1
|
Liu B, Zhao X, He H, Zhou L, Fan Y, Chai X, Xu X, Gong X, An S, Ling X, Chu X. Exposure to urinary polycyclic aromatic hydrocarbon metabolites for the effect of lung function among children and adolescents: Epidemiological study and mechanism exploration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117990. [PMID: 40023998 DOI: 10.1016/j.ecoenv.2025.117990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Human are widely exposed to polycyclic aromatic hydrocarbon (PAHs), but existing evidence about exposure to urinary PAHs metabolites for pulmonary health in children and adolescents is limited. Our aim was to examine the effect of single and mixed exposure of urinary PAHs metabolites on lung function among children and adolescents. We included 1417 individuals aged 6-19 years from 3 survey cycles (2007-2008, 2009-2010, 2011-2012) of NHANES program. Multivariable linear regression model was conducted to examine the relationship between urinary PAHs metabolites and lung function index including FEV1, FVC and FEV1/FVC. BKMR and WQS model were used to evaluate the joint effects of PAHs metabolites for lung function index. Mediation analyses were performed to investigate the mediating role of inflammation related index. Hub proteins were screened by network toxicology and validated using molecular docking. Our results indicated that 3-FLU was negatively linked with FEV1 and FEV1/FVC; 1-OHP was negatively linked with FEV1; 1-PYR was negatively linked with FEV1 and FVC. In addition, 3-OHP was positively corrected with three lung function parameters. In BKMR and WQS models, PAHs metabolites co-exposure was all negatively corrected with FEV1 and FVC. Systemic inflammation response index mediated the relationship between I-PYR and FEV1 as well as FVC, with the 8 % and 6 % proportion. IL-6, STAT3, TNF, and TP53 were screened and validated as the common targets related with PAHs, inflammation and lung function by molecular docking analysis. Taken together, our findings raise the concerns about the potential hazards of environmentally relevant PAHs metabolites exposure for respiratory system in the vulnerable population and guide future research into the toxic mechanisms of PAHs metabolites-mediated lung function injury, which has important public health implications.
Collapse
Affiliation(s)
- Bin Liu
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xue Zhao
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Hongqi He
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Linwei Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yuhan Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xu Chai
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xin Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xinjie Gong
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Shuli An
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xiaodong Ling
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xia Chu
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Usemann J, Mozun R, Kuehni CE, de Hoogh K, Flueckiger B, Singer F, Zwahlen M, Moeller A, Latzin P. Air pollution exposure during pregnancy and lung function in childhood: The LUIS study. Pediatr Pulmonol 2024; 59:3178-3189. [PMID: 38980223 PMCID: PMC11601026 DOI: 10.1002/ppul.27169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The adverse effects of high air pollution levels on childhood lung function are well-known. Limited evidence exists on the effects of moderate exposure levels during early life on childhood lung function. We investigated the association of exposure to moderate air pollution during pregnancy, infancy, and preschool time with lung function at school age in a Swiss population-based study. METHODS Fine-scale spatiotemporal model estimates of particulate matter with a diameter <2.5 µm (PM2.5) and nitrogen dioxide (NO2) were linked with residential address histories. We compared air pollution exposures within different time windows (whole pregnancy, first, second, and third trimester of pregnancy, first year of life, preschool age) with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) measured cross-sectionally using linear regression models adjusted for potential confounders. RESULTS We included 2182 children, ages 6-17 years. Prenatal air pollution exposure was associated with reduced lung function at school age. In children aged 12 years, per 10 µg·m-3 increase in PM2.5 during pregnancy, FEV1 was 55 mL lower (95% CI -84 to -25 mL) and FVC 62 mL lower (95% CI -96 to -28 mL). Associations were age-dependent since they were stronger in younger and weaker in older children. PM2.5 exposure after birth was not associated with reduced lung function. There was no association between NO2 exposure and lung function. CONCLUSION In utero lung development is most sensitive to air pollution exposure, since even modest PM2.5 exposure during the prenatal time was associated with reduced lung function, most prominent in younger children.
Collapse
Affiliation(s)
- Jakob Usemann
- Department of Respiratory MedicineUniversity Children's Hospital ZurichZurichSwitzerland
- University Children's Hospital Basel (UKBB)BaselSwitzerland
- Paediatric Respiratory MedicineChildren's University Hospital of Bern, University of BernBernSwitzerland
| | - Rebeca Mozun
- Institute of Social and Preventive MedicineUniversity of BernBernSwitzerland
- Department of Intensive Care and NeonatologyChildren's Research Centre, University Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Claudia E. Kuehni
- Paediatric Respiratory MedicineChildren's University Hospital of Bern, University of BernBernSwitzerland
- Institute of Social and Preventive MedicineUniversity of BernBernSwitzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Benjamin Flueckiger
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Florian Singer
- Department of Respiratory MedicineUniversity Children's Hospital ZurichZurichSwitzerland
- Paediatric Respiratory MedicineChildren's University Hospital of Bern, University of BernBernSwitzerland
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and AllergologyMedical University of GrazGrazAustria
| | - Marcel Zwahlen
- Institute of Social and Preventive MedicineUniversity of BernBernSwitzerland
| | - Alexander Moeller
- Department of Respiratory MedicineUniversity Children's Hospital ZurichZurichSwitzerland
| | - Philipp Latzin
- Paediatric Respiratory MedicineChildren's University Hospital of Bern, University of BernBernSwitzerland
| | | |
Collapse
|
3
|
Sherris AR, Hazlehurst MF, Dearborn LC, Loftus CT, Szpiro AA, Adgent MA, Carroll KN, Day DB, LeWinn KZ, Ni Y, Sathyanarayana S, Wright RJ, Zhao Q, Karr CJ, Moore PE. Prenatal exposure to ambient fine particulate matter and child lung function in the CANDLE cohort. Ann Med 2024; 56:2422051. [PMID: 39492664 PMCID: PMC11536642 DOI: 10.1080/07853890.2024.2422051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 08/09/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Ambient fine particulate matter (PM2.5) exposure adversely impacts child airway health; however, research on prenatal PM2.5 exposure, and child lung function is limited. We investigated these associations in the ECHO-PATHWAYS Consortium, focusing on the role of exposure timing during different phases of fetal lung development. METHODS We included 675 children in the CANDLE cohort born between 2007 and 2011 in Memphis, TN, USA. Prenatal exposure to ambient PM2.5 was estimated using a spatiotemporal model based on maternal residential history and averaged over established prenatal periods of lung development. Forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) were measured by spirometry at age 8-9 years. We used linear regression and Bayesian Distributed Lag Interaction Models (BDLIM) to estimate associations between exposure and lung function z-scores, adjusting for maternal/child characteristics, prenatal/postnatal tobacco exposure, and birth year/season, and evaluating effect modification by child sex and allergic sensitization. RESULTS The average ambient concentration of PM2.5 during pregnancy was 11.1 µg/m3 (standard deviation:1.0 µg/m3). In the adjusted linear regression and BDLIM models, adverse, but not statistically significant, associations were observed between exposure during the pseudoglandular (5-16 weeks of gestation) and saccular (24-36 weeks) phases of lung development and FEV1 and FVC. The strongest association was between a 2 μg/m3 higher concentration of PM2.5 during the saccular phase and FEV1 z-score (-0.176, 95% Confidence Interval [CI]: -0.361, 0.010). The FEV1/FVC ratio was not associated with PM2.5 in any exposure window. No effect modification by child sex or allergic sensitization was observed. CONCLUSIONS We did not find strong evidence of associations between prenatal ambient PM2.5 exposure and child lung function in a large, well-characterized study sample. However, there was a suggested adverse association between FEV1 and exposure during late pregnancy. The saccular phase of lung development might be an important window for exposure to PM2.5.
Collapse
Affiliation(s)
- Allison R. Sherris
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Marnie F. Hazlehurst
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Logan C. Dearborn
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine T. Loftus
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Adam A. Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Margaret A. Adgent
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kecia N. Carroll
- Department of Pediatrics, Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew B. Day
- Department of Child Health, Behavior, and Development, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Kaja Z. LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Yu Ni
- School of Public Health, College of Health and Human Services, San Diego State University, San Diego, CA, USA
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
- Department of Child Health, Behavior, and Development, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Climate Science, Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qi Zhao
- The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Paul E. Moore
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Wu L, Lu X, Zhang S, Zhong Y, Gao H, Tao FB, Wu X. Co-exposure effects of urinary polycyclic aromatic hydrocarbons and metals on lung function: mediating role of systematic inflammation. BMC Pulm Med 2024; 24:386. [PMID: 39128985 PMCID: PMC11316979 DOI: 10.1186/s12890-024-03173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) and metals were associated with decreased lung function, but co-exposure effects and underlying mechanism remained unknown. METHODS Among 1,123 adults from National Health and Nutrition Examination Survey 2011-2012, 10 urinary PAHs, 11 urinary metals, and peripheral white blood cell (WBC) count were determined, and 5 lung function indices were measured. Least absolute shrinkage and selection operator, Bayesian kernel machine regression, and quantile-based g-computation were used to estimate co-exposure effects on lung function. Mediation analysis was used to explore mediating role of WBC. RESULTS These models demonstrated that PAHs and metals were significantly associated with lung function impairment. Bayesian kernel machine regression models showed that comparing to all chemicals fixed at median level, forced expiratory volume in 1 s (FEV1)/forced vital capacity, peak expiratory flow, and forced expiratory flow between 25 and 75% decreased by 1.31% (95% CI: 0.72%, 1.91%), 231.62 (43.45, 419.78) mL/s, and 131.64 (37.54, 225.74) mL/s respectively, when all chemicals were at 75th percentile. In the quantile-based g-computation, each quartile increase in mixture was associated with 104.35 (95% CI: 40.67, 168.02) mL, 1.16% (2.11%, 22.40%), 294.90 (78.37, 511.43) mL/s, 168.44 (41.66, 295.22) mL/s decrease in the FEV1, FEV1/forced vital capacity, peak expiratory flow, and forced expiratory flow between 25% and 75%, respectively. 2-Hydroxyphenanthrene, 3-Hydroxyfluorene, and cadmium were leading contributors to the above associations. WBC mediated 8.22%-23.90% of association between PAHs and lung function. CONCLUSIONS Co-exposure of PAHs and metals impairs lung function, and WBC could partially mediate this relationship. Our findings elucidate co-exposure effects of environmental mixtures on respiratory health and underlying mechanisms, suggesting that focusing on highly prioritized toxicants would effectively attenuate adverse effects.
Collapse
Affiliation(s)
- Lihong Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xue Lu
- Department of Toxicology, Anhui Medical University, Anhui, China
| | - Siying Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yumei Zhong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiulong Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
5
|
Xu Z, Lei X, Chen C. Antioxidant diet/lifestyle could mitigate the adverse impacts of urinary polycyclic aromatic hydrocarbons on lung function. ENVIRONMENTAL RESEARCH 2024; 246:118099. [PMID: 38184067 DOI: 10.1016/j.envres.2024.118099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Extant research has demonstrated a correlation between exposure to polycyclic aromatic hydrocarbons (PAHs) and impaired lung function. The maintenance of an antioxidant-rich diet/lifestyle positively benefits pulmonary health. However, the potential ameliorative impact of an antioxidant-based diet/lifestyle on PAH-induced detrimental effects remains unclear. METHODS The study drew upon cross-sectional data encompassing 1615 participants derived from the National Health and Nutrition Examination Survey 2007 to 2012. To gauge the maintenance of an antioxidant-rich diet/lifestyle, we employed Oxidative Balance Score (OBS) that incorporates sixteen nutrients and four lifestyle factors. Lung function was evaluated using percent-predicted Forced Vital Capacity (FVC), Forced Expiratory Volume 1st Second (FEV1), FEV1/FVC, and fractional exhaled nitric oxide (FENO). Our analytical approach entailed the utilization of weighted linear models. RESULTS Our analysis unveiled interaction effects between urinary monohydroxy polycyclic aromatic hydrocarbons (OH-PAHs) and OBS concerning lung function. A one-unit increase in ∑OH-PAH (sum of eight OH-PAHs) was linked to a -0.75% reduction (95% CI: -1.28, -0.22) in FEV1/FVC. Individuals exhibiting low OBS displayed a marked decrease in FEV1/FVC (mean difference = -1.10%; 95% CI: -1.82, -0.39) for each unit increase in ∑OH-PAH, whereas no significant associations were discerned for those with medium or high OBS. Further stratification by gender yielded consistent results. The correlation between ∑OH-PAH and FENO proved statistically significant among participants with low OBS (P = 0.002) and medium OBS (P = 0.001), but non-significant for those with high OBS. Parallel findings emerged when examining percent-predicted FEV1 and FVC. CONCLUSIONS In conclusion, our study underscores the existence of statistically significant interactions between OH-PAHs and the maintenance of an antioxidant-rich diet and lifestyle concerning lung function. These findings underscore the pivotal role of maintaining an antioxidant-based diet and lifestyle in mitigating the adverse impacts of PAH exposure on lung function.
Collapse
Affiliation(s)
- Zhixiao Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiong Lei
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, China; Zhejiang Province Engineering Research Center for Endoscope Instruments and Technology Development, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.
| |
Collapse
|
6
|
Sherris AR, Loftus CT, Szpiro AA, Dearborn LC, Hazlehurst MF, Carroll KN, Moore PE, Adgent MA, Barrett ES, Bush NR, Day DB, Kannan K, LeWinn KZ, Nguyen RHN, Ni Y, Riederer AM, Robinson M, Sathyanarayana S, Zhao Q, Karr CJ. Prenatal polycyclic aromatic hydrocarbon exposure and asthma at age 8-9 years in a multi-site longitudinal study. Environ Health 2024; 23:26. [PMID: 38454435 PMCID: PMC10921622 DOI: 10.1186/s12940-024-01066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND AIM Studies suggest prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) may influence wheezing or asthma in preschool-aged children. However, the impact of prenatal PAH exposure on asthma and wheeze in middle childhood remain unclear. We investigated these associations in socio-demographically diverse participants from the ECHO PATHWAYS multi-cohort consortium. METHODS We included 1,081 birth parent-child dyads across five U.S. cities. Maternal urinary mono-hydroxylated PAH metabolite concentrations (OH-PAH) were measured during mid-pregnancy. Asthma at age 8-9 years and wheezing trajectory across childhood were characterized by caregiver reported asthma diagnosis and asthma/wheeze symptoms. We used logistic and multinomial regression to estimate odds ratios of asthma and childhood wheezing trajectories associated with five individual OH-PAHs, adjusting for urine specific gravity, various maternal and child characteristics, study site, prenatal and postnatal smoke exposure, and birth year and season in single metabolite and mutually adjusted models. We used multiplicative interaction terms to evaluate effect modification by child sex and explored OH-PAH mixture effects through Weighted Quantile Sum regression. RESULTS The prevalence of asthma in the study population was 10%. We found limited evidence of adverse associations between pregnancy OH-PAH concentrations and asthma or wheezing trajectories. We observed adverse associations between 1/9-hydroxyphenanthrene and asthma and persistent wheeze among girls, and evidence of inverse associations with asthma for 1-hydroxynathpthalene, which was stronger among boys, though tests for effect modification by child sex were not statistically significant. CONCLUSIONS In a large, multi-site cohort, we did not find strong evidence of an association between prenatal exposure to PAHs and child asthma at age 8-9 years, though some adverse associations were observed among girls.
Collapse
Affiliation(s)
- Allison R Sherris
- Department of Environmental and Occupational Health Sciences, University of Washington4225, Roosevelt Way NE, Suite 300, Seattle, WA, 98105, US.
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, University of Washington4225, Roosevelt Way NE, Suite 300, Seattle, WA, 98105, US
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, US
| | - Logan C Dearborn
- Department of Environmental and Occupational Health Sciences, University of Washington4225, Roosevelt Way NE, Suite 300, Seattle, WA, 98105, US
| | - Marnie F Hazlehurst
- Department of Environmental and Occupational Health Sciences, University of Washington4225, Roosevelt Way NE, Suite 300, Seattle, WA, 98105, US
| | | | - Paul E Moore
- Vanderbilt University Medical Center, Nashville, TN, US
| | | | - Emily S Barrett
- Rutgers University School of Public Health, Piscataway, NJ, US
| | | | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA, US
| | | | | | | | - Yu Ni
- San Diego State University, San Diego, CA, US
| | - Anne M Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington4225, Roosevelt Way NE, Suite 300, Seattle, WA, 98105, US
| | | | | | - Qi Zhao
- University of Tennessee Health Science Center, Memphis, TN, US
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, University of Washington4225, Roosevelt Way NE, Suite 300, Seattle, WA, 98105, US
| |
Collapse
|
7
|
Dai Y, Xu X, Huo X, Faas MM. Effects of polycyclic aromatic hydrocarbons (PAHs) on pregnancy, placenta, and placental trophoblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115314. [PMID: 37536008 DOI: 10.1016/j.ecoenv.2023.115314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants that are carcinogenic, mutagenic, endocrine-toxic, and immunotoxic. PAHs can be found in maternal and fetal blood and in the placenta during pregnancy. They may thus affect placental and fetal development. Therefore, the exposure levels and toxic effects of PAHs in the placenta deserve further study and discussion. This review aims to summarize current knowledge on the effects of PAHs and their metabolites on pregnancy and birth outcomes and on placental trophoblast cells. A growing number of epidemiological studies detected PAH-DNA adducts as well as the 16 high-priority PAHs in the human placenta and showed that placental PAH exposure is associated with adverse fetal outcomes. Trophoblasts are important cells in the placenta and are involved in placental development and function. In vitro studies have shown that exposure to either PAH mixtures, benzo(a)pyrene (BaP) or BaP metabolite benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) affected trophoblast cell viability, differentiation, migration, and invasion through various signaling pathways. Furthermore, similar effects of BPDE on trophoblast cells could also be observed in BaP-treated mouse models and were related to miscarriage. Although the current data show that PAHs may affect placental trophoblast cells and pregnancy outcomes, further studies (population studies, in vitro studies, and animal studies) are necessary to show the specific effects of different PAHs on placental trophoblasts and pregnancy outcomes.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
8
|
Sherris AR, Loftus CT, Szpiro AA, Dearborn L, Hazlehurst MF, Carroll KN, Moore PE, Adgent MA, Barrett ES, Bush NR, Day DB, Kannan K, LeWinn KZ, Nguyen RHN, Ni Y, Riederer AM, Robinson M, Sathyanarayana S, Zhao Q, Karr CJ. Prenatal polycyclic aromatic hydrocarbon exposure and asthma at age 8-9 years in a multi-site longitudinal study. RESEARCH SQUARE 2023:rs.3.rs-3129552. [PMID: 37503063 PMCID: PMC10371133 DOI: 10.21203/rs.3.rs-3129552/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background and aim Studies suggest prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) may influence wheezing or asthma in preschool-aged children. However, the impact of prenatal PAH exposure on asthma and wheeze in middle childhood remain unclear. We investigated these associations in diverse participants from the ECHO PATHWAYS multi-cohort consortium. Methods We included 1,081 birth parent-child dyads across five U.S. cities. Maternal urinary mono-hydroxylated PAH metabolite concentrations (OH-PAH) were measured during mid-pregnancy. Asthma at age 8-9 years and wheezing trajectory across childhood were characterized by caregiver reported asthma diagnosis and asthma/wheeze symptoms. We used logistic and multinomial regression to estimate odds ratios of asthma and childhood wheezing trajectories associated with five individual OH-PAHs, adjusting for urine specific gravity, various maternal and child characteristics, study site, prenatal and postnatal smoke exposure, and birth year and season in single metabolite and mutually adjusted models. We used multiplicative interaction terms to evaluate effect modification by child sex and explored OH-PAH mixture effects through Weighted Quantile Sum regression. Results The prevalence of asthma in the study population was 10%. We found limited evidence of adverse associations between pregnancy OH-PAH concentrations and asthma or wheezing trajectories. We observed adverse associations between 1/9-hydroxyphenanthrene and asthma and persistent wheeze among girls, and evidence of inverse associations with asthma for 1-hydroxynathpthalene, which was stronger among boys, though tests for effect modification by child sex were not statistically. Conclusions In a large, multi-site cohort, we did not find strong evidence of an association between prenatal exposure to PAHs and child asthma at age 8-9 years, though some adverse associations were observed among girls.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qi Zhao
- University of Tennessee Health Science Center
| | | |
Collapse
|
9
|
Yadav A, Pacheco SE. Prebirth effects of climate change on children's respiratory health. Curr Opin Pediatr 2023; 35:344-349. [PMID: 36974440 DOI: 10.1097/mop.0000000000001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
PURPOSE OF REVIEW To date, there is no evidence that humanity will implement appropriate mitigation measures to avoid the catastrophic impact of climate change on the planet and human health. Vulnerable populations such as pregnant women and children will be the most affected. This review highlights epidemiologic data on climate change-related prenatal environmental exposures affecting the fetus and children's respiratory health. RECENT FINDINGS Research on outcomes of prenatal exposure to climate change-related environmental changes and pediatric pulmonary health is limited. In addition to adverse pregnancy outcomes known to affect lung development, changes in lung function, increased prevalence of wheezing, atopy, and respiratory infections have been associated with prenatal exposure to increased temperatures, air pollution, and maternal stress. The mechanisms behind these changes are ill-defined, although oxidative stress, impaired placental functioning, and epigenetic modifications have been observed. However, the long-term impact of these changes remains unknown. SUMMARY The detrimental impact of the climate crisis on pediatric respiratory health begins before birth, highlighting the inherent vulnerability of pregnant women and children. Research and advocacy, along with mitigation and adaptation measures, must be implemented to protect pregnant women and children, the most affected but the least responsible for the climate crisis.
Collapse
Affiliation(s)
- Aravind Yadav
- Division of Pulmonary Medicine, Department of Pediatrics, The University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| | | |
Collapse
|
10
|
Hemstock EJ, Foong RE, Hall GL, Wheeler AJ, Dharmage SC, Dalton M, Williamson GJ, Gao C, Abramson MJ, Johnston FH, Zosky GR. No association between in utero exposure to emissions from a coalmine fire and post-natal lung function. BMC Pulm Med 2023; 23:120. [PMID: 37059986 PMCID: PMC10103534 DOI: 10.1186/s12890-023-02414-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Studies linking early life exposure to air pollution and subsequent impaired lung health have focused on chronic, low-level exposures in urban settings. We aimed to determine whether in utero exposure to an acute, high-intensity air pollution episode impaired lung function 7-years later. METHOD We conducted a prospective cohort study of children who lived in the vicinity of a coalmine fire. Respiratory function was measured using the forced oscillation technique (FOT). Z-scores for resistance at 5 Hz (R5), reactance at 5 Hz (X5) and area under the reactance curve (AX) were calculated. Two sets of analyses were conducted to address two separate questions: (1) whether mine fire exposure (a binary indicator; conceived after the mine fire vs in utero exposed) was associated with the respiratory Z-scores; (2) whether there was any dose-response relationship between fire-related PM2.5 exposure and respiratory outcomes among those exposed. RESULTS Acceptable lung function measurements were obtained from 79 children; 25 unexposed and 54 exposed in utero. Median (interquartile range) for daily average and peak PM2.5 for the exposed children were 4.2 (2.6 - 14.2) and 88 (52-225) µg/m3 respectively. There were no detectable differences in Z-scores between unexposed and exposed children. There were no associations between respiratory Z-scores and in utero exposure to PM2.5 (daily average or peak). CONCLUSION There was no detectable effect of in utero exposure to PM2.5 from a local coalmine fire on post-natal lung function 7-years later. However, statistical power was limited.
Collapse
Affiliation(s)
- Emily J Hemstock
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Centre for Air Pollution, Energy and Health Research, NHMRC CRE, Glebe, NSW, Australia
| | - Rachel E Foong
- Children's Lung Health, Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Allied Health, Curtin University, Bentley, WA, Australia
| | - Graham L Hall
- Children's Lung Health, Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Allied Health, Curtin University, Bentley, WA, Australia
| | - Amanda J Wheeler
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Commonwealth Scientific and Industrial Research Organization, Aspendale, VIC, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Marita Dalton
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Grant J Williamson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Caroline Gao
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Orygen Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Graeme R Zosky
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
11
|
Nazar W, Niedoszytko M. Changes in Air-Pollution-Related Information-Seeking Behaviour during the COVID-19 Pandemic in Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095613. [PMID: 35565002 PMCID: PMC9103979 DOI: 10.3390/ijerph19095613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
Abstract
Low air quality in Poland is a problem of particularly high urgency. Therefore, Poles must be aware of air quality levels, also during the COVID-19 pandemic. The study aimed to compare air-pollution-related information-seeking behaviour between the pre- and intra-pandemic periods as well as between the actual and theoretical machine-learning-forecasted intra-pandemic models. Google Trends search volumes (GTSVs) in Poland for air-pollution-related keywords were collected between January 2016 and January 2022. To investigate the changes that would have occurred without the outbreak of the pandemic, Seasonal Autoregressive Integrated Moving Average (SARIMA) machine-learning models were trained. Approximately 4,500,000 search queries were analysed. Between pre- and intra-pandemic periods, weighted mean GTSVs changed by −39.0%. When the actual intra-pandemic weighted mean GTSVs were compared to the intra-pandemic forecasts, the actual values were lower by −16.5% (SARIMA’s error = 6.2%). Compared to the pre-pandemic period, in the intra-pandemic period, the number of search queries containing keywords connected with air pollution decreased. Moreover, the COVID-19 pandemic might have facilitated the decrease. Possible causes include an attention shift towards everyday problems connected to the pandemic, worse mental health status and lower outdoor exposure that might have resulted in a lower intensity of non-pandemic-related active information-seeking behaviour.
Collapse
Affiliation(s)
- Wojciech Nazar
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdansk, Poland
- Correspondence: ; Tel.: +48-530-087-968
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdansk, Poland;
| |
Collapse
|
12
|
Nazar W, Niedoszytko M. Air Pollution in Poland: A 2022 Narrative Review with Focus on Respiratory Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020895. [PMID: 35055718 PMCID: PMC8775633 DOI: 10.3390/ijerph19020895] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/23/2023]
Abstract
According to the World Bank Group, 36 of the 50 most polluted cities in the European Union are in Poland. Thus, ambient air pollution and its detrimental health effects are a matter of immense importance in Poland. This narrative review aims to analyse current findings on air pollution and health in Poland, with a focus on respiratory diseases, including COVID-19, as well as the Poles’ awareness of air pollution. PubMed, Scopus and Google Scholar databases were searched. In total, results from 71 research papers were summarized qualitatively. In Poland, increased air pollution levels are linked to increased general and respiratory disease mortality rates, higher prevalence of respiratory diseases, including asthma, lung cancer and COVID-19 infections, reduced forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). The proximity of high traffic areas exacerbates respiratory health problems. People living in more polluted regions (south of Poland) and in the winter season have a higher level of air pollution awareness. There is an urgent need to reduce air pollution levels and increase public awareness of this threat. A larger number of multi-city studies are needed in Poland to consistently track the burden of diseases attributable to air pollution.
Collapse
Affiliation(s)
- Wojciech Nazar
- Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
- Correspondence: ; Tel.: +48-530-087-968
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| |
Collapse
|
13
|
Abstract
Rationale Epidemiological evidence indicates that ambient exposure to particulate matter ⩽2.5 μm in aerodynamic diameter (PM2.5) has adverse effects on lung function growth in children, but it is not actually clear whether exposure to low-level PM2.5 results in long-term decrements in lung function growth in pre- to early-adolescent schoolchildren. Objectives To examine long-term effects of PM2.5 within the 4-year average concentration range of 10–19 μg/m3 on lung function growth with repeated measurements of lung function tests. Methods Longitudinal analysis of 6,233 lung function measurements in 1,466 participants aged 8–12 years from 16 school communities in 10 cities around Japan, covering a broad area of the country to represent concentration ranges of PM2.5, was done with a multilevel linear regression model. Forced expiratory volume in 1 second, forced vital capacity (FVC), and maximal expiratory flow at 50% of FVC were used as lung function indicators to examine the effects of 10-μg/m3 increases in the PM2.5 concentration on relative growth per each 10-cm increase in height. Results The overall annual mean PM2.5 level was 13.5 μg/m3 (range, 10.4–19.0 μg/m3). We found no association between any of the lung function growth indicators and increases in PM2.5 levels in children of either sex, even after controlling for potential confounders. Analysis with two-pollutant models with O3 or NO2 did not change the null results. Conclusions This nationwide longitudinal study suggests that concurrent, long-term exposure to PM2.5 at concentrations ranging from 10.4 to 19.0 μg/m3 has little effect on lung function growth in preadolescent boys or pre- to early-adolescent girls.
Collapse
|
14
|
Alhamdow A, Zettergren A, Kull I, Hallberg J, Andersson N, Ekström S, Berglund M, Wheelock CE, Essig YJ, Krais AM, Georgelis A, Lindh CH, Melén E, Bergström A. Low-level exposure to polycyclic aromatic hydrocarbons is associated with reduced lung function among Swedish young adults. ENVIRONMENTAL RESEARCH 2021; 197:111169. [PMID: 33857464 DOI: 10.1016/j.envres.2021.111169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to adverse pulmonary effects. However, the impact of low-level environmental PAH exposure on lung function in early adulthood remains uncertain. OBJECTIVES To evaluate the associations between urinary PAH metabolites and lung function parameters in young adults. METHODS Urinary metabolites of pyrene, phenanthrene, and fluorene were analysed in 1000 young adults from Sweden (age 22-25 years) using LC-MS/MS. Lung function and eosinophilic airway inflammation were measured by spirometry and exhaled nitric oxide fraction (FeNO), respectively. Linear regression analysis was used to evaluate associations between PAH metabolites and the outcomes. RESULTS Median urinary concentrations of 1-OH-pyrene, ∑OH-phenanthrene, and ∑OH-fluorene were 0.066, 0.36, 0.22 μg/L, respectively. We found inverse associations of ∑OH-phenanthrene and ∑OH-fluorene with FEV1 and FVC, as well as between 1-OH-pyrene and FEV1/FVC ratio (adjusted P < 0.05; all participants). An increase of 1% in ∑OH-fluorene was associated with a decrease of 73 mL in FEV1 and 59 mL in FVC. In addition, ∑OH-phenanthrene concentrations were, in a dose-response manner, inversely associated with FEV1 (B from -109 to -48 compared with the lowest quartile of ∑OH-phenanthrene; p trend 0.004) and FVC (B from -159 to -102 compared with lowest quartile; p-trend <0.001). Similar dose-response associations were also observed between ∑OH-fluorene and FEV1 and FVC, as well as between 1-OH-pyrene and FEV1/FVC (p-trend <0.05). There was no association between PAH exposure and FeNO, nor was there an interaction with smoking, sex, or asthma. CONCLUSION Low-level PAH exposure was, in a dose-response manner, associated with reduced lung function in young adults. Our findings have public health implications due to i) the widespread occurrence of PAHs in the environment and ii) the clinical relevance of lung function in predicting all-cause and cardiovascular disease mortality.
Collapse
Affiliation(s)
- Ayman Alhamdow
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden
| | - Anna Zettergren
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden
| | - Inger Kull
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden; Sachs' Children's and Youth Hospital, Södersjukhuset, SE, 11883, Stockholm, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, SE, 11883, Stockholm, Sweden
| | - Jenny Hallberg
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden; Sachs' Children's and Youth Hospital, Södersjukhuset, SE, 11883, Stockholm, Sweden
| | - Niklas Andersson
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden
| | - Sandra Ekström
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, SE, 11365, Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, SE, 17165, Stockholm, Sweden
| | - Yona J Essig
- Division of Occupational and Environmental Medicine, Lund University, SE, 22363, Lund, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Lund University, SE, 22363, Lund, Sweden
| | - Antonios Georgelis
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, SE, 11365, Stockholm, Sweden
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Lund University, SE, 22363, Lund, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden; Sachs' Children's and Youth Hospital, Södersjukhuset, SE, 11883, Stockholm, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, SE, 11883, Stockholm, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, SE, 11365, Stockholm, Sweden.
| |
Collapse
|
15
|
Mukherjee N, Arathimos R, Chen S, Kheirkhah Rahimabad P, Han L, Zhang H, Holloway JW, Relton C, Henderson AJ, Arshad SH, Ewart S, Karmaus W. DNA methylation at birth is associated with lung function development until age 26 years. Eur Respir J 2021; 57:2003505. [PMID: 33214203 DOI: 10.1183/13993003.03505-2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
Little is known about whether DNA methylation (DNAm) of cytosine-phosphate-guanine (CpG) sites at birth predicts patterns of lung function development. We used heel prick DNAm from the F1-generation of Isle of Wight birth cohort (IOWBC-F1) for discovery of CpGs associated with lung function trajectories (forced expiratory volume in 1 s, forced vital capacity, their ratio, and forced expiratory flow at 25-75% of forced vital capacity) over the first 26 years, stratified by sex. We replicated the findings in the Avon Longitudinal Study of Parents and Children (ALSPAC) using cord blood DNAm.Epigenome-wide screening was applied to identify CpGs associated with lung function trajectories in 396 boys and 390 girls of IOWBC-F1. Replication in ALSPAC focussed on lung function at ages 8, 15 and 24 years. Statistically significantly replicated CpGs were investigated for consistency in direction of association between cohorts, stability of DNAm over time in IOWBC-F1, relevant biological processes and for association with gene expression (n=161) in IOWBC F2-generation (IOWBC-F2).Differential DNAm of eight CpGs on genes GLUL, MYCN, HLX, LHX1, COBL, COL18A1, STRA6, and WNT11 involved in developmental processes, were significantly associated with lung function in the same direction in IOWBC-F1 and ALSPAC, and showed stable patterns at birth, aged 10 and 18 years between high and low lung function trajectories in IOWBC-F1. CpGs on LHX1 and COL18A1 were linked to gene expression in IOWBC-F2.In two large cohorts, novel DNAm at birth were associated with patterns of lung function in adolescence and early adulthood providing possible targets for preventative interventions against adverse pulmonary function development.
Collapse
Affiliation(s)
- Nandini Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Ryan Arathimos
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Social Genetic & Developmental Psychiatry Centre, Kings College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, UK
| | - Su Chen
- Dept of Mathematical Sciences, The University of Memphis, Memphis, TN, USA
| | - Parnian Kheirkhah Rahimabad
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Luhang Han
- Dept of Mathematical Sciences, The University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - John W Holloway
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - A John Henderson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| |
Collapse
|
16
|
Li S, Cao S, Duan X, Zhang Y, Gong J, Xu X, Guo Q, Meng X, Bertrand M, Zhang JJ. Long-term exposure to PM2.5 and Children's lung function: a dose-based association analysis. J Thorac Dis 2020; 12:6379-6395. [PMID: 33209476 PMCID: PMC7656332 DOI: 10.21037/jtd-19-crh-aq-007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background The current literature is still not consist regarding the effect of long-term exposure to PM2.5 and children’s lung function, partly due to inadequate or inaccurate exposure assessment. In this study, we aim to investigate the associations between long-term exposure to PM2.5, estimated as average daily dose (ADD), and lung function in school-age children. Methods We recruited 684 participants of 7–12 years old from the city of Lanzhou located in northwestern China. Participants underwent spirometric tests for lung function and responded to a questionnaire survey. Detailed information about individual air exposure and personal information were collected, including length of school hours, home address, age, gender, etc. Combining the spatial distribution of PM2.5 concentrations in the past 5 years and individual time-activity data, we estimated annual ADD for 5 years preceding the lung function tests and 5-year average ADD, respectively. We used multiple linear regression models to examine the associations between ADD values and lung function, controlling for a range of individual-level covariates. Results The 5-year average ADD among all the participants was 50.5 µg/kg-d, with higher values estimated for children living in the urban area than the suburban area, for boys than girls, and for children whose parents received a lower education attainment. We found that a 1 μg/kg-d increment in ADD of PM2.5 was associated with a 10.49 mL (95% CI: −20.47, −0.50) decrease in forced vital capacity (FVC) and a 7.68 mL (95% CI: −15.80, −0.44) decrease in forced exploratory volume in 1 second (FEV1). Among the annual ADDs estimated for the preceding 5 years, the immediate past year prior to lung function measurement had the greatest effect on lung function. The effect was greater in girls than in boys. We found no associations between annual exposure of PM2.5 (instead of ADD) and lung function when defined concentration was used as an exposure variable. Conclusions Long-term PM2.5 exposure, when estimated as exposure dose averaged over a year or longer, was associated with statistically significant reductions in FVC and FEV1 in children of elementary-school age. Future studies may consider the use of individual-level dose estimates (as opposed to exposure concentrations) to improve the dose-response assessment.
Collapse
Affiliation(s)
- Sai Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Suzhen Cao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yaqun Zhang
- Gansu Provincial Design and Research Institute of Environmental Science, Lanzhou, China
| | - Jicheng Gong
- Beijing Innovation Center for Engineering Science and Advanced Technology, State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, China
| | - Xiangyu Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Qian Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xin Meng
- Beijing Innovation Center for Engineering Science and Advanced Technology, State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, China
| | - Mcswain Bertrand
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Junfeng Jim Zhang
- Beijing Innovation Center for Engineering Science and Advanced Technology, State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, China.,Duke Kunshan University, Kunshan, China.,Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, USA.,Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Cao L, Zhou Y, Tan A, Shi T, Zhu C, Xiao L, Zhang Z, Yang S, Mu G, Wang X, Wang D, Ma J, Chen W. Oxidative damage mediates the association between polycyclic aromatic hydrocarbon exposure and lung function. Environ Health 2020; 19:75. [PMID: 32616062 PMCID: PMC7331238 DOI: 10.1186/s12940-020-00621-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 06/08/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) is related to decreased lung function. However, whether oxidative damage is involved in this relationship remains unclear. This study was aimed to explore the potential mediating role of oxidative DNA or lipid damage in the association between PAH exposure and lung function. METHODS The urinary levels of monohydroxy polycyclic aromatic hydrocarbon metabolites (OH-PAHs) and lung function parameters were measured among 3367 participants from the baseline of the Wuhan-Zhuhai cohort. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostane (8-iso-PGF2α) were determined to evaluate the individuals' oxidative DNA and lipid damage degrees, respectively. Linear mixed models were used to investigate the associations of urinary OH-PAHs, 8-OHdG and 8-iso-PGF2α with lung function parameters. Mediation analysis was further conducted to assess the potential role of oxidative damage in the association between urinary OH-PAHs and lung function. RESULTS Each one-percentage increase in the sum of urinary OH-PAHs, high-molecular-weight or low-molecular-weight OH-PAHs (ƩOH-PAHs, ƩHMW OH-PAH or ƩLMW OH-PAHs, respectively) was associated with a 0.2152-, 0.2076- or 0.1985- ml decrease in FEV1, and a 0.1891-, 0.2195- or 0.1634- ml decrease in FVC, respectively. Additionally, significantly positive dose-response relationships of ƩOH-PAHs, ƩHMW OH-PAH and ƩLMW OH-PAHs with urinary 8-OHdG or 8-iso-PGF2α, as well as an inverse dose-response relationship between urinary 8-OHdG and FVC, were observed (all P for trend < 0.05). Mediation analysis indicated that urinary 8-OHdG mediated 14.22% of the association between ƩHMW OH-PAH and FVC. CONCLUSION Higher levels of oxidative DNA damage might be involved in the decreased levels of FVC caused by high-molecular-weight PAH exposure.
Collapse
Affiliation(s)
- Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Aijun Tan
- Zhuhai Center for Disease Control and Prevention, Zhuhai, 519000, Guangdong, China
| | - Tingming Shi
- Hubei Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China
| | - Chunmei Zhu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhuang Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
18
|
Reduction in mouse allergen exposure is associated with greater lung function growth. J Allergy Clin Immunol 2019; 145:646-653.e1. [PMID: 31866099 DOI: 10.1016/j.jaci.2019.08.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Current childhood asthma therapies have little effect on lung function trajectory. OBJECTIVE We sought to determine whether mouse allergen exposure reduction is associated with lung function growth in mouse-sensitized/exposed asthmatic children. METHODS Three hundred fifty mouse-sensitized/exposed asthmatic children (5-17 years old) were enrolled in a 1-year randomized trial of integrated pest management plus education versus education alone. Prebronchodilator/postbronchodilator spirometry was performed at baseline and 6 and 12 months, and bedroom floor mouse allergen levels were measured every 3 months. Mouse allergen reduction was defined as a 75% or greater decrease in mouse allergen levels from baseline. Treatment groups were combined for analyses because there were no differences in outcomes between groups. Changes in lung function over time were modeled, adjusting for age, sex, race, atopy, group, and bronchodilator reversibility and including an interaction term (allergen reduction*time). RESULTS The study population was predominantly black (79.4%) and low income (66.3% [<$30,000]). At baseline, the median mouse allergen level was 5.7 μg/g (interquartile range, 1.5-22.8 μg/g), and the mean (SD) prebronchodilator FEV1/forced vital capacity ratio was 80.2% (9.0%). Ninety-two (26.3%) participants had 75% or greater reduction in mouse allergen levels. For a 10-year-old black boy, 75% or greater allergen reduction was associated with an increase in prebronchodilator FEV1 of 238 mL/y (95% CI, 177-299 mL/y), whereas less than 75% allergen reduction was associated with an increase in prebronchodilator FEV1 of 131 mL/y (95% CI, 97-166 mL/y). Estimated differences in prebronchodilator and postbronchodilator FEV1 growth were as follows: 107 mL/y (95% CI, 37-177 mL/y; Pint = .003) and 48 mL/y (95% CI, -17 to 113 mL/y; Pint = .15), respectively. Estimated differences in prebronchodilator and postbronchodilator forced expiratory flow at 25% to 75% of vital capacity growth were as follows: 182 mL/y (95% CI, 61-304 mL/y; Pint = .003) and 181 mL/y (95% CI, 48-314 mL/y; Pint = .008), respectively. CONCLUSION Mouse allergen reduction is associated with greater increases in prebronchodilator FEV1 and prebronchodilator/postbronchodilator forced expiratory flow at 25% to 75% of vital capacity over 1 year among sensitized/exposed asthmatic children.
Collapse
|
19
|
Rhee J, Han E, Nam KJ, Lim KH, Chan Rah Y, Park S, Koun S, Park HC, Choi J. Assessment of hair cell damage and developmental toxicity after fine particulate matter 2.5 μm (PM 2.5) exposure using zebrafish (Danio rerio) models. Int J Pediatr Otorhinolaryngol 2019; 126:109611. [PMID: 31374386 DOI: 10.1016/j.ijporl.2019.109611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Particulate matter (PM) exposure has become one of the most serious problems. The aim of the present study was to evaluate the hair cell damage and possible developmental toxicity caused by PM2.5 exposure using a zebrafish model. METHODS Zebrafish embryos were exposed to various concentrations of PM2.5. Developmental toxicity was evaluated based on general morphology score (GMS) system and Panzica-Kelly score, and by measurement of body length and heart rate. To evaluate hair cell damage, the average number of total hair cells within four neuromasts exposed to various concentrations of PM2.5 was compared with that of the control group. RESULTS Morphological abnormalities evaluated by the GMS system and Panzica-Kelly score were rare and body length tended to be shorter in the PM2.5-exposed groups. Heart rate decreased significantly in the PM2.5-exposed group. Additionally, significant hair cell damage was observed after PM2.5 exposure. It was dose-dependent and more severe after a longer period exposure (10 dpf). CONCLUSIONS In zebrafish embryos, exposure of PM2.5 in the early stages of life decreased heart rate and caused significant hair cell damage in a dose-dependent manner.
Collapse
Affiliation(s)
- Jihye Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Veterans Health Service Medical Center, Seoul, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Eunjung Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea; Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Kuk Jin Nam
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Kang Hyeon Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea
| | - Soonil Koun
- Biomedical Research Center, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Hae-Chul Park
- Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, Republic of Korea.
| |
Collapse
|