1
|
Yun J, Yang Q, Liu G. Rare earth elements unintentionally released from global industrial activities. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136146. [PMID: 39405706 DOI: 10.1016/j.jhazmat.2024.136146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 12/01/2024]
Abstract
Exposure to rare earth elements (REY) in the environment can lead to adverse effects on human health. Industrial activities unintentionally produce fly ash, and a small fraction of fly ash that remains uncaptured by air pollution control devices can enter the atmosphere and contribute as a primary source of airborne fine particle matter (PM). The occurrence of REY in industrial sourced fine PM affects the environment and human health. There is relatively minimal information regarding the human health hazards and biological effects of REY in fine PM produced during industrial activities, especially for non-occupational people. In addition, REY are powerful source-specific tracers for airborne PM from industries. Therefore, relevant research on REY in fine PM from industrial processes not only contributes to understanding and preventing environmental pollution but can also provide basic data for reducing human exposure. This paper provides an overview of the research status and latest advances in various industrial processes, especially their distribution characteristics, influencing factors, tracer application, and biological effects of REY in fine PM from coal-fired power plants. We also suggest future research directions in light of existing problems.
Collapse
Affiliation(s)
- Jianghui Yun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuting Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|
2
|
Arslan Topal EI, Öbek E, Topal M. Is Cladophora fracta an efficient tool of accumulating critical raw materials from wastewater and there a potential health risk of use of algae as organic fertilizer? INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1977-1994. [PMID: 37097044 DOI: 10.1080/09603123.2023.2203905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
In this study investigation of accumulations of critical raw materials (cobalt (Co), antimony (Sb), vanadium (V), lanthanum (La) and tungsten (W)) from wastewater by using C. fracta were aimed. Besides, assessment of the potential health risks in terms of the use of organic fertilizer obtained from the macroalga to be harvested from the treatment were also aimed. Highest Co, Sb, V, La and W accumulations by algae in reactor were 125±6.2%, 201.25±10%, 318.18±15%, 357.97±18%, and 500±25%, respectively. When compared with control, Co, Sb, V, La and W in algae increased 2.25, 3.01, 4.18, 4.58, and 6 times, respectively. The algae was very high bioaccumulative for Co and La. Highest MPI was calculated as 3.94. Non-carcinogenic risk of CRMs according to different exposure types (ingestion, inhalation, and dermal) were calculated for man, woman and child. There is not any non-carcinogenic risk from the investigated exposure ways of algae as organic fertilizer.
Collapse
Affiliation(s)
- E Işıl Arslan Topal
- Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| | - Erdal Öbek
- Department of Bioengineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| | - Murat Topal
- Department of Chemistry Processing Technologies, Tunceli Vocation School, Munzur University, Tunceli, Turkey
| |
Collapse
|
3
|
Fortes WMPA, Souza IDC, Azevedo VC, Griboff J, Monferrán MV, Wunderlin DA, Matsumoto ST, Fernandes MN. Metal/metalloid bioconcentration dynamics in fish and the risk to human health due to water contamination with atmospheric particulate matter from a metallurgical industrial area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166119. [PMID: 37567312 DOI: 10.1016/j.scitotenv.2023.166119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Settleable atmospheric particulate matter (SeAPM) containing a mixture of metals, including metallic nanoparticles, has increased throughout the world, and caused environmental and biota contamination. The metal bioconcentration pattern in Nile tilapia (Oreochromis niloticus) was evaluated during a 30-day exposure to 1 g L-1 SeAPM and assessed the human health risk from consuming fish fillets (muscle) based on the estimated daily intake (EDI). SeAPM was collected surrounding an iron ore processing and steel industrial complex in Vitória city (Espírito Santo, Brazil) area. Water samples were collected daily for physicochemical analyses, and every 3 days for multi-elemental analyses. Metal bioconcentrations were determined in the viscera and fillet of fish every 3 days. The elements B, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Pb, Hg, Ba, Bi, W, Ti, Zr, Y, La, Nb, and Ce were analyzed in SeAPM, water, and fish using inductively coupled plasma mass spectrometry. The metal concentration in SeAPM-contaminated water was higher than in control water. Most metals bioconcentrated preferentially in the fish viscera, except for the Hg and Rb, which bioconcentrated mostly in the fillet. The bioconcentration pattern was Fe > Al > Mn > Pb > V > La > Ce > Y > Ni > Se > As > W > Bi in the viscera; it was higher than the controls throughout the 30-day exposure. Ti, Zr, Nb, Rb, Cd, Hg, B, and Cr showed different bioconcentration patterns. The Zn, Cu, Sr, Sn, Ag, and Ta did not differ from controls. The differences in metal bioconcentration were attributed to diverse metal bioavailability in water and the dissimilar ways fish can cope with each metal, including inefficient excretion mechanisms. The EDI calculation indicated that the consumption of the studied fish is not safe for children, because the concentrations of As, La, Zr, and Hg exceed the World Health Organization's acceptable daily intake for these elements.
Collapse
Affiliation(s)
- William Manuel Pereira Antunes Fortes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod Washington Luiz, km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod Washington Luiz, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | | | - Julieta Griboff
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Magdalena Victoria Monferrán
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Silvia Tamie Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DCB/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod Washington Luiz, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
4
|
Leite C, Russo T, Cuccaro A, Pinto J, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. Can temperature rise change the impacts induced by e-waste on adults and sperm of Mytilus galloprovincialis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166085. [PMID: 37549702 DOI: 10.1016/j.scitotenv.2023.166085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Nowadays, it is of utmost importance to consider climate change factors, such as ocean warming, since the risk of negative impacts derived from increased surface water temperature is predicted to be high to the biodiversity. The need for renewable energy technologies, to reduce greenhouse gas emissions, has led to the increasing use of rare earth elements (REEs). Dysprosium (Dy) is widely used in magnets, motors, electrical vehicles, and nuclear reactors, being considered a critical REE to technology due to its economic importance and high supply risk. However, the increasing use of this element contributes to the enrichment of anthropogenic REEs in aquatic systems. Nevertheless, the information on the potential toxicity of Dy is limited. Moreover, the effects of pollutants can be amplified when combined with climate change factors. Thus, this study aimed to assess the effects of Dy (10 μg/L) in the species Mytilus galloprovincialis under actual (17 °C) and predicted warming conditions (21 °C). The Dy concentration in contaminated mussels was similar between temperatures, probably due to the detoxification capacity in individuals under these treatments. The combined stressors affected the redox balance, but higher impacts were caused by Dy and warming acting alone. In terms of cellular damage, although Dy acting alone was prejudicial to mussels, warming and both stressors acting together induced higher levels of LPO and PC. The histopathological effects of Dy in the digestive tubules were independent of the temperature tested. Regarding effects on sperm, only warming induced cellular damage, while both stressors, alone and together, impaired sperm movement. Overall, this study highlights that warming might influence the effects induced by Dy, but greater impacts were caused by the element. Eventually, the tested stressors may have consequences on mussels' reproduction capacity as well as their growth, abundance, and survival.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - João Pinto
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Chen S, Wang X, Ye X, Qin Y, Wang H, Liang Z, Zhu L, Zhou L, Martyniuk CJ, Yan B. Dopaminergic and serotoninergic neurotoxicity of lanthanide phosphate (TbPO 4) in developing zebrafish. CHEMOSPHERE 2023; 340:139861. [PMID: 37597622 DOI: 10.1016/j.chemosphere.2023.139861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Rare earth elements (REEs) are exploited for global use in manufacturing. Such activities result in their release into the environment and the transformation into more stable phosphate deposition. The objective of this study was to evaluate molecular and behavioral changes of zebrafish exposed to the synthesized terbium phosphate (TbPO4) at concentrations of 10, 20, and 50 mg/L and to determine its potential for neurotoxicity. Metabolomics related to neurotransmitters, and assessment of transcripts and proteins were conducted to uncover the molecular mechanisms underlying TbPO4 with emphasis on neurotransmitter systems. Exposure to 20 mg/L TbPO4 induced larval hyperactivity and perturbed the cholinergic system in zebrafish. Based on metabolomics related to neurotransmitters, dopamine (DA), serotonin (5-HT), and many of their precursors and metabolites were decreased in abundance by TbPO4. In addition, the expression levels of transcripts related to the synthesis, transport, receptor binding, and metabolism of DA and 5-HT were analyzed at the mRNA and protein levels. Transcript and protein levels for tyrosine hydroxylase (TH), the rate-limiting enzyme for DA synthesis, were down-regulated in larval fish. Monoamine oxidase (MAO), an enzyme that catabolizes monoamines DA and 5-HT, was also reduced in mRNA abundance. We hypothesize that DA synthesis and monoamine metabolism are associated with behavioral alterations. This study elucidates putative mechanisms and exposure risks to wildlife and humans by characterizing phosphatic REE-induced neurotoxicity in developing zebrafish.
Collapse
Affiliation(s)
- Siying Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Xiaolin Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Haiqing Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhenda Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Lishan Zhu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Wang M, Hou J, Deng R. Co-exposure of environmental contaminants with unfavorable temperature or humidity/moisture: Joint hazards and underlying mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115432. [PMID: 37660530 DOI: 10.1016/j.ecoenv.2023.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
In the context of global climate change, organisms in their natural habitats usually suffer from unfavorable climatic conditions together with environmental pollution. Temperature and humidity (or moisture) are two central climatic factors, while their relationships with the toxicity of contaminants are not well understood. This review provides a synthesis of existing knowledge on important interactions between contaminant toxicity and climatic conditions of unfavorable temperature, soil moisture, and air humidity. Both high temperature and low moisture can extensively pose severe combined hazards with organic pollutants, heavy metal ions, nanoparticles, or microplastics. There is more information on the combined effects on animalia than on other kingdoms. Prevalent mechanisms underlying their joint effects include the increased bioavailability and bioaccumulation of contaminants, modified biotransformation of contaminants, enhanced induction of oxidative stress, accelerated energy consumption, interference with cell membranes, and depletion of bodily fluids. However, the interactions of contaminants with low temperature or high humidity/moisture, particularly on plants and microorganisms, are relatively vague and need to be further revealed. This work emphasizes that the co-exposure of chemical and physical stressors results in detrimental effects generally greater than those caused by either stressor. It is necessary to take this into consideration in the ecological risk assessment of both environmental contamination and climate change.
Collapse
Affiliation(s)
- Mingpu Wang
- School of Civil Engineering, Chongqing University, Chongqing 400045, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
7
|
Alvarez-Mora I, Bolliet V, Lopez-Herguedas N, Olivares M, Monperrus M, Etxebarria N. Metabolomics to study the sublethal effects of diazepam and irbesartan on glass eels (Anguilla anguilla). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106547. [PMID: 37120958 DOI: 10.1016/j.aquatox.2023.106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Since glass eels are continuously exposed to contamination throughout their migratory journey in estuaries, to a certain extent the fall in the population of this endangered species might be attributed to this exposure, which is especially acute in estuaries under high urban pressure. In this work, metabolomics was used to address the main objective of this study, to evaluate the effects of two pharmaceuticals previously identified as potential concerning chemicals for fish (diazepam and irbesartan) on glass eels. An exposure experiment to diazepam, irbesartan and their mixture was carried out over 7 days followed by 7 days of depuration phase. After exposure, glass eels were individually sacrificed using a lethal bath of anesthesia, and then an unbiased sample extraction method was used to extract separately the polar metabolome and the lipidome. The polar metabolome was submitted to targeted and non-targeted analysis, whereas for the lipidome only the non-targeted analysis was carried out. A combined strategy using partial least squares discriminant analysis and univariate and multivariate statistical analysis (ANOVA, ASCA, t-test, and fold-change analysis) was used to identify the metabolites altered in the exposed groups with respect to the control group. The results of the polar metabolome analysis revealed that glass eels exposed to the diazepam-irbesartan mixture were the most impacted ones, with altered levels for 11 metabolites, some of them belonging to the energetic metabolism, which was confirmed to be sensitive to these contaminants. Additionally, the dysregulation of the levels of twelve lipids, most of them with energetic and structural functions, was also found after exposure to the mixture, which might be related to oxidative stress, inflammation, or alteration of the energetic metabolism.
Collapse
Affiliation(s)
- Iker Alvarez-Mora
- Department of Analytical Chemistry, University of the Basque Country, Basque Country, Leioa Biscay 48080, Spain; Plentzia Marine Station, University of the Basque Country, Basque Country, Plentzia Biscay 48620, Spain.
| | - Valérie Bolliet
- E2S UPPA, ECOBIOP, Aquapôle INRAE, MIRA, Université de Pau et des Pays de l'Adour, Saint-Pée-sur-Nivelle F64310, France
| | - Naroa Lopez-Herguedas
- Department of Analytical Chemistry, University of the Basque Country, Basque Country, Leioa Biscay 48080, Spain; Plentzia Marine Station, University of the Basque Country, Basque Country, Plentzia Biscay 48620, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country, Basque Country, Leioa Biscay 48080, Spain; Plentzia Marine Station, University of the Basque Country, Basque Country, Plentzia Biscay 48620, Spain
| | - Mathilde Monperrus
- Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Université de Pau et des Pays de l'Adour, Basque Country, Anglet 64000, France
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country, Basque Country, Leioa Biscay 48080, Spain; Plentzia Marine Station, University of the Basque Country, Basque Country, Plentzia Biscay 48620, Spain
| |
Collapse
|
8
|
Gong B, Qiu H, Van Gestel CAM, Peijnenburg WJGM, He E. Increasing Temperatures Potentiate the Damage of Rare Earth Element Yttrium to the Crop Plant Triticum aestivum L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16390-16400. [PMID: 36524925 DOI: 10.1021/acs.jafc.2c05883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Given that increasing temperature may aggravate the toxicity of pollutants, it is a daunting challenge to evaluate the realistic risks of rare earth elements (REEs) under global warming. Here, we studied how elevated temperatures (27 and 32 °C) impact the effect of yttrium (Y) on wheat plants (Triticum aestivum L.) at concentrations not causing effects (0, 0.5, and 1 μM) at the control temperature (22 °C) in a hydroponic system. After 14 days of exposure, significant inhibition (p < 0.05, 29.5%) of root elongation was observed only at 1 μM of Y at 32 °C. Exposure to Y at 27 °C showed no visible effects on root length, but induced significant (p < 0.05) metabolic disorders of a range of carbohydrates and amino acids related to galactose, phenylalanine, and glutamate metabolisms. Such cases were even shifted to substantial perturbation of the nucleotide pool reallocation involved in the disruption of purine and pyrimidine metabolism at 32 °C. These observations were regulated by sets of genes involved in these perturbed pathways. Using weighted gene co-expression network analysis, the disorder of nucleotide metabolism was shown to be responsible for the aggravated Y phytotoxicity at the extreme high temperature. Although the temperature fluctuation considered seems to be in an extreme range, unexpected implications driven by high temperature cannot be neglected. Our findings thus reduce the gaps of knowledge in REE toxicity to plants under future climate warming scenarios and highlight the importance of incorporating environmental temperature into the framework of the risk assessment of REEs.
Collapse
Affiliation(s)
- Bing Gong
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cornelis A M Van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2333CC, the Netherlands
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven 3720 BA, The Netherlands
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
Figueiredo C, Grilo TF, Oliveira R, Ferreira IJ, Gil F, Lopes C, Brito P, Ré P, Caetano M, Diniz M, Raimundo J. Gadolinium ecotoxicity is enhanced in a warmer and acidified changing ocean as shown by the surf clam Spisula solida through a multibiomarker approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106346. [PMID: 36327686 DOI: 10.1016/j.aquatox.2022.106346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Humans have exhaustively combusted fossil fuels, and released pollutants into the environment, at continuously faster rates resulting in global average temperature increase and seawater pH decrease. Climate change is forecasted to exacerbate the effects of pollutants such as the emergent rare earth elements. Therefore, the objective of this study was to assess the combined effects of rising temperature (Δ = + 4 °C) and decreasing pH (Δ = - 0.4 pH units) on the bioaccumulation and elimination of gadolinium (Gd) in the bioindicator bivalve species Spisula solida (Surf clam). We exposed surf clams to 10 µg L-1 of GdCl3 for seven days, under warming, acidification, and their combination, followed by a depuration phase lasting for another 7 days and investigated the Gd bioaccumulation and oxidative stress-related responses after 1, 3 and 7 days of exposure and the elimination phase. Gadolinium accumulated after just one day with values reaching the highest after 7 days. Gadolinium was not eliminated after 7 days, and elimination is further hampered under climate change scenarios. Warming and acidification, and their interaction did not significantly impact Gd concentration. However, there was a significant interaction on clam's biochemical response. The augmented total antioxidant capacity and lipid peroxidation values show that the significant impacts of Gd on the oxidative stress response are enhanced under warming while the increased superoxide dismutase and catalase values demonstrate the combined impact of Gd, warming & acidification. Ultimately, lipid damage was greater in clams exposed to warming & Gd, which emphasizes the enhanced toxic effects of Gd in a changing ocean.
Collapse
Affiliation(s)
- Cátia Figueiredo
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal; Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; Department of Chemistry, Department of Life Sciences, School of Science and Technology, UCIBIO, Applied Molecular Biosciences Unit, NOVA University Lisbon, Caparica 2819-516, Portugal.
| | - Tiago F Grilo
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Rui Oliveira
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal
| | - Inês João Ferreira
- Chemistry Department, LAQV-REQUIMTE, NOVA School of Science and Technology, Caparica 2829-516, Portugal
| | - Fátima Gil
- Aquário Vasco da Gama, Rua Direita do Dafundo, Cruz Quebrada 1495-718, Portugal
| | - Clara Lopes
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, Matosinhos 4450-208, Portugal
| | - Pedro Brito
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, Matosinhos 4450-208, Portugal
| | - Pedro Ré
- MARE, Marine and Environmental Sciences Centre, ARNET, Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Miguel Caetano
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, Matosinhos 4450-208, Portugal
| | - Mário Diniz
- Department of Chemistry, Department of Life Sciences, School of Science and Technology, UCIBIO, Applied Molecular Biosciences Unit, NOVA University Lisbon, Caparica 2819-516, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica 2819-516, Portugal
| | - Joana Raimundo
- Division of Oceanography and Marine Environment, IPMA, Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, Algés 1495-165, Portugal; Aquário Vasco da Gama, Rua Direita do Dafundo, Cruz Quebrada 1495-718, Portugal
| |
Collapse
|
10
|
Figueiredo C, Grilo TF, Oliveira R, Ferreira IJ, Gil F, Lopes C, Brito P, Ré P, Caetano M, Diniz M, Raimundo J. Single and combined ecotoxicological effects of ocean warming, acidification and lanthanum exposure on the surf clam (Spisula solida). CHEMOSPHERE 2022; 302:134850. [PMID: 35551939 DOI: 10.1016/j.chemosphere.2022.134850] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Lanthanum (La) is one of the most abundant emergent rare earth elements. Its release into the environment is enhanced by its use in various industrial applications. In the aquatic environment, emerging contaminants are one of the stressors with the ability to compromise the fitness of its inhabitants. Warming and acidification can also affect their resilience and are another consequence of the growing human footprint on the planet. However, from information gathered in the literature, a study on the effects of ocean warming, acidification, and their interaction with La was never carried out. To diminish this gap of knowledge, we explored the effects, combined and as single stressors, of ocean warming, acidification, and La (15 μg L-1) accumulation and elimination on the surf clam (Spisula solida). Specimens were exposed for 7 days and depurated for an additional 7-day period. Furthermore, a robust set of membrane-associated, protein, and antioxidant enzymes and non-enzymatic biomarkers (LPO, HSP, Ub, SOD, CAT, GPx, GST, TAC) were quantified. Lanthanum was bioaccumulated after just one day of exposure, in both control and climate change scenarios. A 7-day depuration phase was insufficient to achieve control values and in a warming scenario, La elimination was more efficient. Biochemical response was triggered, as highlighted by enhanced SOD, CAT, GST, and TAC levels, however as lipoperoxidation was observed it was insufficient to detoxify La and avoid damage. The HSP was largely inhibited in La treatments combined with warming and acidification. Concomitantly, lipoperoxidation was highest in clams exposed to La, warming, and acidification combined. The results highlight the toxic effects of La on this bivalve species and its enhanced potential in a changing world.
Collapse
Affiliation(s)
- Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.
| | - Tiago F Grilo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Rui Oliveira
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal
| | - Inês João Ferreira
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516, Caparica, Portugal
| | - Fátima Gil
- Aquário Vasco da Gama, Rua Direita Do Dafundo, 1495-718, Cruz Quebrada, Portugal
| | - Clara Lopes
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Pedro Brito
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Pedro Ré
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Miguel Caetano
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Mário Diniz
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry / Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal
| | - Joana Raimundo
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
11
|
Figueiredo C, Grilo TF, Lopes C, Brito P, Caetano M, Raimundo J. Lanthanum and Gadolinium availability in aquatic mediums: New insights to ecotoxicology and environmental studies. J Trace Elem Med Biol 2022; 71:126957. [PMID: 35227975 DOI: 10.1016/j.jtemb.2022.126957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 01/22/2023]
Abstract
Studies dealing with Rare Earth Elements (REE) ecotoxicological behavior are scattered and with potential conflicting results. Climate change impacts on aquatic biota and is known to modify contaminants toxicokinetic. Nevertheless, the current knowledge on the potential interactions between climate change and REE is virtually non-existent. Therefore, we focus our research on La and Gd as representatives of Light and Heavy REE that also are of great environmental concern. Experiments on different mediums (fresh-, brackish- and seawater) were designed to run at present-day and near-future conditions (T°=+4 °C, pH=△-0.4). Sampling was taken at different time scales from minutes to hours for one day. The main challenge was to evaluate the availability of La and Gd under environmental conditions closely related to climate changes scenarios. Furthermore, this study will contribute to the baseline knowledge by which future research towards understanding REE patterns and toxicity will build upon. Lanthanum and Gd behave differently with salinity. Temperature also affects the availability of dissolved La in freshwater. On the other hand, pH reduction causes the decrease of Gd in freshwater. In this medium, concentrations reduce sharply, presumably due to sorption processes or precipitates. In the brackish water experiment only the dissolved La levels in the Warming (T°=+4 °C) and Warming & Acidification (T°=+4 °C, pH=△0.4) diminished significantly through time. Dissolved La and Gd levels in seawater were relatively constant with time. The speciation of both elements is also of great relevance for ecotoxicological experiments. The trivalent free ions (La3+ and Gd3+) were the most common species in the trials. However, as ionic strength increases, the availability of other complexes rose, which should be subject of great attention for upcoming ecotoxicological studies.
Collapse
Affiliation(s)
- Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal; Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Tiago F Grilo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Clara Lopes
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal
| | - Pedro Brito
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Caetano
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Raimundo
- Division of Oceanography and Marine Environment, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
12
|
Dridi N, Ferreira R, Bouslimi H, Brito P, Martins-Dias S, Caçador I, Sleimi N. Assessment of Tolerance to Lanthanum and Cerium in Helianthus Annuus Plant: Effect on Growth, Mineral Nutrition, and Secondary Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070988. [PMID: 35406967 PMCID: PMC9002919 DOI: 10.3390/plants11070988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Rare earth elements (REEs) present a group of nonessential metals for the growth and development of plants. At high concentrations, they can induce internal stress and disturb the physiological and biochemical mechanisms in plants. The potential uptake of lanthanum (La) and cerium (Ce) by the horticultural plant Helianthus annuus and the effect of these elements on its growth, its absorption of macroelements, and the contents of phenolic compounds and flavonoids were assessed. The plants were exposed to 0, 1, 2.5, 5, and 10 µM of La and Ce for 14 days. The results showed a remarkable accumulation of the two REEs, especially in the roots, which was found to be positively correlated with the total phenolic compound and flavonoid content in the plant shoots and roots. The plant's growth parameter patterns (such as dry weight and water content); the levels of potassium, calcium, and magnesium; and the tolerance index varied with the concentrations of the two studied elements. According to the tolerance index values, H. annuus had more affinity to La than to Ce. Although these metals were accumulated in H. annuus tissues, this Asteraceae plant cannot be considered as a hyperaccumulator species of these two REEs, since the obtained REE content in the plant's upper parts was less than 1000 mg·Kg-1 DW.
Collapse
Affiliation(s)
- Nesrine Dridi
- LR. RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia; (N.D.); (H.B.)
| | - Renata Ferreira
- CERENA, Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Houda Bouslimi
- LR. RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia; (N.D.); (H.B.)
| | - Pedro Brito
- IPMA, Division of Oceanography and Marine Environment, Instituto Português do Mar e da Atmosfera, 1495-165 Algés, Portugal;
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
| | - Susete Martins-Dias
- CERENA, Centro de Recursos Naturais e Ambiente, Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Isabel Caçador
- MARE-FCUL, Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Noomene Sleimi
- LR. RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia; (N.D.); (H.B.)
| |
Collapse
|
13
|
Figueiredo C, Oliveira R, Lopes C, Brito P, Caetano M, Raimundo J. Rare earth elements biomonitoring using the mussel Mytilus galloprovincialis in the Portuguese coast: Seasonal variations. MARINE POLLUTION BULLETIN 2022; 175:113335. [PMID: 35093785 DOI: 10.1016/j.marpolbul.2022.113335] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Increased Rare earth elements (REE) usage culminates in discharges into the environment. Mussels have been chosen as models in biomonitoring, hence, REE concentrations in Mytilus galloprovincialis from six locations on the Portuguese coast were accessed to determine natural concentrations and possible linkage to local ecosystem characteristics and temporal variations, by determining them in distinct seasons (autumn and spring). Samples from Porto Brandão (located on the south bank of the Tagus estuary) exhibited the highest REE concentrations, while mussels from Aljezur (the southernmost point on the Portuguese coast) exhibited the lowest, in both seasons. Overall, ∑REE concentration was greater in the spring. LREE enrichment relative to HREE occurs and a negative Ce and Eu anomaly was observed. This study constitutes the first assessment of REE composition on this model species in the Portuguese coast, in two distinct seasons and contributes to a better understanding of REE uptake for future biomonitoring studies.
Collapse
Affiliation(s)
- Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Rui Oliveira
- IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal
| | - Clara Lopes
- IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Pedro Brito
- IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Caetano
- IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Raimundo
- IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
14
|
Piarulli S, Hansen BH, Ciesielski T, Zocher AL, Malzahn A, Olsvik PA, Sonne C, Nordtug T, Jenssen BM, Booth AM, Farkas J. Sources, distribution and effects of rare earth elements in the marine environment: Current knowledge and research gaps. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118230. [PMID: 34597732 DOI: 10.1016/j.envpol.2021.118230] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Rare earth elements and yttrium (REY) are critical elements for a wide range of applications and consumer products. Their growing extraction and use can potentially lead to REY and anthropogenic-REY chemical complexes (ACC-REY) being released in the marine environment, causing concern regarding their potential effects on organisms and ecosystems. Here, we critically review the scientific knowledge on REY sources (geogenic and anthropogenic), factors affecting REY distribution and transfer in the marine environment, as well as accumulation in- and effects on marine biota. Further, we aim to draw the attention to research gaps that warrant further scientific attention to assess the potential risk posed by anthropogenic REY release. Geochemical processes affecting REY mobilisation from natural sources and factors affecting their distribution and transfer across marine compartments are well established, featuring a high variability dependent on local conditions. There is, however, a research gap with respect to evaluating the environmental distribution and fate of REY from anthropogenic sources, particularly regarding ACC-REY, which can have a high persistence in seawater. In addition, data on organismal uptake, accumulation, organ distribution and effects are scarce and at best fragmentary. Particularly, the effects of ACC-REY at organismal and community levels are, so far, not sufficiently studied. To assess the potential risks caused by anthropogenic REY release there is an urgent need to i) harmonise data reporting to promote comparability across studies and environmental matrices, ii) conduct research on transport, fate and behaviour of ACC-REY vs geogenic REY iii) deepen the knowledge on bioavailability, accumulation and effects of ACC-REY and REY mixtures at organismal and community level, which is essential for risk assessment of anthropogenic REY in marine ecosystems.
Collapse
Affiliation(s)
- Stefania Piarulli
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway.
| | - Bjørn Henrik Hansen
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Tomasz Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway
| | - Anna-Lena Zocher
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
| | - Arne Malzahn
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026, Bodø, Norway
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK, 4000, Roskilde, Denmark
| | - Trond Nordtug
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway
| | - Andy M Booth
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Julia Farkas
- Department of Climate and Environment, SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| |
Collapse
|
15
|
Lopes AR, Figueiredo C, Sampaio E, Diniz M, Rosa R, Grilo TF. Impaired antioxidant defenses and DNA damage in the European glass eel (Anguilla anguilla) exposed to ocean warming and acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145499. [PMID: 33610990 DOI: 10.1016/j.scitotenv.2021.145499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The European eel (Anguilla anguilla) has attracted scientific inquiry for centuries due to its singular biological traits. Within the European Union, glass eel fisheries have declined sharply since 1980, from up to 2000 t (t) to 62.2 t in 2018, placing wild populations under higher risk of extinction. Among the major causes of glass eels collapse, climate change has become a growing worldwide issue, specifically ocean warming and acidification, but, to our knowledge, data on physiological and biochemical responses of glass eels to these stressors is limited. Within this context, we selected some representative biomarkers [e.g. glutathione peroxidase (GPx), catalase (CAT), total antioxidant capacity (TAC), heat shock proteins (HSP70), ubiquitin (Ub) and DNA damage] to study physiological responses of the European glass eel under distinct laboratory-climate change scenarios, such as increased water temperature (+ 4 °C) and pH reduction (- 0.4 units), for 12 weeks. Overall, the antioxidant enzymatic machinery was impaired, both in the muscle and viscera, manifested by significant changes in CAT, GPx and TAC. Heat shock response varied differently between tissues, increasing with temperature in the muscle, but not in the viscera, and decreasing in both tissues under acidification. The inability of HSP to maintain functional protein conformation was responsible for boosting the production of Ub, particularly under warming and acidification, as sole stressors. The overproduction of reactive oxygen species (ROS), either elicited by warming - due to increased metabolic demand - or acidification - through H+ interaction with O2-, generating H2O2 - overwhelmed defense mechanisms, causing oxidative stress and consequently leading to protein and DNA damage. Our results emphasize the vulnerability of eels' early life stages to climate change, with potential cascading consequences to adult stocks.
Collapse
Affiliation(s)
- Ana Rita Lopes
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Rua Jardim Do Tabaco 34, 1149-041 Lisboa, Portugal
| | - Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Division of Environmental Oceanography and Bioprospection, IPMA - Portuguese Institute for Sea and Atmosphere, Av. Brasília, 1449-006 Lisboa, Portugal; UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Eduardo Sampaio
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Mário Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal
| | - Tiago F Grilo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
16
|
Vieira HC, Rodrigues ACM, Pires SFS, Oliveira JMM, Rocha RJM, Soares AMVM, Bordalo MD. Ocean Warming May Enhance Biochemical Alterations Induced by an Invasive Seaweed Exudate in the Mussel Mytilus galloprovincialis. TOXICS 2021; 9:121. [PMID: 34071183 PMCID: PMC8229087 DOI: 10.3390/toxics9060121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Ocean warming and biological invasions are among the most pervasive factors threatening coastal ecosystems with a potential to interact. Ongoing temperature rise may affect physiological and cellular mechanisms in marine organisms. Moreover, non-indigenous species spread has been a major challenge to biodiversity and ecosystem functions and services. The invasive red seaweed Asparagopsis armata has become successfully established in Europe. Its exudate has been considered deleterious to surrounding native species, but no information exists on its effect under forecasted temperature increase. This study evaluated the combined effects of temperature rise and A. armata exudate exposure on the native mussel Mytilus galloprovincialis. Oxidative stress, neurophysiological and metabolism related biomarkers were evaluated after a 96 h-exposure to exudate (0% and 2%) under present (20 °C) and warming (24 °C) temperature scenarios. Short-term exposure to A. armata exudate affected the oxidative stress status and neurophysiology of the mussels, with a tendency to an increasing toxic action under warming. Significant oxidative damage at protein level was observed in the digestive gland and muscle of individuals exposed simultaneously to the exudate and temperature rise. Thus, under a climate change scenario, it may be expected that prolonged exposure to the combined action of both stressors may compromise M. galloprovincialis fitness and survival.
Collapse
Affiliation(s)
- Hugo C. Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (J.M.M.O.); (R.J.M.R.); (A.M.V.M.S.); (M.D.B.)
| | | | | | | | | | | | | |
Collapse
|