1
|
Abdalrhman AS, Lee S, Ihm S, Alwaznani ESB, Fellows CM, Li S. Process Simulation of High-Pressure Nanofiltration (HPNF) for Membrane Brine Concentration (MBC): A Pilot-Scale Case Study. MEMBRANES 2025; 15:113. [PMID: 40277983 PMCID: PMC12029138 DOI: 10.3390/membranes15040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/08/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
The growing demand for sustainable water management solutions has prompted the development of membrane brine concentration (MBC) technologies, particularly in the context of desalination and minimum liquid discharge (MLD) applications. This study presents a simple model of high-pressure nanofiltration (HPNF) for MBC. The model integrates reverse osmosis (RO) transport equations with mass balance equations, thereby enabling acceptable predictions of water flux and total dissolved solids (TDS) concentration. Considering the limitations of the pilot plant data, the model showed reasonable accuracy in predicting flux and TDS, with R2 values above 0.99. The simulation results demonstrated that an increase in feed flow rate improves flux but raises specific energy consumption (SEC) and reduces recovery. In contrast, an increase in feed pressure results in an increased recovery and brine concentration. Increasing feed TDS decreases flux, recovery, and final brine TDS and increases SEC. Response surface methodology (RSM) was employed to optimize process performance across multiple criteria, optimizing flux, SEC, recovery, and final brine concentration. The optimal feed flow rate and pressure vary depending on the criteria in the improvement scenarios, underscoring the importance of systematic process improvement.
Collapse
Affiliation(s)
- Abdallatif Satti Abdalrhman
- Water Technologies Innovation Institute and Research Advancement (WTIIRA), Saudi Water Authority (SWA), Al-Jubail 31951, Saudi Arabia; (S.I.); (E.S.B.A.); (C.M.F.); (S.L.)
| | - Sangho Lee
- Water Technologies Innovation Institute and Research Advancement (WTIIRA), Saudi Water Authority (SWA), Al-Jubail 31951, Saudi Arabia; (S.I.); (E.S.B.A.); (C.M.F.); (S.L.)
- School of Civil and Environmental Engineering, Kookimin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Seungwon Ihm
- Water Technologies Innovation Institute and Research Advancement (WTIIRA), Saudi Water Authority (SWA), Al-Jubail 31951, Saudi Arabia; (S.I.); (E.S.B.A.); (C.M.F.); (S.L.)
| | - Eslam S. B. Alwaznani
- Water Technologies Innovation Institute and Research Advancement (WTIIRA), Saudi Water Authority (SWA), Al-Jubail 31951, Saudi Arabia; (S.I.); (E.S.B.A.); (C.M.F.); (S.L.)
| | - Christopher M. Fellows
- Water Technologies Innovation Institute and Research Advancement (WTIIRA), Saudi Water Authority (SWA), Al-Jubail 31951, Saudi Arabia; (S.I.); (E.S.B.A.); (C.M.F.); (S.L.)
- School of Science and Technology, University of New England, Armidale 2351, Australia
| | - Sheng Li
- Water Technologies Innovation Institute and Research Advancement (WTIIRA), Saudi Water Authority (SWA), Al-Jubail 31951, Saudi Arabia; (S.I.); (E.S.B.A.); (C.M.F.); (S.L.)
| |
Collapse
|
2
|
Alegbeleye O, Sant'Ana AS. Microbiological quality of irrigation water for cultivation of fruits and vegetables: An overview of available guidelines, water testing strategies and some factors that influence compliance. ENVIRONMENTAL RESEARCH 2023; 220:114771. [PMID: 36586712 DOI: 10.1016/j.envres.2022.114771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Contaminated irrigation water is among many potential vehicles of human pathogens to food plants, constituting significant public health risks especially for the fresh produce category. This review discusses some available guidelines or regulations for microbiological safety of irrigation water, and provides a summary of some common methods used for characterizing microbial contamination. The goal of such exploration is to understand some of the considerations that influence formulation of water testing guidelines, describe priority microbial parameters particularly with respect to food safety risks, and attempt to determine what methods are most suitable for their screening. Furthermore, the review discusses factors that influence the potential for microbiologically polluted irrigation water to pose substantial risks of pathogenic contamination to produce items. Some of these factors include type of water source exploited, irrigation methods, other agro ecosystem features/practices, as well as pathogen traits such as die-off rates. Additionally, the review examines factors such as food safety knowledge, other farmer attitudes or inclinations, level of social exposure and financial circumstances that influence adherence to water testing guidelines and other safe water application practices. A thorough understanding of relevant risk metrics for the application and management of irrigation water is necessary for the development of water testing criteria. To determine sampling and analytical approach for water testing, factors such as agricultural practices (which differ among farms and regionally), as well as environmental factors that modulate how water quality may affect the microbiological safety of produce should be considered. Research and technological advancements that can improve testing approach and the determination of target levels for hazard characterization or description for the many different pollution contexts as well as farmer adherence to testing requirements, are desirable.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Fu H, Niu J, Wu Z, Cheng B, Guo X, Zuo J. Exploration of public stereotypes of supply-and-demand characteristics of recycled water infrastructure - Evidence from an event-related potential experiment in Xi'an, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116103. [PMID: 36067663 DOI: 10.1016/j.jenvman.2022.116103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
There is a growing consensus that recycled water, as an alternative and renewable water source, can serve as a vital water supply to alleviate water scarcity problem and in support of water resilience. Accordingly, recycled water infrastructure investment has seen a significant growth in recent years in many regions of the world. However, previous studies found the perceptions of public, the main end user, toward using recycled water for potable or non-potable purposes remain negatively stereotyped. The negative stereotypes led to public rejections to the construction and operation of recycled water infrastructure. Traditionally, public perceptions of recycled water uses are captured through self-reporting interview or survey techniques. To gain a more accurate measurement of the implicit public stereotypes toward recycled water uses, this study employed an event-related potential (ERPs) technique to collect neurophysiological responses with participants and presented a few research findings. Firstly, the negative stereotypes of recycled water still exist. Secondly, the degree of human contact impacts the negative stereotypes of participants toward recycled water uses more significantly on the supply side (referring to the whole supply chain of recycled water) rather than on the demand side (referring to the potential consumers of recycled water) Third, knowledge level significantly impacts the negative stereotypes of participants toward recycled water uses that have close human contact, at both supply and demand sides, and shows a more significant impact on the supply side. The findings of study contributed to the literature through creatively dividing the negative stereotypes of recycled water into the "supply-side" and the "demand-side" ones, and meanwhile have managerial implication for policymaking and scheme implementation in the area.
Collapse
Affiliation(s)
- Hanliang Fu
- Xi'an University of Architecture and Technology, School of Management, Xi'an, 710055, China; Xi'an University of Architecture and Technology, Xi'an, Laboratory of Neuromanagement in Engineering, 710055, China
| | - Jiachen Niu
- Xi'an University of Architecture and Technology, School of Management, Xi'an, 710055, China; Xi'an University of Architecture and Technology, Xi'an, Laboratory of Neuromanagement in Engineering, 710055, China
| | - Zhifang Wu
- University of South Australia, Business, Adelaide, SA, 5001, Australia
| | - Baoquan Cheng
- Central South University, School of Civil Engineering, Changsha, Hunan, 410083, China
| | - Xiaotong Guo
- Xi'an University of Architecture and Technology, School of Management, Xi'an, 710055, China; Xi'an University of Architecture and Technology, Xi'an, Laboratory of Neuromanagement in Engineering, 710055, China
| | - Jian Zuo
- University of Adelaide, School Architecture & Built Environment, Adelaide, SA, 5001, Australia.
| |
Collapse
|
4
|
Rao AP, Patel J, Pradhan AK. Application of alternative sources of water in agricultural food production — current trends and future prospects. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Welch SA, Lane T, Desrousseaux AO, van Dijk J, Mangold-Döring A, Gajraj R, Hader JD, Hermann M, Parvathi Ayillyath Kutteyeri A, Mentzel S, Nagesh P, Polazzo F, Roth SK, Boxall AB, Chefetz B, Dekker SC, Eitzinger J, Grung M, MacLeod M, Moe SJ, Rico A, Sobek A, van Wezel AP, van den Brink P. ECORISK2050: An Innovative Training Network for predicting the effects of global change on the emission, fate, effects, and risks of chemicals in aquatic ecosystems. OPEN RESEARCH EUROPE 2022; 1:154. [PMID: 37645192 PMCID: PMC10446038 DOI: 10.12688/openreseurope.14283.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 08/31/2023]
Abstract
By 2050, the global population is predicted to reach nine billion, with almost three quarters living in cities. The road to 2050 will be marked by changes in land use, climate, and the management of water and food across the world. These global changes (GCs) will likely affect the emissions, transport, and fate of chemicals, and thus the exposure of the natural environment to chemicals. ECORISK2050 is a Marie Skłodowska-Curie Innovative Training Network that brings together an interdisciplinary consortium of academic, industry and governmental partners to deliver a new generation of scientists, with the skills required to study and manage the effects of GCs on chemical risks to the aquatic environment. The research and training goals are to: (1) assess how inputs and behaviour of chemicals from agriculture and urban environments are affected by different environmental conditions, and how different GC scenarios will drive changes in chemical risks to human and ecosystem health; (2) identify short-to-medium term adaptation and mitigation strategies, to abate unacceptable increases to risks, and (3) develop tools for use by industry and policymakers for the assessment and management of the impacts of GC-related drivers on chemical risks. This project will deliver the next generation of scientists, consultants, and industry and governmental decision-makers who have the knowledge and skillsets required to address the changing pressures associated with chemicals emitted by agricultural and urban activities, on aquatic systems on the path to 2050 and beyond.
Collapse
Affiliation(s)
| | - Taylor Lane
- Environment Department, University of York, Heslington, York, UK
| | | | - Joanke van Dijk
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Annika Mangold-Döring
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, 6700 AA, The Netherlands
| | - Rudrani Gajraj
- Institute of Meteorology and Climatology, Department of Water, Atmosphere and Environment (WAU), University of Natural Resources and Life sciences (BOKU), Vienna, Austria
| | - John D. Hader
- Department of Environmental Science, Stockholm University, Stockholm, 106 91, Sweden
| | - Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, 6700 AA, The Netherlands
| | | | - Sophie Mentzel
- Norwegian Institute for Water Research, Oslo, 0579, Norway
| | - Poornima Nagesh
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| | - Sabrina K. Roth
- Department of Environmental Science, Stockholm University, Stockholm, 106 91, Sweden
| | | | - Benny Chefetz
- Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Stefan C. Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Josef Eitzinger
- Institute of Meteorology and Climatology, Department of Water, Atmosphere and Environment (WAU), University of Natural Resources and Life sciences (BOKU), Vienna, Austria
| | - Merete Grung
- Norwegian Institute for Water Research, Oslo, 0579, Norway
| | - Matthew MacLeod
- Department of Environmental Science, Stockholm University, Stockholm, 106 91, Sweden
| | | | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| | - Anna Sobek
- Department of Environmental Science, Stockholm University, Stockholm, 106 91, Sweden
| | - Annemarie P. van Wezel
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Paul van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, 6700 AA, The Netherlands
| |
Collapse
|
6
|
Zhang X, Chen M, Li J. Transmission Channels and Impacts of Energy Use on Health Outcomes in Asia. Front Public Health 2022; 9:811872. [PMID: 35096754 PMCID: PMC8790086 DOI: 10.3389/fpubh.2021.811872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Today, the developing economies continue to tackle the penalties of the energy use and its influence on their environmental and socio-economic prosperity, and the developed economies are concentrating on promoting programs and policies to improve and sustain the endowment of adequate energy consumption that pledges less carbon emissions and threats to human health. Currently, millions of people face a dearth of access to reliable, affordable, and clean energy to fulfill their daily requirements. Thus, the mounting need for energy use portends hazardous consequences on human health. This paper investigates the transmission channels and impact of energy consumption on health outcomes in Asia by adopting a panel of selected Asian economies for the period from 1991 and 2019. The findings of the study show that energy causes a rise in infant mortality rate and a reduction in life expectancy. Furthermore, the study found that a high degree of pollution emissions causes a rise in infant mortality and a decline in life expectancy.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Business School, Shandong Normal University, Jinan, China
| | - Minjuan Chen
- School of Economics, Guangxi University for Nationalities, Nanning, China
| | - Jinbao Li
- Business School, Shandong Normal University, Jinan, China
| |
Collapse
|
7
|
Changes in the Amount of Rainwater in the Roztocze National Park (Poland) in 2001–2020 and the Possibility of Using Rainwater in the Context of Ongoing Climate Variability. WATER 2022. [DOI: 10.3390/w14091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Data for the years 2001–2020 on changes in the amount of rainwater in the Roztocze National Park (RNP) in the catchment area of the Świerszcz River (Poland) were investigated to evaluate the possibility of using rainwater in the park for various purposes in the context of ongoing climate variability. An analysis of data from the RNP’s Integrated Monitoring of the Natural Environment showed that the average annual air temperature increased by 2.1 °C over the 20-year period, while the amount of precipitation decreased, especially in the winter seasons. These changes periodically led to a negative hydrological balance. As an effect, the groundwater table was gradually lowering, the flow of the Świerszcz River was reduced, and there were periodic shortages of water feeding the Echo Ponds. Water shortages also negatively affected the flora and fauna of the RNP. In order to quantitatively protect the Park’s water resources, a proposition was made to build a rainwater management system at the Animal Breeding Centre in Florianka to provide water for watering Polish Konik horses, flushing toilets, washing cars and agricultural equipment, and fire-prevention purposes. The excess water would be discharged to a nearby pond, which is an amphibian breeding site. It was estimated that the system was capable of meeting 100% of the demand for lower-quality water in the summer period. Moreover, it was determined that 9109 m3 of rainwater could be obtained annually from the roofs of all public utility buildings located in the RNP.
Collapse
|
8
|
Bourouache M, Mimouni R, Ait Alla A, Hamadi F, El Boulani A, Bihadassen B, Laktib A, Moustaoui F, Aghrouch M. Occurrence and removal of intestinal parasites in two wastewater treatment plants in the south of Morocco. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1425-1434. [PMID: 34900277 PMCID: PMC8617139 DOI: 10.1007/s40201-021-00697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/21/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Agadir city plans to reuse treated wastewater on a large scale to irrigate these green spaces. This study aims to evaluate the risk of intestinal parasites, to which human and animal populations are exposed during the reuse of treated wastewaters. METHODS Over 21 months, wastewater samples were collected in Bensergao and Mzar wastewater treatment plants, in Agadir city, southern Morocco. The occurrences and removal of intestinal parasites were inspected using the modified Bailenger method. RESULTS The biodiversity of helminths is higher than protozoa, while the protozoa cysts are more abundant and more prevalent. Generally, the highest parasitic loads were recorded during the hot season. For raw waters, the average concentration of protozoa cysts was 173.33 ± 70.81 cysts per L for Bensergao plant and 179.33 ± 129.22 cysts per L for Mzar plant. However, the helminths average concentration was 48.70 ± 39.91 eggs/larvae per L for Bensergao plant and 51.10 ± 31.76 eggs/larvae per L for Mzar plant. The purified water of the Mzar plant does not contain parasites, unlike the Bensergao plant where a small numbers of parasites were detected, included 2.33 ± 1.53 cysts per L for protozoa and 0.45 ± 0.58 eggs/larvae per L for helminths. CONCLUSIONS Considering parasitological risks, the purified waters of Bensergao plant cannot be used without risks to the public health and environment. In contrast, the purified waters and the purified waters disinfected by ultraviolet radiation from the Mzar plant can be used safely to water the green spaces of Agadir city.
Collapse
Affiliation(s)
- M. Bourouache
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - R. Mimouni
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - A. Ait Alla
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - F. Hamadi
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - A. El Boulani
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - B. Bihadassen
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - A. Laktib
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - F. Moustaoui
- Medical Analysis Laboratory, Hassan II Regional Hospital, Agadir, 80000 Morocco
| | - M. Aghrouch
- Medical Analysis Laboratory, Hassan II Regional Hospital, Agadir, 80000 Morocco
| |
Collapse
|
9
|
Levels of Salmonella enterica and Listeria monocytogenes in Alternative Irrigation Water Vary Based on Water Source on the Eastern Shore of Maryland. Microbiol Spectr 2021; 9:e0066921. [PMID: 34612697 PMCID: PMC8510256 DOI: 10.1128/spectrum.00669-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Irrigation water sources have been shown to harbor foodborne pathogens and could contribute to the outbreak of foodborne illness related to consumption of contaminated produce. Determining the probability of and the degree to which these irrigation water sources contain these pathogens is paramount. The purpose of this study was to determine the prevalence of Salmonella enterica and Listeria monocytogenes in alternative irrigation water sources. Water samples (n = 188) were collected over 2 years (2016 to 2018) from 2 reclaimed water plants, 3 nontidal freshwater rivers, and 1 tidal brackish river on Maryland's Eastern Shore (ESM). Samples were collected by filtration using modified Moore swabs (MMS) and analyzed by culture methods. Pathogen levels were quantified using a modified most probable number (MPN) procedure with three different volumes (10 liters, 1 liter, and 0.1 liter). Overall, 65% (122/188) and 40% (76/188) of water samples were positive for S. enterica and L. monocytogenes, respectively. For both pathogens, MPN values ranged from 0.015 to 11 MPN/liter. Pathogen levels (MPN/liter) were significantly (P < 0.05) greater for the nontidal freshwater river sites and the tidal brackish river site than the reclaimed water sites. L. monocytogenes levels in water varied based on season. Detection of S. enterica was more likely with 10-liter filtration compared to 0.1-liter filtration. The physicochemical factors measured attributed only 6.4% of the constrained variance to the levels of both pathogens. This study shows clear variations in S. enterica and L. monocytogenes levels in irrigation water sources on ESM. IMPORTANCE In the last several decades, Maryland's Eastern Shore has seen significant declines in groundwater levels. While this area is not currently experiencing drought conditions or water scarcity, this research represents a proactive approach. Efforts, to investigate the levels of pathogenic bacteria and the microbial quality of alternative irrigation water are important for sustainable irrigation practices into the future. This research will be used to determine the suitability of alternative irrigation water sources for use in fresh produce irrigation to conserve groundwater.
Collapse
|
10
|
Malayil L, Chattopadhyay S, Mongodin EF, Sapkota AR. Coupled DNA-labeling and sequencing approach enables the detection of viable-but-non-culturable Vibrio spp. in irrigation water sources in the Chesapeake Bay watershed. ENVIRONMENTAL MICROBIOME 2021; 16:13. [PMID: 34158117 PMCID: PMC8218497 DOI: 10.1186/s40793-021-00382-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/01/2021] [Indexed: 06/01/2023]
Abstract
Nontraditional irrigation water sources (e.g., recycled water, brackish water) may harbor human pathogens, including Vibrio spp., that could be present in a viable-but-nonculturable (VBNC) state, stymieing current culture-based detection methods. To overcome this challenge, we coupled 5-bromo-2'-deoxyuridine (BrdU) labeling, enrichment techniques, and 16S rRNA sequencing to identify metabolically-active Vibrio spp. in nontraditional irrigation water (recycled water, pond water, non-tidal freshwater, and tidal brackish water). Our coupled BrdU-labeling and sequencing approach revealed the presence of metabolically-active Vibrio spp. at all sampling sites. Whereas, the culture-based method only detected vibrios at three of the four sites. We observed the presence of V. cholerae, V. vulnificus, and V. parahaemolyticus using both methods, while V. aesturianus and V. shilonii were detected only through our labeling/sequencing approach. Multiple other pathogens of concern to human health were also identified through our labeling/sequencing approach including P. shigelloides, B. cereus and E. cloacae. Most importantly, 16S rRNA sequencing of BrdU-labeled samples resulted in Vibrio spp. detection even when our culture-based methods resulted in negative detection. This suggests that our novel approach can effectively detect metabolically-active Vibrio spp. that may have been present in a VBNC state, refining our understanding of the prevalence of vibrios in nontraditional irrigation waters.
Collapse
Affiliation(s)
- Leena Malayil
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
11
|
Corona-López E, Román-Gutiérrez AD, Otazo-Sánchez EM, Guzmán-Ortiz FA, Acevedo-Sandoval OA. Water-Food Nexus Assessment in Agriculture: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094983. [PMID: 34067130 PMCID: PMC8124841 DOI: 10.3390/ijerph18094983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
The Water–Food Nexus (WF) has been proposed to reach equitable, balanced, and sustainable access to water and food resources in the face of the growing population demand. Therefore, developing models to assess them has become more relevant. This work systematically reviews the literature on the tools used to evaluate water and food resources between 2002 and 2020. Furthermore, it reports a critical analysis of the software used to assess the WF Nexus quantitatively. The models analyzed were Life Cycle Assessment (LCA), Common Agricultural Policy Regional Impact (CAPRI), Global Food and Water System (GFWS), Soil and Water Assessment Tool (SWAT), Water Evaluation And Planning system (WEAP), and Soil Water Atmosphere Plant (SWAP). We deduced that the following are necessary in evaluating the WF Nexus: (1) the capacity to generate future scenarios, (2) a global application, and (3) the application in case studies. The present paper is the first review to provide an overview of the software applied to evaluate WF Nexus, including the advantages and disadvantages of the tools found. They can help build sustainability criteria when designing policies that reduce water and food security risks and promote efficient water and food use.
Collapse
Affiliation(s)
- Evelyn Corona-López
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Col. Carboneras, Mineral de la Reforma 42184, Mexico; (E.C.-L.); (O.A.A.-S.)
| | - Alma D. Román-Gutiérrez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Col. Carboneras, Mineral de la Reforma 42184, Mexico; (E.C.-L.); (O.A.A.-S.)
- Correspondence: (A.D.R.-G.); (E.M.O.-S.)
| | - Elena M. Otazo-Sánchez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Col. Carboneras, Mineral de la Reforma 42184, Mexico; (E.C.-L.); (O.A.A.-S.)
- Correspondence: (A.D.R.-G.); (E.M.O.-S.)
| | | | - Otilio A. Acevedo-Sandoval
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Col. Carboneras, Mineral de la Reforma 42184, Mexico; (E.C.-L.); (O.A.A.-S.)
| |
Collapse
|
12
|
Malayil L, Negahban-Azar M, Goldstein RR, Sharma M, Gleason J, Muise A, Murray R, Sapkota AR. "Zooming" Our Way through Virtual Undergraduate Research Training: A Successful Redesign of the CONSERVE Summer Internship Program. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2021; 22:jmbe-22-90. [PMID: 33953822 PMCID: PMC8060145 DOI: 10.1128/jmbe.v22i1.2625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The COVID-19 pandemic has had an enormous impact on education globally, forcing the teaching community to think outside the box and create innovative educational plans to benefit students at home. Here, we narrate how the undergraduate, laboratory-based Summer Internship Program of our CONSERVE Center of Excellence, which focuses heavily on engaging women and underrepresented minorities in STEM programming, took a turn from an in-person research experience to a fully virtual one. We share our challenges and how we overcame them. Additionally, we provide a description of our virtual internship professional development curriculum, as well as the creative research projects that our seven interns were able to achieve in an 8-week virtual internship, including projects focused on the microbiological water quality of recycled irrigation water; social media promotion, enhancement and marketing of online educational resources focused on water, microbial contamination, and food crop irrigation; decision support systems for using recycled water in agricultural settings; and the effectiveness of zero-valent iron sand filtration in improving agricultural water quality, to name a few. Upon evaluating our internship program, we observed that more than 80% of our interns were either very satisfied or satisfied with the overall virtual internship experience. Through this experience, both the educators and the interns learned that although a virtual laboratory internship cannot completely replace in-person learning, it can still result in a very meaningful educational experience.
Collapse
Affiliation(s)
- Leena Malayil
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742
| | - Masoud Negahban-Azar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20740
| | - Rachel Rosenberg Goldstein
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742
| | - Manan Sharma
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD 20705
| | - Jeanne Gleason
- New Mexico State University, Department of Innovative Media Research and Extension, Las Cruces, NM 88003
| | - Amy Muise
- New Mexico State University, Department of Innovative Media Research and Extension, Las Cruces, NM 88003
| | - Rianna Murray
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742
| | - Amy R. Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742
| |
Collapse
|
13
|
Extending Natural Limits to Address Water Scarcity? The Role of Non-Conventional Water Fluxes in Climate Change Adaptation Capacity: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13052473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water consumption continues to grow globally, and it is estimated that more than 160% of the total global water volume will be needed to satisfy the water requirements in ten years. In this context, non-conventional water resources are being considered to overcome water scarcity and reduce water conflicts between regions and sectors. A bibliometric analysis and literature review of 81 papers published between 2000 and 2020 focused on south-east Spain were conducted. The aim was to examine and re-think the benefits and concerns, and the inter-connections, of using reclaimed and desalinated water for agricultural and urban-tourist uses to address water scarcity and climate change impacts. Results highlight that: (1) water use, cost, quality, management, and perception are the main topics debated by both reclaimed and desalinated water users; (2) water governance schemes could be improved by including local stakeholders and water users in decision-making; and (3) rainwater is not recognized as a complementary option to increase water supply in semi-arid regions. Furthermore, the strengths–weaknesses–opportunities–threats (SWOT) analysis identifies complementary concerns such as acceptability and investment in reclaimed water, regulation (cost recovery principle), and environmental impacts of desalinated water.
Collapse
|
14
|
Post LA, Benishay ET, Moss CB, Murphy RL, Achenbach CJ, Ison MG, Resnick D, Singh LN, White J, Chaudhury AS, Boctor MJ, Welch SB, Oehmke JF. Surveillance Metrics of SARS-CoV-2 Transmission in Central Asia: Longitudinal Trend Analysis. J Med Internet Res 2021; 23:e25799. [PMID: 33475513 PMCID: PMC7861038 DOI: 10.2196/25799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND SARS-CoV-2, the virus that caused the global COVID-19 pandemic, has severely impacted Central Asia; in spring 2020, high numbers of cases and deaths were reported in this region. The second wave of the COVID-19 pandemic is currently breaching the borders of Central Asia. Public health surveillance is necessary to inform policy and guide leaders; however, existing surveillance explains past transmissions while obscuring shifts in the pandemic, increases in infection rates, and the persistence of the transmission of COVID-19. OBJECTIVE The goal of this study is to provide enhanced surveillance metrics for SARS-CoV-2 transmission that account for weekly shifts in the pandemic, including speed, acceleration, jerk, and persistence, to better understand the risk of explosive growth in each country and which countries are managing the pandemic successfully. METHODS Using a longitudinal trend analysis study design, we extracted 60 days of COVID-19-related data from public health registries. We used an empirical difference equation to measure the daily number of cases in the Central Asia region as a function of the prior number of cases, level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS COVID-19 transmission rates were tracked for the weeks of September 30 to October 6 and October 7-13, 2020, in Central Asia. The region averaged 11,730 new cases per day for the first week and 14,514 for the second week. Infection rates increased across the region from 4.74 per 100,000 persons to 5.66. Russia and Turkey had the highest 7-day moving averages in the region, with 9836 and 1469, respectively, for the week of October 6 and 12,501 and 1603, respectively, for the week of October 13. Russia has the fourth highest speed in the region and continues to have positive acceleration, driving the negative trend for the entire region as the largest country by population. Armenia is experiencing explosive growth of COVID-19; its infection rate of 13.73 for the week of October 6 quickly jumped to 25.19, the highest in the region, the following week. The region overall is experiencing increases in its 7-day moving average of new cases, infection, rate, and speed, with continued positive acceleration and no sign of a reversal in sight. CONCLUSIONS The rapidly evolving COVID-19 pandemic requires novel dynamic surveillance metrics in addition to static metrics to effectively analyze the pandemic trajectory and control spread. Policy makers need to know the magnitude of transmission rates, how quickly they are accelerating, and how previous cases are impacting current caseload due to a lag effect. These metrics applied to Central Asia suggest that the region is trending negatively, primarily due to minimal restrictions in Russia.
Collapse
Affiliation(s)
- Lori Ann Post
- Buehler Center for Health Policy and Economics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Elana T Benishay
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Charles B Moss
- Institute of Food and Agricultural Sciences, University of Florida, Gainsville, FL, United States
| | - Robert Leo Murphy
- Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Chad J Achenbach
- Divison of Infectious Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Michael G Ison
- Divison of Infectious Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Danielle Resnick
- International Food Policy Research Institute, Washington, DC, United States
| | - Lauren Nadya Singh
- Buehler Center for Health Policy and Economics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Janine White
- Buehler Center for Health Policy and Economics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Azraa S Chaudhury
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Michael J Boctor
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sarah B Welch
- Buehler Center for Health Policy and Economics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James Francis Oehmke
- Buehler Center for Health Policy and Economics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
15
|
Rubin JA, Görres JH. Potential for Mycorrhizae-Assisted Phytoremediation of Phosphorus for Improved Water Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E7. [PMID: 33374981 PMCID: PMC7792571 DOI: 10.3390/ijerph18010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022]
Abstract
During this 6th Great Extinction, freshwater quality is imperiled by upland terrestrial practices. Phosphorus, a macronutrient critical for life, can be a concerning contaminant when excessively present in waterways due to its stimulation of algal and cyanobacterial blooms, with consequences for ecosystem functioning, water use, and human and animal health. Landscape patterns from residential, industrial and agricultural practices release phosphorus at alarming rates and concentrations threaten watershed communities. In an effort to reconcile the anthropogenic effects of phosphorus pollution, several strategies are available to land managers. These include source reduction, contamination event prevention and interception. A total of 80% of terrestrial plants host mycorrhizae which facilitate increased phosphorus uptake and thus removal from soil and water. This symbiotic relationship between fungi and plants facilitates a several-fold increase in phosphorus uptake. It is surprising how little this relationship has been encouraged to mitigate phosphorus for water quality improvement. This paper explores how facilitating this symbiosis in different landscape and land-use contexts can help reduce the application of fertility amendments, prevent non-point source leaching and erosion, and intercept remineralized phosphorus before it enters surface water ecosystems. This literature survey offers promising insights into how mycorrhizae can aid ecological restoration to reconcile humans' damage to Earth's freshwater. We also identify areas where research is needed.
Collapse
Affiliation(s)
- Jessica A. Rubin
- Plant and Soil Science, University of Vermont, Burlington, VT 05405, USA;
| | | |
Collapse
|
16
|
Zhang H, Sun H, Liu Y. Water reclamation and reuse. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1701-1710. [PMID: 32762059 DOI: 10.1002/wer.1425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Literature published in 2019 pertinent to water reclamation and reuse has been classified into five sections: safe reuse, treatment technologies, management, assessment, and case studies. Membranes have been widely applied in integrated processes to polish secondary effluent and achieve high-quality reclaimed water. Increased efforts have also been made to facilitate feasible and safe water reuse. PRACTITIONER POINTS: This article summarizes literature published in 2019 pertinent to water reclamation and reuse. Water reclamation and reuse can be classfied into five sections: safe reuse, treatment technology, management, assessment, and case studies. Membranes were widely used in integrated processes for the production of high-quality reclaimed water.
Collapse
Affiliation(s)
- Huixin Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Huijuan Sun
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Malayil L, Ramachandran P, Chattopadhyay S, Cagle R, Hittle L, Ottesen A, Mongodin EF, Sapkota AR. Metabolically-active bacteria in reclaimed water and ponds revealed using bromodeoxyuridine DNA labeling coupled with 16S rRNA and shotgun sequencing. WATER RESEARCH 2020; 184:116185. [PMID: 32726735 DOI: 10.1016/j.watres.2020.116185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Understanding the complex microbiota of agricultural irrigation water is vital to multiple sectors of sustainable agriculture and public health. To date, microbiome characterization methods have provided comprehensive profiles of aquatic microbiotas, but have not described which taxa are likely metabolically-active. Here, we combined 5‑bromo‑2'-deoxyuridine (BrdU) labeling with 16S rRNA and shotgun sequencing to identify metabolically-active bacteria in reclaimed and agricultural pond water samples (n = 28) recovered from the Mid-Atlantic United States between March 2017 and January 2018. BrdU-treated samples were significantly less diverse (alpha diversity) compared to non-BrdU-treated samples. The most abundant taxa in the metabolically-active fraction of water samples (BrdU-treated samples) were unclassified Actinobacteria, Flavobacterium spp., Pseudomonas spp. and Aeromonas spp. Interestingly, we also observed that antimicrobial resistance and virulence gene profiles seemed to be more diverse and more abundant in non-BrdU-treated water samples compared to BrdU-treated samples. These findings raise the possibility that these genes may be associated more with relic (inactive) DNA present in the tested water types rather than viable, metabolically-active microorganisms. Our study demonstrates that the coupled use of BrdU labeling and sequencing can enhance understanding of the metabolically-active fraction of bacterial communities in alternative irrigation water sources. Agricultural pond and reclaimed waters are vital to the future of sustainable agriculture, and thus, the full understanding of the pathogenic potential of these waters is important to guide mitigation strategies that ensure appropriate water quality for intended purposes.
Collapse
Affiliation(s)
- Leena Malayil
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Padmini Ramachandran
- Food and Drug Administration, Office of Regulatory Science, Division of Microbiology, HFS-712, 5001 Campus Drive, College Park, MD20740, United States
| | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States
| | - Robin Cagle
- Food and Drug Administration, Office of Regulatory Science, Division of Microbiology, HFS-712, 5001 Campus Drive, College Park, MD20740, United States
| | - Lauren Hittle
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201United States
| | - Andrea Ottesen
- Food and Drug Administration, Office of Regulatory Science, Division of Microbiology, HFS-712, 5001 Campus Drive, College Park, MD20740, United States
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201United States
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, United States.
| |
Collapse
|
18
|
García-Fontana C, Vilchez JI, Manzanera M. Proteome Comparison Between Natural Desiccation-Tolerant Plants and Drought-Protected Caspicum annuum Plants by Microbacterium sp. 3J1. Front Microbiol 2020; 11:1537. [PMID: 32765446 PMCID: PMC7381273 DOI: 10.3389/fmicb.2020.01537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
Desiccation-tolerant plants are able to survive for extended periods of time in the absence of water. The molecular understanding of the mechanisms used by these plants to resist droughts can be of great value for improving drought tolerance in crops. This understanding is especially relevant in an environment that tends to increase the number and intensity of droughts. The combination of certain microorganisms with drought-sensitive plants can improve their tolerance to water scarcity. One of these bacteria is Microbacterium sp. 3J1, an actinobacteria able to protect pepper plants from drought. In this study, we supplemented drought-tolerant and drought-sensitive plant rhizospheres with Microbacterium sp. 3J1 and analyzed their proteomes under drought to investigate the plant-microbe interaction. We also compare this root proteome with the proteome found in desiccation-tolerant plants. In addition, we studied the proteome of Microbacterium sp. 3J1 subjected to drought to analyze its contribution to the plant-microbe interaction. We describe those mechanisms shared by desiccation-tolerant plants and sensitive plants protected by microorganisms focusing on protection against oxidative stress, and production of compatible solutes, plant hormones, and other more specific proteins.
Collapse
Affiliation(s)
| | | | - Maximino Manzanera
- Institute for Water Research and Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
19
|
Climatic Changes, Water Systems, and Adaptation Challenges in Shawi Communities in the Peruvian Amazon. SUSTAINABILITY 2020. [DOI: 10.3390/su12083422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Climate change impacts on water systems have consequences for Indigenous communities. We documented climatic changes on water systems observed by Indigenous Shawi and resultant impacts on health and livelihoods, and explored adaptation options and challenges in partnership with two Indigenous Shawi communities in the Peruvian Amazon. Qualitative data were collected via PhotoVoice, interviews, focus group discussions, and transect walks, and analyzed using a constant comparative method and thematic analysis. Quantitative data were collected via a household survey and analyzed descriptively. Households observed seasonal weather changes over time (n = 50; 78%), which had already impacted their family and community (n = 43; 86%), such as more intense rainfall resulting in flooding (n = 29; 58%). Interviewees also described deforestation impacts on the nearby river, which were exacerbated by climate-related changes, including increased water temperatures (warmer weather, exacerbated by fewer trees for shading) and increased erosion and turbidity (increased rainfall, exacerbated by riverbank instability due to deforestation). No households reported community-level response plans for extreme weather events, and most did not expect government assistance when such events occurred. This study documents how Indigenous peoples are experiencing climatic impacts on water systems, and highlights how non-climatic drivers, such as deforestation, exacerbate climate change impacts on water systems and community livelihoods in the Peruvian Amazon.
Collapse
|
20
|
Ma Y, Li YP, Huang GH. A bi-level chance-constrained programming method for quantifying the effectiveness of water-trading to water-food-ecology nexus in Amu Darya River basin of Central Asia. ENVIRONMENTAL RESEARCH 2020; 183:109229. [PMID: 32062484 DOI: 10.1016/j.envres.2020.109229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Issues of water scarcity, food crisis, and ecological degradation pose great challenges to the sustainable development of Central Asia. In this study, a bi-level chance-constrained programming (BCCP) method is developed for planning water-food-ecology (WFE) nexus system of the Amu Darya River basin, where the efficiency of water-trading mechanism and the impact of uncertain water-availability are examined. This is the first attempt for planning WFE nexus system by incorporating chance-constrained programming (CCP) within a bi-level optimization framework. BCCP can reflect the risk of violating probabilistic constraint under uncertainty as well as balance the tradeoff between two-level decision makers in the WFE nexus system. Under trading scheme, multiple scenarios in association with different food demand, ecological-water requirement, and water availability are examined. Major findings are: (i) compared with that under non-trading, system benefits would increase [3.9, 20.4]% under trading scenarios, disclosing that water trading is an effective mechanism for the study basin; (ii) when food demand increases 10.5%, water allocated to ecological use would decrease [0.9, 2.7]% under all scenarios, revealing that agriculture can squeeze ecological water; (iii) both system benefit and water allocation would increase with p level, implying there is a tradeoff between system benefit and system-failure risk. These findings can gain insight into the interaction between two-level stakeholders and objectives as well as provide decision support for WFE nexus synergetic management.
Collapse
Affiliation(s)
- Y Ma
- Center for Energy, Environment and Ecology Research, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Y P Li
- Center for Energy, Environment and Ecology Research, School of Environment, Beijing Normal University, Beijing, 100875, China; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Sask, S4S 7H9, Canada.
| | - G H Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Sask, S4S 7H9, Canada.
| |
Collapse
|
21
|
Kapetas L, Kazakis N, Voudouris K, McNicholl D. Water allocation and governance in multi-stakeholder environments: Insight from Axios Delta, Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133831. [PMID: 31422328 DOI: 10.1016/j.scitotenv.2019.133831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
This article deals with stakeholders' interactions and institutional capacity influencing water resource management where competitive demands co-exist. For the case study area of Axios Delta, Northern Greece, a water deficit in the agricultural sector, an unmet environmental flow and a reduced capacity for urban supply during drought conditions are observed. An egocentric network analysis based on desk-study and a series of semi-structured stakeholder interviews reveals how weak stakeholder ties lead to ineffective multilevel governance and, as a result, low water efficiency practices. There is a lack of understanding of other users' priorities as well as of the risks related to climate change and/or seasonal variability. This is reflected in the flat rate abstraction licence for agricultural purposes which reduces environmental flow to below acceptable standards. There is no transboundary cooperation between Greece and the Republic of North Macedonia which hinders an integrated management approach. A limited exchange of information to support an evidence-based allocation plan is observed. Suitable interventions identified through a DPSIR approach are evaluated in a multi-criteria analysis considering cost effectiveness, delivered benefits as well as ease of implementation. Suitable technical practices include the development of a local and catchment-scale monitoring network for surface water and groundwater, climate-adaptive agriculture and treated-water reclamation. Updated management policies involve the institutional prioritisation of environmental flow through an adaptive allocation plan as well as the strengthening of transboundary cooperation. This research shows how the coordination of aggregated diverging interests in multilevel multi-stakeholder environments appears to be key in supporting positive water budgets in an uncertain climate future.
Collapse
Affiliation(s)
- Leon Kapetas
- School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nerantzis Kazakis
- School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | - Duncan McNicholl
- Department of Engineering, University of Cambridge, United Kingdom
| |
Collapse
|
22
|
Panthi S, Sapkota AR, Raspanti G, Allard SM, Bui A, Craddock HA, Murray R, Zhu L, East C, Handy E, Callahan MT, Haymaker J, Kulkarni P, Anderson B, Craighead S, Gartley S, Vanore A, Betancourt WQ, Duncan R, Foust D, Sharma M, Micallef SA, Gerba C, Parveen S, Hashem F, May E, Kniel K, Pop M, Ravishankar S, Sapkota A. Pharmaceuticals, herbicides, and disinfectants in agricultural water sources. ENVIRONMENTAL RESEARCH 2019; 174:1-8. [PMID: 31015109 DOI: 10.1016/j.envres.2019.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Agricultural water withdrawals account for the largest proportion of global freshwater use. Increasing municipal water demands and droughts are straining agricultural water supplies. Therefore, alternative solutions to agricultural water crises are urgently needed, including the use of nontraditional water sources such as advanced treated wastewater or reclaimed water, brackish water, return flows, and effluent from produce processing facilities. However, it is critical to ensure that such usage does not compromise soil, crop, and public health. Here, we characterized five different nontraditional water types (n = 357 samples) for the presence of pharmaceuticals, herbicides, and disinfectants using ultra-high-pressure liquid chromatography tandem mass spectrometry based method (UPLC-MS/MS). We then evaluated whether the levels of these contaminants were influenced by season. The highest level of herbicides (atrazine) was detected in untreated pond water (median concentration 135.9 ng/L). Reclaimed water had the highest levels of antibiotics and stimulants including azithromycin (215 ng/L), sulfamethoxazole (232.1 ng/L), and caffeine (89.4 ng/L). Produce processing plant water also tended to have high levels of atrazine (102.7 ng/L) and ciprofloxacin (80.1 ng/L). In addition, we observed seasonal variability across water types, with the highest atrazine concentrations observed during summer months, while the highest median azithromycin concentrations were observed in reclaimed water during the winter season. Further studies are needed to evaluate if economically feasible on-farm water treatment technologies can effectively remove such contaminants from nontraditional irrigation water sources.
Collapse
Affiliation(s)
- Suraj Panthi
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742, USA
| | - Greg Raspanti
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742, USA
| | - Sarah M Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742, USA
| | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742, USA
| | - Hillary A Craddock
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742, USA
| | - Rianna Murray
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742, USA
| | - Libin Zhu
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell Street, Tucson, AZ 85721, USA
| | - Cheryl East
- Environmental Microbial & Food Safety Lab, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Eric Handy
- Environmental Microbial & Food Safety Lab, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Mary Theresa Callahan
- Department of Plant Science and Landscape Architecture, University of Maryland, 2126 Plant Sciences Building, College Park, MD 20742, USA
| | - Joseph Haymaker
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Prachi Kulkarni
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742, USA
| | - Brienna Anderson
- Department of Animal and Food Sciences, University of Delaware, 044 Townsend Hall, Newark, DE 19716, USA
| | - Shani Craighead
- Department of Animal and Food Sciences, University of Delaware, 044 Townsend Hall, Newark, DE 19716, USA
| | - Samantha Gartley
- Department of Animal and Food Sciences, University of Delaware, 044 Townsend Hall, Newark, DE 19716, USA
| | - Adam Vanore
- Department of Animal and Food Sciences, University of Delaware, 044 Townsend Hall, Newark, DE 19716, USA
| | - Walter Q Betancourt
- Department of Soil, Water, and Environmental Science, University of Arizona, 2959 W Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Rico Duncan
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Derek Foust
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Manan Sharma
- Environmental Microbial & Food Safety Lab, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, 2126 Plant Sciences Building, College Park, MD 20742, USA
| | - Charles Gerba
- Department of Soil, Water, and Environmental Science, University of Arizona, 2959 W Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Salina Parveen
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Fawzy Hashem
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Eric May
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Kalmia Kniel
- Department of Animal and Food Sciences, University of Delaware, 044 Townsend Hall, Newark, DE 19716, USA
| | - Mihai Pop
- Department of Computer Science & the Center for Bioinformatics and Computational Biology, University of Maryland, 8223 Paint Brach Drive, College Park, MD 20742, USA
| | - Sadhana Ravishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell Street, Tucson, AZ 85721, USA
| | - Amir Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD 20742, USA.
| |
Collapse
|
23
|
Rise ML, Martyniuk CJ, Chen M. Comparative physiology and aquaculture: Toward Omics-enabled improvement of aquatic animal health and sustainable production. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100603. [PMID: 31260856 DOI: 10.1016/j.cbd.2019.100603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Omics-technologies have revolutionized biomedical research over the past two decades, and are now poised to play a transformative role in aquaculture. This article serves as an introduction to a Virtual Special Issue of Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics (CBPD), with the objective to showcase the state-of-the-science for Omics in aquaculture. In this editorial, we describe the role that Omics can play in aquaculture, and provide a synopsis for each of the Special Issue articles that use these technologies to improve aquaculture practices. Current genomic resources available for some aquaculture species are also described. The number of datasets is impressive for species such as Atlantic salmon and rainbow trout, totaling in the thousands (NCBI Gene Expression Omnibus and Sequence Read Archive). We present a conceptual framework that describes how Omics can be leveraged to understand complex responses of aquatic animals in culture for relevant physiological outcomes, such as fecundity, growth, and immunity. Lastly, knowledge gaps and new directions are identified to address current obstacles in aquaculture. Articles in this Special Issue on aquaculture in CBPD highlight the diversity and scope of Omics in aquaculture. As the technology becomes more cost-effective, it is anticipated that genomics, transcriptomics, proteomics, metabolomics and lipidomics will play increasingly important roles in stock diagnostics (e.g. genetics, health, performance). The timing is right, as global concerns are reaching critical levels over food availability/security and water restrictions for humankind.
Collapse
Affiliation(s)
- Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL A1C 5S7, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Muyan Chen
- College of Fisheries, Ocean University of China, Qingdao 266003, China
| |
Collapse
|