osmotic Fragility (EOF) test as a biochemical marker of membrane toxicity in marine pollution biomonitoring. However, results showed that membrane stability is not an appropriate biomarker for PAHs pollution after short exposure duration.
Collapse
Affiliation(s)
- Mahmood Sinaei
- Department of Fisheries, Chabahar Branch, Islamic Azad University, Chabahar, Iran.
| |
Collapse
|
26
|
Hessel S, Lampen A, Seidel A. Polycyclic aromatic hydrocarbons in food – Efflux of the conjugated biomarker 1-hydroxypyrene is mediated by Breast Cancer Resistance Protein (ABCG2) in human intestinal Caco-2 cells. Food Chem Toxicol 2013; 62:797-804. [DOI: 10.1016/j.fct.2013.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
|
27
|
Harris KL, Banks LD, Mantey JA, Huderson AC, Ramesh A. Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis. Expert Opin Drug Metab Toxicol 2013; 9:1465-80. [PMID: 23898780 PMCID: PMC4081012 DOI: 10.1517/17425255.2013.823157] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Bioaccessibility is a growing area of research in the field of risk assessment. As polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, they are the toxicants of focus to establish cancer risks in humans. Orally ingested PAHs also cause toxicity and even affect the pharmacokinetic behavior of some therapeutic agents. Toward this end, bioaccessibility is being used as a tool to assess the risk of PAHs via dietary exposures. AREAS COVERED This review covers some in vitro bioaccessibility models for PAHs that have been used for the past one-and-a-half decade. This review also considers the factors that influence bioaccessibility and debates the merits and limitations of using a bioaccessibility concept for estimating risk from ingestion of PAH-contaminated soil and food. Finally, the authors discuss the implications of bioaccessibility for PAH-induced toxicity and cancers in the context of risk assessment. EXPERT OPINION So far, much of the focus on PAH bioaccessibility is centered on soil as a preferential matrix. However, ingestion of PAHs through diet far exceeds the amount accidentally ingested through soil. Therefore, bioaccessibility could be exploited as a tool to assess the relative risk of various dietary ingredients tainted with PAHs. While bioaccessibility is a promising approach for assessing PAH risk arising from various types of contaminated soils, none of the models proposed appears to be valid. Bioaccessibility values, derived from in vitro studies, still require validation from in vivo studies.
Collapse
Affiliation(s)
- Kelly L Harris
- Meharry Medical College, Department of Biochemistry & Cancer Biology , 1005 D.B. Todd Blvd, Nashville, TN, 37208 , USA +1 615 327 6486 ; +1 615 327 6442 ;
| | | | | | | | | |
Collapse
|
28
|
Zhang X, Brar SK, Yan S, Tyagi RD, Surampalli RY. Fate and transport of fragrance materials in principal environmental sinks. CHEMOSPHERE 2013; 93:857-869. [PMID: 23786813 DOI: 10.1016/j.chemosphere.2013.05.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
Fragrance materials are widely present in the environment, such as air, water, and soil. Concerns have been raised due to the increasing utilization and suspected impact on human health. The bioaccumulating property is considered as one of the causes of the toxicity to human beings. The removal of fragrance materials from environmental sinks has not been paid enough attention due to the lack of regulation and research on their toxicity. This paper provides systematic information on how fragrance materials are transferred to the environment, how do they affect human lives, and what is their fate in water, wastewater, wastewater sludge, and soil.
Collapse
Affiliation(s)
- Xiaolei Zhang
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | | | | | | | | |
Collapse
|
29
|
Abstract
Human activities produce polluting compounds such as persistent organic pollutants (POPs), which may interact with agriculture. These molecules have raised concern about the risk of transfer through the food chain via the animal product. POPs are characterised by a strong persistence in the environment, a high volatility and a lipophilicity, which lead to their accumulation in fat tissues. These compounds are listed in international conventions to organise the information about their potential toxicity for humans and the environment. The aim of this paper is to synthesise current information on dairy ruminant exposure to POPs and the risk of their transfer to milk. Three major groups of POPs have been considered: the polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), the polychlorobiphenyls (PCBs) and the polycyclic aromatic hydrocarbons (PAHs). The results show that contamination of fodder and soil by these compounds is observed when they are exposed to emission sources (steelworks, cementworks, waste incinerators or motorways) compared with remote areas. In general, soil contamination is considered higher than plant contamination. Highest concentrations of POPs in soil may be close to 1000 ng/kg dry matter (DM) for PCDD/Fs, to 10 000 mg/kg DM for PAHs and 100 μg/kg DM for PCBs. The contamination of milk by POPs depends on environmental factors, factors related to the rearing system (fodder and potentially contaminated soil, stage of lactation, medical state of the herd) and of the characteristics of the contaminants. Transfer rates to milk have been established: for PCBs the rate of transfer varies from 5% to 90%, for PCDD/Fs from 1% to 40% and for PAHs from 0.5% to 8%. The differential transfer of the compounds towards milk is related to the hydrophobicity of the pollutants as well as to the metabolic susceptibility of the compounds.
Collapse
|
30
|
Carrasco Navarro V, Leppänen MT, Honkanen JO, Kukkonen JVK. Trophic transfer of pyrene metabolites and nonextractable fraction from Oligochaete (Lumbriculus variegatus) to juvenile brown trout (Salmo trutta). CHEMOSPHERE 2012; 88:55-61. [PMID: 22475154 DOI: 10.1016/j.chemosphere.2012.02.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 05/31/2023]
Abstract
The trophic transfer of pyrene metabolites was evaluated by a 2-month exposure of the freshwater annelid Lumbriculus variegatus (Oligochaeta) to pyrene, followed by feeding to juvenile brown trout (Salmo trutta). The results obtained by scintillation counting (SC) proved that the pyrene metabolites produced by L. variegatus were transferred to juvenile S. trutta through diet. More detailed analyses by LC-FLD (liquid chromatography with fluorescence detection) showed that an unknown pyrene metabolite originating from L. variegatus was present in fish liver. This metabolite, although yet not properly identified, may be the glucose conjugate of 1-hydroxy-pyrene. This metabolite was not present in chromatograms of fish that were fed pyrene-spiked food pellets. In addition, the strongly bound tissue residue of L. variegatus, which was nonextractable neither by organic solvents nor by the proteolytic enzyme Proteinase K, was most likely not available for the fish through diet. Altogether, the present study shows that the metabolites of pyrene produced at low levels of the food chain may be potentially available for upper levels through diet, raising a concern about their potential toxicity to predators and supporting their inclusion in the risk assessment of PAHs.
Collapse
Affiliation(s)
- V Carrasco Navarro
- Department of Biology, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland.
| | | | | | | |
Collapse
|
31
|
Karami A, Christianus A, Ishak Z, Syed MA, Courtenay SC. The effects of intramuscular and intraperitoneal injections of benzo[a]pyrene on selected biomarkers in Clarias gariepinus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1558-1566. [PMID: 21636131 DOI: 10.1016/j.ecoenv.2011.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/28/2011] [Accepted: 05/16/2011] [Indexed: 05/30/2023]
Abstract
This study investigated the dose-dependent and time-course effects of intramuscular (i.m.) and intraperitoneal (i.p.) injection of benzo[a]pyrene (BaP) on the biomarkers EROD activity, GST activity, concentrations of BaP metabolites in bile, and visceral fat deposits (Lipid Somatic Index, LSI) in African catfish (Clarias gariepinus). Intraperitoneal injection resulted in 4.5 times higher accumulation of total selected biliary FACs than i.m. injection. Hepatic GST activities were inhibited by BaP via both injection methods. Dose-response relationships between BaP injection and both biliary FAC concentrations and hepatic GST activities were linear in the i.p. injected group but nonlinear in the i.m. injected fish. Hepatic EROD activity and LSI were not significantly affected by BaP exposure by either injection route. We conclude that i.p. is a more effective route of exposure than i.m. for future ecotoxicological studies of PAH exposure in C. gariepinus.
Collapse
Affiliation(s)
- Ali Karami
- Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia, 43400 Selangor, Malaysia.
| | | | | | | | | |
Collapse
|
32
|
Tilston EL, Gibson GR, Collins CD. Colon extended physiologically based extraction test (CE-PBET) increases bioaccessibility of soil-bound PAH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5301-5308. [PMID: 21568264 DOI: 10.1021/es2004705] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Assessment of the risk to human health posed by contaminated land may be seriously overestimated if reliant on total pollutant concentration. In vitro extraction tests, such as the physiologically based extraction test (PBET), imitate the physicochemical conditions of the human gastro-intestinal tract and offer a more practicable alternative for routine testing purposes. However, even though passage through the colon accounts for approximately 80% of the transit time through the human digestive tract and the typical contents of the colon in vivo are a carbohydrate-rich aqueous medium with the potential to promote desorption of organic pollutants, PBET comprises stomach and small intestine compartments only. Through addition of an eight-hour colon compartment to PBET and use of a carbohydrate-rich fed-state medium we demonstrated that colon-extended PBET (CE-PBET) increased assessments of soil-bound PAH bioaccessibility by up to 50% in laboratory soils and a factor of 4 in field soils. We attribute this increased bioaccessibility to a combination of the additional extraction time and the presence of carbohydrates in the colon compartment, both of which favor PAH desorption from soil. We propose that future assessments of the bioaccessibility of organic pollutants in soils using physiologically based extraction tests should have a colon compartment as in CE-PBET.
Collapse
Affiliation(s)
- E L Tilston
- Soil Research Centre, University of Reading, Reading, RG6 6DW, UK
| | | | | |
Collapse
|
33
|
Wang B, Xue M, Lv Y, Yang Y, Zhong J, Su Y, Wang R, Shen G, Wang X, Tao S. Cell absorption induced desorption of hydrophobic organic contaminants from digested soil residue. CHEMOSPHERE 2011; 83:1461-1466. [PMID: 21459407 DOI: 10.1016/j.chemosphere.2011.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
Oral ingestion of contaminated soil is an important pathway of human exposure to hydrophobic organic contaminants (HOCs), particularly for children in developing countries. The mobilization potential of various contaminants from ingested soil is often characterized using an in vitro gastrointestinal model, based on the quantities of contaminants remaining in digestive fluid after digestion and separation. Recently, it was experimentally demonstrated that a large fraction of mobilized contaminants sorbed on the digested residue could be released if the dissolved fraction was removed by intestinal absorption. This hypothesis was further tested in this study. Soil spiked with dichlorodiphenyltrichloroethane and its metabolites (DDXs) and polycyclic aromatic hydrocarbons (PAHs) was digested using an in vitro gastrointestinal model. A human colon carcinoma cell line (Caco-2) was cultured in digestive fluid with or without soil residue (pre-equilibrated with the soil) for 2h. A large proportion of the contaminants (37-68%) was sorbed on the digested residue. Without this residue, 66±13% of DDXs and 73±14% of PAHs dissolved in the fluid, as means and standard deviations, were absorbed by the cell monolayer after exposure. With both digestive fluid and residue, the sorbed fraction of PAHs and DDXs decreased by 38-92%, while the ratios of the cellular to the dissolved concentrations were 2.7-2.8 times higher than those without the residue. This supported the hypothesis that the cell absorption of dissolved HOCs induces desorption of the sorbed fraction from digestive residue, and the desorbed HOCs can be absorbed as well.
Collapse
Affiliation(s)
- Bin Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Niestroy J, Barbara A, Herbst K, Rode S, van Liempt M, Roos PH. Single and concerted effects of benzo[a]pyrene and flavonoids on the AhR and Nrf2-pathway in the human colon carcinoma cell line Caco-2. Toxicol In Vitro 2011; 25:671-83. [PMID: 21256954 DOI: 10.1016/j.tiv.2011.01.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 01/07/2023]
Abstract
As phytochemicals have the potential to counteract adverse effects of carcinogens we investigated the influence of the flavonoids quercetin and kaempferol on benzo[a]pyrene (BaP) mediated effects on human colon cancer cells, Caco-2. We focused on concerted effects on the expression of AhR and Nrf2 pathway components. In contrast to kaempferol, BaP and quercetin efficiently induced CYP1A1, CYP1A2 and CYP1B1-mRNA in Caco-2 cells. BaP not only acted via AhR activation but sustainably also by increasing AhR and by down-regulating AhRR mRNA. The flavonoids did not affect AhR expression but counteracted the BaP mediated AhRR repression. Only quercetin was found to induce AhRR mRNA. ARNT mRNA appeared to be slightly but significantly down-regulated by BaP as well as by flavonoids while expression of AIP was not or only slightly modulated. The Nrf2 pathway was activated by BaP and by the flavonoids shown by induction of Nrf2 and several of its target genes such as NQO1, GSTP1, GSTA1 and GCLC. Induction effects of 10 μm BaP on Nrf2, GSTP1 and NQO1 were abolished by the flavonoids. In summary, we show that quercetin supports AhR mediated effects. Both flavonoids, however, may counteract the effects of BaP on expression of AhR, AhRR, Nrf2, GSTP1 and NQO1. In conclusion, quercetin appears to have two faces, a flavonoid-like one and a PAH-like one which supports Ahr-mediated effects while kaempferol acts "just like a flavonoid". Thus, flavonoids have to be treated individually with respect to their anti-adverse activity.
Collapse
Affiliation(s)
- Jeanette Niestroy
- Leibniz Research Centre for Working Environment and Human Factors, D-44139 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Siciliano SD, Laird BD, Lemieux CL. Polycyclic aromatic hydrocarbons are enriched but bioaccessibility reduced in brownfield soils adhered to human hands. CHEMOSPHERE 2010; 80:1101-1108. [PMID: 20541235 DOI: 10.1016/j.chemosphere.2010.04.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 05/29/2023]
Abstract
The health risk associated with exposure to urban brownfields is often driven by the incidental ingestion of soil by humans. Recent evidence found that humans likely ingest the fraction of soil that passes a 45-microm sieve, which is the particle size adhered to the hands. We evaluated if PAH concentrations were enriched in this soil fraction compared to the bulk soil and if this enrichment lead to an increase in bioaccessibility and thus an increase in incremental lifetime cancer risk for exposed persons. Soils (n=18) with PAH concentrations below the current Canadian soil quality guidelines for human health were collected from an Arctic urban site and were sieved to pass a 45-microm sieve. Soil PAH profiles were measured and bioaccessibility was assessed using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). PAHs were significantly enriched in the <45 microm size fraction (3.7-fold) and this enrichment could be predicted according to the fugacity capacity of soil (Enrichment=2.18-0.055Zsoil, r2=0.65, p<0.001). PAH release in the stomach and small intestine compartments of the SHIME was low (8%) and could not be predicted by PAH concentrations in 45-microm sieved soil. In fact, PAH release in the SHIME was lower from the <45 microm size fraction despite the fact that this fraction had higher levels of PAHs than the bulk soil. We postulate that this occurs because PAHs adsorbed to soil did not reach equilibrium with the small intestinal fluid. In contrast, PAH release in the colonic compartment of the SHIME reached equilibrium and was linked to soil concentration. Bioaccessibility in the SHIME colon could be predicted by the ratio of fugacity capacity of soil to water for a PAH (Bioaccessibility=0.15e(-6.4x10E-7Zsoil/Zwater), r2=0.53, p<0.01). The estimated incremental lifetime cancer risk was significantly greater for the <45 microm soil fraction compared to the bulk fraction; however, when bioaccessible PAH concentrations in a simulated small intestine were used in the risk assessment calculations, cancer risk was slightly lower in the <45 microm soil fraction for these soils. Our results highlight the importance of using a small soil size fraction, e.g. 45 microm, for contaminated site human health risk assessment. However, further work is needed to estimate the bioavailability of this size fraction in an in vivo model and to assess the correlation between in vitro and in vivo gastrointestinal models.
Collapse
Affiliation(s)
- Steven D Siciliano
- Department of Soil Science, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8.
| | | | | |
Collapse
|
36
|
Effects of two oils and 16 pure polycyclic aromatic hydrocarbons on plasmatic immune parameters in the European sea bass, Dicentrarchus labrax (Linné). Toxicol In Vitro 2009; 23:235-41. [DOI: 10.1016/j.tiv.2008.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/30/2008] [Accepted: 12/03/2008] [Indexed: 11/20/2022]
|
37
|
Rey-Salgueiro L, García-Falcón MS, Martínez-Carballo E, González-Barreiro C, Simal-Gándara J. The use of manures for detection and quantification of polycyclic aromatic hydrocarbons and 3-hydroxybenzo[a]pyrene in animal husbandry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 406:279-286. [PMID: 18793795 DOI: 10.1016/j.scitotenv.2008.07.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/28/2008] [Accepted: 07/31/2008] [Indexed: 05/26/2023]
Abstract
PAHs from a polluted atmosphere are generally transferred to plants by particle-phase deposition on the waxy leaf cuticle or by uptake in the gas phase through stomata. Thus, they are also present in ingredients for animal feed. Generally, toxic substances are metabolized before or after absorption through the intestinal tract. This is the case of 3-hydroxybenzo[a]pyrene, which can be found free or in its glucuronide and/or sulphate conjugate forms. This article develops a procedure to monitor the carry-over of PAHs from feed to food of animal origin based on the analysis of animal manure. Eleven PAHs and 3-hydroxybenzo[a]pyrene were measured in four animal manures (cow, horse, rabbit and pig) by liquid chromatography with fluorescence detection. benzo[a]pyrene, benzo[b]fluoranthene and benzo[k]fluoranthene were found in all the selected samples, but their total levels were not alarming (benzo[a]pyrene equivalents (microg/kg)<3.1). 3-hydroxybenzo[a]pyrene was quantified in all the samples exempting rabbit manure. The highest total PAH levels were detected in cow manure (9.0 microg/kg), while the highest 3-OH-B[a]P level was determined in horse samples (13 microg/kg).
Collapse
Affiliation(s)
- Ledicia Rey-Salgueiro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | | | | | | | | |
Collapse
|
38
|
Cheikyula JO, Koyama J, Uno S. Comparative study of bioconcentration and EROD activity induction in the Japanese flounder, red sea bream, and Java medaka exposed to polycyclic aromatic hydrocarbons. ENVIRONMENTAL TOXICOLOGY 2008; 23:354-362. [PMID: 18214891 DOI: 10.1002/tox.20352] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Japanese flounder (Paralichthys olivaceus), red sea bream (Pagrus major), and Java medaka (Oryzias javanicus) were exposed to water borne polycyclic aromatic hydrocarbons (PAHs) for 10 days to compare PAH bioconcentration and P450 enzyme induction by ethoxyresorufin-O-deethylase (EROD) activity for use in oil spill biomonitoring in Asian waters. Target exposure concentration for phenanthrene, pyrene, and chrysene were 30 microg/L each, while benzo[a]pyrene was 3.0 microg/L. Phenanthrene and pyrene were accumulated in the flounder and red sea bream; chrysene was found only in the livers of the red sea bream, while Java medaka accumulated the high molecular weight benzo[a]pyrene along with the other PAHs. Total PAH concentrations increased with duration of exposure in the red sea bream from 184+/-37 ng/g wet weight (w.w.) in day 2 to 572+/-72 ng/g (w.w.) in day 10; It, however, decreased in the other two species. Among the three fish species, Java medaka had the highest initial total PAH concentration of 388+/-62 ng/g (w.w.); this was, however, reduced to the lowest final concentration of 52.3+/-3 ng/g (w.w.). It also had the highest EROD activity of 4.2+/-2.8 n mol/min/mg protein compared to the lowest of 0.11+/-0.03 n mol/min/mg protein in the Japanese flounder. Java medaka with high EROD activity induction and bioaccumulation of all PAHs will be suitable for PAH biomonitoring in Asian waters. Due to its high PAH bioconcentration red sea bream is also recommended for consideration for biomonitoring and PAH chronic toxicity tests.
Collapse
Affiliation(s)
- J Orkuma Cheikyula
- Department of Fisheries and Aquaculture, University of Agriculture, P.M.B. 2373, Makurdi, Nigeria
| | | | | |
Collapse
|
39
|
Srogi K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2007; 5:169-195. [PMID: 29033701 PMCID: PMC5614912 DOI: 10.1007/s10311-007-0095-0] [Citation(s) in RCA: 549] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 01/26/2007] [Indexed: 05/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds with two or more fused aromatic rings. They have a relatively low solubility in water, but are highly lipophilic. Most of the PAHs with low vapour pressure in the air are adsorbed on particles. When dissolved in water or adsorbed on particulate matter, PAHs can undergo photodecomposition when exposed to ultraviolet light from solar radiation. In the atmosphere, PAHs can react with pollutants such as ozone, nitrogen oxides and sulfur dioxide, yielding diones, nitro- and dinitro-PAHs, and sulfonic acids, respectively. PAHs may also be degraded by some microorganisms in the soil. PAHs are widespread environmental contaminants resulting from incomplete combustion of organic materials. The occurrence is largely a result of anthropogenic emissions such as fossil fuel-burning, motor vehicle, waste incinerator, oil refining, coke and asphalt production, and aluminum production, etc. PAHs have received increased attention in recent years in air pollution studies because some of these compounds are highly carcinogenic or mutagenic. Eight PAHs (Car-PAHs) typically considered as possible carcinogens are: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene (B(a)P), dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene. In particular, benzo(a)pyrene has been identified as being highly carcinogenic. The US Environmental Protection Agency (EPA) has promulgated 16 unsubstituted PAHs (EPA-PAH) as priority pollutants. Thus, exposure assessments of PAHs in the developing world are important. The scope of this review will be to give an overview of PAH concentrations in various environmental samples and to discuss the advantages and limitations of applying these parameters in the assessment of environmental risks in ecosystems and human health. As it well known, there is an increasing trend to use the behavior of pollutants (i.e. bioaccumulation) as well as pollution-induced biological and biochemical effects on human organisms to evaluate or predict the impact of chemicals on ecosystems. Emphasis in this review will, therefore, be placed on the use of bioaccumulation and biomarker responses in air, soil, water and food, as monitoring tools for the assessment of the risks and hazards of PAH concentrations for the ecosystem, as well as on its limitations.
Collapse
Affiliation(s)
- K. Srogi
- Institute for Chemical Processing of Coal, Zamkowa 1, 41-803 Zabrze, Poland
| |
Collapse
|
40
|
McMullin TS, Hanneman WH, Cranmer BK, Tessari JD, Andersen ME. Oral absorption and oxidative metabolism of atrazine in rats evaluated by physiological modeling approaches. Toxicology 2007; 240:1-14. [PMID: 17767989 DOI: 10.1016/j.tox.2007.05.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 05/29/2007] [Accepted: 05/31/2007] [Indexed: 11/25/2022]
Abstract
Atrazine (ATRA) is metabolized by cytochrome P450s to the chlorinated metabolites, 2-chloro-4-ethylamino-6-amino-1,3,5-triazine (ETHYL), 2-chloro-4-amino-6-isopropylamino-1, 3, 5-triazine (ISO), and diaminochlorotriazine (DACT). Here, we develop a set of physiologically based pharmacokinetic (PBPK) models that describe the influence of oral absorption and oxidative metabolism on the blood time course curves of individual chlorotriazines (Cl-TRIs) in rat after oral dosing of ATRA. These models first incorporated in vitro metabolic parameters to describe time course plasma concentrations of DACT, ETHYL, and ISO after dosing with each compound. Parameters from each individual model were linked together into a final composite model in order to describe the time course of all 4 Cl-TRIs after ATRA dosing. Oral administration of ISO, ETHYL and ATRA produced double peaks of the compounds in plasma time courses that were described by multiple absorption phases from gut. An adequate description of the uptake and bioavailability of absorbed ATRA also required inclusion of additional oxidative metabolic clearance of ATRA to the mono-dealkylated metabolites occurring in GI a tract compartment. These complex processes regulating tissue dosimetry of atrazine and its chlorinated metabolites likely reflect limited compound solubility in the gut from dosing with an emulsion, and sequential absorption and metabolism along the GI tract at these high oral doses.
Collapse
Affiliation(s)
- Tami S McMullin
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
41
|
Vasiluk L, Pinto LJ, Tsang WS, Gobas FAPC, Eickhoff C, Moore MM. The uptake and metabolism of benzo[a]pyrene from a sample food substrate in an in vitro model of digestion. Food Chem Toxicol 2007; 46:610-8. [PMID: 17959292 DOI: 10.1016/j.fct.2007.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 08/23/2007] [Accepted: 09/04/2007] [Indexed: 11/28/2022]
Abstract
Food ingestion is the major route of exposure to many hydrophobic organic contaminants (HOCs) such as benzo[a]pyrene (BaP). It has been proposed that food-bound HOCs may become bioavailable after their mobilization by gastrointestinal fluids. The purpose of this research was to measure the uptake efficiency of [(14)C]-BaP bound to skim milk powder using an in vitro model of gastrointestinal digestion followed by sorption to human enterocytes (Caco-2 cells). Neutralization of intestinal fluids released [(14)C]-BaP into the soluble fraction. Ageing of benzo[a]pyrene onto skim milk for 6 months significantly decreased the mobilized fraction but did not affect the amount of benzo[a]pyrene taken up into Caco-2 cells. Hence, significant differences in aqueous phase concentrations may not always be reflected in significant differences in uptake. We obtained evidence that the digestion/uptake of skim milk lipids is accompanied by the diffusive uptake of BaP (the fat flush hypothesis) as trans-cellular transfer of BaP was favoured in the apical to basolateral direction. These data support the theory that non-polar substances including HOCs are preferentially transferred from the lumen into the bloodstream and provide indirect evidence that the uptake is related to the fugacity gradient created by the unidirectional uptake of dietary lipids.
Collapse
Affiliation(s)
- Luba Vasiluk
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | | | | | | | | | |
Collapse
|
42
|
Lapole D, Rychen G, Grova N, Monteau F, Le Bizec B, Feidt C. Milk and Urine Excretion of Polycyclic Aromatic Hydrocarbons and Their Hydroxylated Metabolites After a Single Oral Administration in Ruminants. J Dairy Sci 2007; 90:2624-9. [PMID: 17517702 DOI: 10.3168/jds.2006-806] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to establish the transfer of phenanthrene, pyrene, and benzo[a]pyrene and their major hydroxylated metabolites to milk and to urine after a single oral administration (100 mg per animal of each compound) in 4 lactating goats. Detection and identification of the analytes (native compounds, 1-OH pyrene, 3-OH phenanthrene, 3-OH benzo[a]pyrene) were achieved using gas chromatography-mass spectrometry. Benzo[a]pyrene, phenanthrene, and pyrene were rapidly detected in the plasma stream, whereas 1-OH pyrene and 3-OH phenanthrene appeared later in plasma. These data suggest that pyrene and phenanthrene are progressively metabolized within the organism. Recovery rates of pyrene and phenanthrene in milk over a 24-h period appeared to be very low (0.014 and 0.006%, respectively), whereas the transfer rates of their corresponding metabolites were significantly higher: 0.44% for 1-OH pyrene and 0.073% for 3-OH phenanthrene. Recovery rates in urine were found to be higher (1 to 10 times) than recovery rates in milk. The 1-OH pyrene was found to be the main metabolite in urine as well as in milk. Thus, as has been established for humans, 1-OH pyrene could be considered as a marker of ruminant exposure to polycyclic aromatic hydrocarbons. Because 1-OH pyrene and 3-OH phenanthrene were measured in milk (unlike their corresponding native molecules), metabolites of polycyclic aromatic hydrocarbons should be taken into consideration when evaluating the safety of milk. Benzo[a]pyrene and 3-OH benzo[a]pyrene were (less than 0.005%) transferred to milk and urine in very slight amounts. This very limited transfer rate of both compounds suggests a low risk of exposure by humans to benzo[a]pyrene or its major metabolite from milk or milk products.
Collapse
Affiliation(s)
- D Lapole
- UR AFPA, INPL-UHP-INRA, 2 avenue de la forêt de Haye, BP 172, 54505 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
43
|
Palmqvist A, Rasmussen LJ, Forbes VE. Influence of biotransformation on trophic transfer of the PAH, fluoranthene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 80:309-19. [PMID: 17084915 DOI: 10.1016/j.aquatox.2006.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 09/27/2006] [Accepted: 09/30/2006] [Indexed: 05/12/2023]
Abstract
The persistence of polycyclic aromatic hydrocarbons (PAHs) in marine sediments may be influenced by benthic invertebrate bioturbation. Through processes such as deposit-feeding and enhancement of microbial metabolic activity PAHs may be remobilized from the sediment compartment, and either transferred to organisms at higher trophic levels or to the overlying water column, both processes inevitably changing the bioavailability of the PAH. Accumulation of contaminants from one level in the food chain to the next depends on feeding rate and assimilation efficiency, two factors that basically vary with food quality and contaminant type. Though it is generally believed that pre-consumptive biotransformation will reduce bioavailability due to the more polar nature of the metabolites compared to the unchanged parent compound, theoretically the decrease in lipophilicity will increase the sediment/food desorption rate in the intestine, and some metabolites will still be lipophilic enough to be absorbed by passive diffusion. We examined the trophic transfer of the PAH, fluoranthene from two closely related polychaete species (i.e., Capitella sp. I and Capitella sp. S), differing in their biotransformation ability, to the predatory polychaete, Nereis virens. We found that N. virens fed the biotransforming species, Capitella sp. I, accumulated significantly more Flu equivalents compared to worms fed Capitella sp. S, which have a very limited biotransformation ability. The dose-specific increase in N. virens intestinal Flu concentration was approximately twice as high in worms fed Capitella sp. I (equation: gut content=7.3 x dose-3.9) compared to worms fed Capitella sp. S (equation: gut content=3.2 x dose+0.6). In addition, we measured DNA damage, using the comet assay, in N. virens intestinal cells after feeding with the two prey species. We did not detect DNA damage above 'background' levels for worms fed either of the two Capitella species, possibly due to relatively low intestinal Flu concentrations in N. virens. Our results indicate that accumulation of PAHs by infaunal organisms may play an important role in the transfer of this type of contaminant to higher trophic levels. Moreover, we observed differences in transfer potential between parent compounds and their respective metabolites, which may influence the fate of these compounds in marine ecosystems. However, from the present study it cannot be concluded whether differences in biotransformation ability among prey species can lead to different effects in their predators.
Collapse
Affiliation(s)
- Annemette Palmqvist
- Department of Environmental, Social and Spatial Change, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| | | | | |
Collapse
|
44
|
An SJ, Chen JK, Chen HJ, Chang W, Jiang YG, Wei QY, Chen XM. Characterization of 67 kD Laminin Receptor, a Protein Whose Gene Is Overexpressed on Treatment of Cells with Anti-Benzo[a]pyrene-7,8-Diol-9,10-Epoxide. Toxicol Sci 2006; 90:326-30. [PMID: 16431845 DOI: 10.1093/toxsci/kfj109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular mechanisms potentially related to tumorigenesis induced by anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) were investigated by suppression subtractive hybridization of the human bronchial epithelial cells (16HBE) carcinoma induced by BPDE-transformed 16HBE cells (16HBE-C). The 67 kD laminin receptor gene (67LR1) is one of the screened overexpressed genes in 16HBE-C cells when compared with 16HBE. In order to understand the main functions of 67LR1 gene, we amplified the full length of 67LR1 gene using reverse transcription-polymerase chain reaction (RT-PCR) method. The amplified gene products were inserted into pcDNA 3.1 Directional TOPO expression vector. We then transfected 16HBE cells with this vector and derived stable transfected 16HBE cell lines containing the 67LR1 gene by using lipofectin and G418 selection protocols. The expression products of transfected genes were analyzed by semiquantitative RT-PCR. Soft agar growth assay was carried out to identify the malignant features of 67LR1 gene. The stable transfected cell lines can form colonies in soft agar. Further, the transfected cells showed morphological changes compared to the control cells, such as the obvious pseudopods. These data suggest that the 67LR1 gene may be related to malignant transformation induced by the anti-BPDE. The 67LR1 protein may be related to the directionality of cell movement.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity
- Animals
- Base Sequence
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell
- Cell Line, Tumor
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Epithelial Cells
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Mice, Nude
- Molecular Sequence Data
- RNA/metabolism
- Receptors, Laminin/biosynthesis
- Receptors, Laminin/genetics
- Receptors, Laminin/metabolism
- Sequence Analysis, RNA
- Transfection
Collapse
Affiliation(s)
- She-Juan An
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei 430030, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Lutz S, Feidt C, Monteau F, Rychen G, Le Bizec B, Jurjanz S. Effect of exposure to soil-bound polycyclic aromatic hydrocarbons on milk contaminations of parent compounds and their monohydroxylated metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:263-8. [PMID: 16390209 DOI: 10.1021/jf0522210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aim of this study was to determine the transfer kinetics of soil-bound polycyclic aromatic hydrocarbons to milk in lactating cows. Soil (500 g/day) fortified with fluorene (104 microg/g dry soil), phenanthrene (82 microg/g), pyrene (78 microg/g), and benzo[a]pyrene (33 microg/g) was administered to three dairy cows via a rumen cannulas for 28 consecutive days. Parent compounds and their major metabolites in milk were measured using gas chromatography-mass spectrometry. Secretion of parent compounds in milk did not increase significantly (P > 0.05) over the control values measured before supply. Target monohydroxylated metabolites were not detected in control samples, but 2-hydroxy fluorene, 3-hydroxy phenanthrene, and 1-hydroxy pyrene were present in milk by the second day of dosing. The highest concentrations of metabolites in milk (31-39 ng/mL) were for 1-hydroxy pyrene at days 7 and 14 of dosing. The observed plateaus for 3-hydroxy phenanthrene and 2-hydroxy fluorene were lower (respectively, 0.69 and 2.79 ng/mL) but significantly increased in comparison to the control samples. Contrarily, 3-hydroxy benzo[a]pyrene was not detected in milk at any sampling time. These results suggested a notable metabolism of the parent compounds after their extraction from soil during the digestive transfer. Thus, the metabolization of fluorene and pyrene can lead to higher concentrations of metabolites than of parent compounds in milk. Despite the absence of a significant transfer of parent PAHs to milk, the appearance of metabolites raises the questions of their impact on human health.
Collapse
Affiliation(s)
- Sophie Lutz
- Laboratoire Sciences Animales, INPL-INRA, BP 172, 2 Avenue de la Forêt-de-Haye, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|