1
|
Mahat S, Almasi B, Kjelsen IS, Marmet DS, Heckel G, Roulin A, Buser AM, Mestrot A. Mercury accumulation and biomagnification in the barn owl (Tyto alba) food chain. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138269. [PMID: 40239524 DOI: 10.1016/j.jhazmat.2025.138269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Mercury (Hg) accumulation and biomagnification in the barn owl (Tyto alba) food chain were investigated using bioindicator samples from three trophic levels: (1) soil and moss (atmospheric deposition indicators), (2) small mammal fur from regurgitated pellets (herbivores and omnivores), and (3) barn owl down feathers (apex predators). Spatial analysis identified regional Hg variation in soil, fur and feathers. Statistical models explored the effects of proximity to water bodies, wetlands and nearby pollution sources. The highest total Hg (THg) concentrations were found in feathers (170 ± 160 µg kg-1, n = 246) and fur in regurgitated pellets (150 ± 200 µg kg-1, n = 150), followed by soil (63 ± 17 µg kg-1, n = 63). Bioaccumulation factors were 2.3 (soil to fur) and 2.7 (soil to feather). Biomagnification factor from fur to feathers was 1.8. Methyl Hg (MeHg), measured in a subset of samples, was 120 ± 130 µg kg-1 in fur (n = 29) and 150 ± 98 µg kg-1 in feathers (n = 42), with 75-97 % of THg in feathers as MeHg. Prey composition significantly influenced fur THg levels, with higher concentrations in diets with omnivorous prey (Apodemus flavicollis) compared to herbivorous prey (Microtus arvalis). These findings highlight the importance of diet in Hg monitoring and biomagnification studies.
Collapse
Affiliation(s)
- Sabnam Mahat
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland
| | - Bettina Almasi
- Swiss Ornithological Institute, Seerose 1, Sempach 6204, Switzerland
| | - Ingrid S Kjelsen
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland
| | - Dan S Marmet
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Andreas M Buser
- Swiss Federal Office for the Environment, Monbijoustrasse 40, Bern 3003, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland.
| |
Collapse
|
2
|
Panagos P, Jones A, Lugato E, Ballabio C. A Soil Monitoring Law for Europe. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400336. [PMID: 40071225 PMCID: PMC11891572 DOI: 10.1002/gch2.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/13/2025] [Indexed: 03/14/2025]
Abstract
Over 60% of European soils are unhealthy according to the Soil Mission board estimates and the indicators presented in the European Union (EU) Soil degradation dashboard. The situation may worsen if no policy interventions are taken. The unsustainable use of natural resources, in particular the degradation of soils, precipitates biodiversity loss, exacerbated by the climate crisis. In particular, in the EU alone, soil degradation costs over €50 billion per year due to the loss of essential services they provide and to the impact on human health. Here a more precise estimation of the soil degradation cost related to a set of soil degradation processes, ranging between €40.9 and 72.7 billion per year is presented. This newly updated estimate compared to the Impact assessment of the Soil Monitoring Law takes into account the costs of soil erosion, contamination, phosphorus losses, soil carbon losses, nitrogen losses, soil compaction, and soil sealing. However, this estimation might double if it is added to the costs of soil biodiversity loss, floods, droughts, off-site effects of soil erosion, and health consequences of soil contamination. Therefore, further research is needed to address this knowledge gap and estimate the missing costs. Soil degradation is a critical issue with transboundary implications that requires urgent attention and action at the EU level. The costs of soil degradation are substantial, both in terms of environmental impacts and economic consequences, highlighting the importance of investing in sustainable soil management practices and a harmonized EU soil monitoring system. By addressing soil degradation through the proposed Soil Monitoring Law, investing significant amounts for research and innovation in the Soil Mission, and promoting international cooperation, the EU can take solid steps toward protecting its soil resources and achieving a sustainable future for all.
Collapse
Affiliation(s)
- Panos Panagos
- European CommissionJoint Research Centre (JRC)IspraItaly
| | - Arwyn Jones
- European CommissionJoint Research Centre (JRC)IspraItaly
| | | | | |
Collapse
|
3
|
Méndez-López M, Parente-Sendín A, Acemel-Míguez L, Fonseca F, Santos I, de Figueiredo T, Arias-Estévez M, Alonso-Vega F, Nóvoa-Muñoz JC. Mobilization of mercury by sediment transport after a prescribed fire in NE Portugal: Insight into size classes and temporal variation. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136657. [PMID: 39637819 DOI: 10.1016/j.jhazmat.2024.136657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Terrestrial ecosystems are important sinks for atmospheric mercury (Hg). It is well known that high severity wildfires can mobilize Hg in the surroundings of burned areas due to changes in ecosystem stability, but it is unclear whether this also occurs after lower severity fires, such as prescribed fires. The present study determined Hg concentrations and mobilization rates in different size fractions of sediments collected after a prescribed fire in a scrubland area. Sediments, collected from eight erosion plots on six occasions, were analysed for total Hg, C and N in several size classes (<0.2 mm, 0.2-0.5 mm, 0.5-2 mm and >2 mm) and Hg mobilization rates (HgST) were calculated for each size fraction. Average total Hg were 38, 57, 94 and 126 µg kg-1 for size fractions > 2, 0.5-2, 0.2-0.5 and < 0.2 mm, respectively. Total Hg was negatively correlated with C/N ratio, involving the humification degree of organic matter of sediments in Hg retention. In the last event (eight months after fire), sediments had 45-106 % more Hg, depending on size fraction, compared to the initial event. Mercury mobilization rates varied between 32 and 78 mg ha-1, with the fraction 0.5-2 mm accounting for 46 % of the mobilized Hg. The results revealed that prescribed fires can mobilize Hg, so their use to prevent wildfires must be done with caution.
Collapse
Affiliation(s)
- Melissa Méndez-López
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain.
| | - Andrea Parente-Sendín
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Lara Acemel-Míguez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Felicia Fonseca
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5300-253 Bragança, Portugal
| | - Israel Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5300-253 Bragança, Portugal
| | - Tomás de Figueiredo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Sta. Apolónia, 5300-253 Bragança, Portugal
| | - Manuel Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Flora Alonso-Vega
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain
| | - Juan Carlos Nóvoa-Muñoz
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain.
| |
Collapse
|
4
|
Kong L, Yang H, Yang J, Jiang L, Xu B, Yang T, Liu W. Role of calcium overload-mediated disruption of mitochondrial dynamics in offspring neurotoxicity due to methylmercury exposure during pregnancy and lactation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117835. [PMID: 39893884 DOI: 10.1016/j.ecoenv.2025.117835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Methylmercury (MeHg) is a potent neurotoxicant with neurodevelopmental toxicity that is widely ingested into the body through drinking water and food. MeHg crosses the placental barrier and accumulates in the brain of the fetus, affecting the growth and development of the central nervous system. Although it has been demonstrated that MeHg induces neuronal calcium overload in the rat cerebral cortex, the role of calcium overload in MeHg-induced neurodevelopmental toxicity remains unclear. Here, we used ICR-pregnant mice and their resulting offspring and administered the BAPTA-AM calcium antagonist to investigate the molecular mechanisms by which MeHg exposure during gestation and lactation affects neurodevelopment. We found that exposure to MeHg during gestation and lactation resulted in developmental arrest and neurobehavioral dysfunction in the offspring, with calcium overload, disturbed mitochondrial dynamics, and apoptosis. However, the calcium overload inhibitor BAPTA-AM rescued MeHg-induced neurodevelopmental damage, attenuated the onset of calcium overload, reduced mitochondrial kinetic disturbances and apoptosis. Meanwhile, the activation of the CaM/CaMKII/DRP1 signaling pathway induced by calcium overload was inhibited, and the interaction between DRP1 and BAX was attenuated, which alleviated apoptosis to a certain extent. In summary, our study suggests that MeHg-induced calcium overload may induce disturbed mitochondrial dynamics through activation of the CaM/CaMKII/DRP1 signaling pathway, resulting in neuronal apoptosis.
Collapse
Affiliation(s)
- Lingxu Kong
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Huajie Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Jing Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Liujiangshan Jiang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Bin Xu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Tianyao Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| | - Wei Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| |
Collapse
|
5
|
Bockhoff M, Marginson H, Ittulak H, Roy A, Amyot M. Influence of vegetative cover on snowpack mercury speciation and stocks in the greening Canadian subarctic region. ENVIRONMENTAL RESEARCH 2025; 264:120333. [PMID: 39547571 DOI: 10.1016/j.envres.2024.120333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
A notable greening and warming of the Arctic and Subarctic due to climate change has uncertain implications for the global cycling of mercury (Hg). Snowpacks are dynamic reservoirs for Hg susceptible to solar radiation and wind pumping, with vegetative cover potentially altering Hg photochemistry. However, the impact of northern greening on the transformation of major Hg species and on Hg stocks remain poorly understood. Temporal surface snow and snowpit sampling was conducted under tree canopies and open tundra sites at the boreal-tundra ecotone in Nunavik, Canada. Maximum (mean) concentrations of 69.1 ng/L (8.8 ng/L) total mercury (HgT) and 46.9 ng/L (5.5 ng/L) reactive mercury (HgR) were measured in forest surface snow, with maximums attributed to rapid atmospheric oxidation events. Significant post-depositional reductions were recorded in the bay, tundra, and forest (67-99% HgR) and suggested greater Hg sequestration may occur under tree canopies. Increasing methylmercury (MeHg), HgT, and dissolved organic carbon (DOC) concentrations were detected across a vegetation gradient shifting towards humic-like organic matter. Notably, springtime depth profiles presented an approximate 12-fold greater accumulation of HgT under tree canopies compared to open tundra (p < 0.01), with up to 16-times higher stocks (HgT, MeHg, DOC) at elevated vegetation density (p < 0.05). In the North, increasing vegetation cover and surface warming may favor Hg accumulation and methylation in snowpacks, facilitated by interactions with organic matter, and further enriched by the reduced wind and solar exposure experienced under forest canopies.
Collapse
Affiliation(s)
- Maëlys Bockhoff
- GRIL, Département des Sciences Biologiques, Université de Montréal, QC, H2V 0B3, Canada
| | - Holly Marginson
- GRIL, Département des Sciences Biologiques, Université de Montréal, QC, H2V 0B3, Canada
| | - Henry Ittulak
- Northern Village of Kangiqsualujjuaq, QC, J0M 1N0, Canada
| | - Alexandre Roy
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, QC, Canada; Centre d'Études Nordiques, Québec, Canada
| | - Marc Amyot
- GRIL, Département des Sciences Biologiques, Université de Montréal, QC, H2V 0B3, Canada; Centre d'Études Nordiques, Québec, Canada.
| |
Collapse
|
6
|
Chen M, Neupane B, Zhan X, Liu T, Lin Z, Gao C, Zaccone C, Bao K. Three thousand years of Hg pollution recorded in mangrove wetland sediments from South China. ENVIRONMENTAL RESEARCH 2024; 252:118866. [PMID: 38580002 DOI: 10.1016/j.envres.2024.118866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Mercury (Hg) is known to affect aquatic, terrestrial ecosystems as well as human health, through biomagnification. Mangrove wetlands are potential Hg sinks because of their low tidal velocity, fast sedimentation rate, strong reducing condition and high organic matter content. The spatial and temporal distribution of Hg has been a hot topic of recent studies in mangrove wetlands. In this study, we investigated Hg concentration, accumulation rate and isotopes to reconstruct the Hg pollution history and to differentiate its potential sources in the Gaoqiao mangrove wetland (Guangdong province), which is part of the largest mangrove area in China. We reconstructed a first, continuous, high-resolution Hg pollution history over the last 3000 years in South China. Our findings show that mangrove wetland sediments are more enriched in Hg than the adjacent grasslands. The increased Hg concentration and δ202Hg in recent sediments mirror the enhanced anthropogenic impacts; Hg concentrations in areas with high levels of anthropogenic disturbance are up to 5× higher than the average background value (9.9 ± 1.2 μg kg-1). Compared to mangroves in coastal areas of South China and around the world, the Hg concentration in Gaoqiao is much lower. The significant increase of Hg since the 1950s and the major Hg peak since the 1980s were the evidence of the human activities influences and indicated the possible start date of Anthropocene. After 2007 CE, a decline in Hg pollution occurs due to the effective implementation of the mangrove protection policy. Three potential sources were identified by the Hg isotope traces including urban gaseous Hg, industrial Hg, and regional soil and leaf litter Hg input.
Collapse
Affiliation(s)
- Minqi Chen
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Bigyan Neupane
- School of Geography, South China Normal University, Guangzhou, 510631, China; Institute of Fundamental Research and Studies (InFeRS), Kathmandu, 44600, Nepal
| | - Xuan Zhan
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, 510611, China
| | - Ting Liu
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Zhanyi Lin
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Changjun Gao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, 37134, Italy.
| | - Kunshan Bao
- School of Geography, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
7
|
Zeiss R, Briones MJI, Mathieu J, Lomba A, Dahlke J, Heptner LF, Salako G, Eisenhauer N, Guerra CA. Effects of climate on the distribution and conservation of commonly observed European earthworms. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14187. [PMID: 37768192 DOI: 10.1111/cobi.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Belowground biodiversity distribution does not necessarily reflect aboveground biodiversity patterns, but maps of soil biodiversity remain scarce because of limited data availability. Earthworms belong to the most thoroughly studied soil organisms and-in their role as ecosystem engineers-have a significant impact on ecosystem functioning. We used species distribution modeling (SDMs) and available data sets to map the spatial distribution of commonly observed (i.e., frequently recorded) earthworm species (Annelida, Oligochaeta) across Europe under current and future climate conditions. First, we predicted potential species distributions with commonly used models (i.e., MaxEnt and Biomod) and estimated total species richness (i.e., number of species in a 5 × 5 km grid cell). Second, we determined how much the different types of protected areas covered predicted earthworm richness and species ranges (i.e., distributions) by estimating the respective proportion of the range area. Earthworm species richness was high in central western Europe and low in northeastern Europe. This pattern was mainly associated with annual mean temperature and precipitation seasonality, but the importance of predictor variables to species occurrences varied among species. The geographical ranges of the majority of the earthworm species were predicted to shift to eastern Europe and partly decrease under future climate scenarios. Predicted current and future ranges were only poorly covered by protected areas, such as national parks. More than 80% of future earthworm ranges were on average not protected at all (mean [SD] = 82.6% [0.04]). Overall, our results emphasize the urgency of considering especially vulnerable earthworm species, as well as other soil organisms, in the design of nature conservation measures.
Collapse
Affiliation(s)
- Romy Zeiss
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Maria J I Briones
- Departamento de Ecologia y Biologia Animal, Universidade de Vigo, Vigo, Spain
| | - Jérome Mathieu
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université de Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Angela Lomba
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Jessica Dahlke
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Martin Luther University Halle-Wittenberg (MLU), Naturwissenschaftliche Fakultät 1, Halle (Saale), Germany
| | - Laura-Fiona Heptner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Gabriel Salako
- Soil Zoology Division, Senckenberg Museum of Natural History, Görlitz, Germany
- Department of Environmental Management and Toxicology, Kwara State University, Malete, Nigeria
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Martin Luther University Halle-Wittenberg (MLU), Naturwissenschaftliche Fakultät 1, Halle (Saale), Germany
| |
Collapse
|
8
|
Becerra-Lira E, Rodriguez-Achata L, Muñoz Ushñahua A, Corvera Gomringer R, Thomas E, Garate-Quispe J, Hilares Vargas L, Nascimento Herbay PR, Gamarra Miranda LA, Umpiérrez E, Guerrero Barrantes JA, Pillaca M, Cusi Auca E, Peña Valdeiglesias J, Russo R, Del Castillo Torres D, Velasquez Ramírez MG. Spatio-temporal trends of mercury levels in alluvial gold mining spoils areas monitored between rainy and dry seasons in the Peruvian Amazon. ENVIRONMENTAL RESEARCH 2024; 245:118073. [PMID: 38159662 DOI: 10.1016/j.envres.2023.118073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Artisanal and small-scale gold mining (ASGM) in the Amazon has degraded tropical forests and escalated mercury (Hg) pollution, affecting biodiversity, ecological processes and rural livelihoods. In the Peruvian Amazon, ASGM annually releases some 181 tons of Hg into the environment. Despite some recent advances in understanding the spatial distribution of Hg within gold mine spoils and the surrounding landscape, temporal dynamics in Hg movement are not well understood. We aimed to reveal spatio-temporal trends of soil Hg in areas degraded by ASGM.,. We analyzed soil and sediment samples during the dry and rainy seasons across 14 ha of potentially contaminated sites and natural forests, in the vicinities of the Native community of San Jacinto in Madre de Dios, Peru. Soil Hg levels of areas impacted by ASGM (0.02 ± 0.02 mg kg-1) were generally below soil environmental quality standards (6.60 mg kg-1). However, they showed high variability, mainly explained by the type of natural cover vegetation, soil organic matter (SOM), clay and sand particles. Temporal trends in Hg levels in soils between seasons differed between landscape units distinguished in the mine spoils. During the rainy season, Hg levels decreased up to 45.5% in uncovered soils, while in artificial pond sediments Hg increased by up to 961%. During the dry season, uncovered degraded soils were more prone to lose Hg than sites covered by vegetation, mainly due to higher soil temperatures and concomitantly increasing volatilization. Soils from natural forests and degraded soil covered by regenerating vegetation showed a high capacity to retain Hg mainly due to the higher plant biomass, higher SOM, and increasing concentrations of clay particles. Disturbingly, our findings suggest high Hg mobility from gold mine spoil to close by sedimentary materials, mainly in artificial ponds through alluvial deposition and pluvial lixiviation. Thus, further research is needed on monitoring, and remediation of sediments in artificial to design sustainable land use strategies.
Collapse
Affiliation(s)
- Edwin Becerra-Lira
- Desarrollo de Tecnologías para el Fortalecimiento de Sistemas Productivos en Base a la Castaña y Shiringa, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Jr. Ica N◦1162, Puerto Maldonado, Apartado Postal, 17001, Peru.
| | - Liset Rodriguez-Achata
- Departamento Académico de Ciencias Básicas, Universidad Nacional Amazónica de Madre de Dios, Av. Jorge Chávez 1160, Puerto Maldonado, Peru.
| | - Adenka Muñoz Ushñahua
- Proyecto Recuperación de áreas Degradadas, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Puerto Maldonado, Peru.
| | - Ronald Corvera Gomringer
- Dirección Regional IIAP Madre de Dios y Selva Sur, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Jr. Ica N◦1162, Puerto Maldonado, Apartado Postal, 17001, Peru.
| | - Evert Thomas
- Bioversity International, Av. La Molina, 1895, Lima, Apartado Postal Lima12, Peru.
| | - Jorge Garate-Quispe
- Departamento Académico de Ingeniería Forestal y Medio Ambiente, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, 17001, Peru.
| | - Litcely Hilares Vargas
- Proyecto Recuperación de áreas Degradadas, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Puerto Maldonado, Peru.
| | - Pedro Romel Nascimento Herbay
- Proyecto Recuperación de áreas Degradadas, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Puerto Maldonado, Peru.
| | | | - Eleuterio Umpiérrez
- Coordinador Empresarial del IPTP, Instituto Polo Tecnológico de Pando Facultad de Química - UDELAR Montevideo-Uruguay, Uruguay.
| | - Juan Antonio Guerrero Barrantes
- Departamento de Suelos, Universidad Nacional Agraria, La Molina (UNALM), Av. La Molina s/n, Lima, Perú, Apartado Postal Lima12, Peru.
| | - Martin Pillaca
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, 17000, Madre de Dios, Peru.
| | - Edgar Cusi Auca
- Desarrollo de Tecnologías para el Fortalecimiento de Sistemas Productivos en Base a la Castaña y Shiringa, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Jr. Ica N◦1162, Puerto Maldonado, Apartado Postal, 17001, Peru.
| | - Joel Peña Valdeiglesias
- Departamento Académico de Ingeniería Forestal y Medio Ambiente, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, 17001, Peru.
| | | | - Dennis Del Castillo Torres
- Programa BOSQUES, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Iquitos, Apartado Postal, 16000, Peru.
| | | |
Collapse
|
9
|
Nucera S, Serra M, Caminiti R, Ruga S, Passacatini LC, Macrì R, Scarano F, Maiuolo J, Bulotta R, Mollace R, Bosco F, Guarnieri L, Oppedisano F, Ilari S, Muscoli C, Palma E, Mollace V. Non-essential heavy metal effects in cardiovascular diseases: an overview of systematic reviews. Front Cardiovasc Med 2024; 11:1332339. [PMID: 38322770 PMCID: PMC10844381 DOI: 10.3389/fcvm.2024.1332339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction Cardiovascular diseases (CVDs) are the most important cause of premature death and disability worldwide. Environmental degradation and cardiovascular diseases are two keys to health challenges, characterized by a constant evolution in an industrialized world that exploits natural resources regardless of the consequences for health. The etiological risk factors of CVDs are widely known and include dyslipidemia, obesity, diabetes, and chronic cigarette consumption. However, one component that is often underestimated is exposure to heavy metals. The biological perspective explains that different metals play different roles. They are therefore classified into essential heavy metals, which are present in organisms where they perform important vital functions, especially in various physiological processes, or non-essential heavy metals, with a no biological role but, nonetheless, remain in the environment in which they are absorbed. Although both types of metal ions are many times chemically similar and can bind to the same biological ligands, the attention given today to nonessential metals in several eukaryotic species is starting to raise strong concerns due to an exponential increase in their concentrations. The aim of this systematic review was to assess possible correlations between exposure to nonessential heavy metals and increased incidence of cardiovascular disease, reporting the results of studies published in the last 5 years through March 2023. Methods The studies includes reviews retrieved from PubMed, Medline, Embase, and Web of Science databases, in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and following the PICO (Population Intervention Comparison Outcome Population) framework. Results Eight reviews, including a total of 153 studies, were identified. Seven of these review enlighted the association between CVDs and non-essential heavy metals chronic exposure. Discussion It is evident that exposure to heavy metals represent a risk factor for CVDs onset. However, further studies are needed to better understand the effects caused by these metals.
Collapse
Affiliation(s)
- Saverio Nucera
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosamaria Caminiti
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | | - Roberta Macrì
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Department of Health Sciences, Laboratory of Pharmaceutical Biology, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosamaria Bulotta
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rocco Mollace
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | - Francesca Bosco
- Science of Health Department, Section of Pharmacology, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Lorenza Guarnieri
- Science of Health Department, Section of Pharmacology, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Sara Ilari
- Physiology and Pharmacology of Pain, IRCCS San Raffaele Roma, Rome, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Physiology and Pharmacology of Pain, IRCCS San Raffaele Roma, Rome, Italy
| | - Ernesto Palma
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Instituteof Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Renato Dulbecco Institute, Catanzaro, Italy
| |
Collapse
|
10
|
Yunta F, Schillaci C, Panagos P, Van Eynde E, Wojda P, Jones A. Quantitative analysis of the compliance of EU Sewage Sludge Directive by using the heavy metal concentrations from LUCAS topsoil database. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-31835-y. [PMID: 38228950 DOI: 10.1007/s11356-024-31835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
In the European Union (EU), a common understanding of the potential harmful effect of sewage sludge (SS) on the environment is regulated by the Sewage Sludge Directive 86/278/EEC (SSD). Limit values (LVs) for concentrations of heavy metals in soil are listed in Impact Assessment of this directive, and they were transposed by EU member states using different criteria. Member states adopted either single limit values or based on soil factors such as pH and texture to define the maximum limit values for concentrations of heavy metals in soils. Our work presents the first quantitative analysis of the SSD at the European level by using the Land Use and Coverage Area Frame Survey (LUCAS) 2009 topsoil database. The reference values at the European level were arranged taking into account the upper value (EU_UL) and the lower value (EU_LL) for each heavy metal (arsenic, cadmium, copper, chromium, mercury, nickel, lead, and zinc) as well as taking into account the pH of the soil (cadmium, copper, mercury, nickel, lead, and zinc) as introduced in the SSD Annex IA. Single and integrated contamination rate indices were developed to identify those agricultural soils that exceeded the reference values for each heavy metal. In total, 10%, 36%, and 19% of the LUCAS 2009 topsoil samples exceeded the limit values. Additionally, 12% and 16% of agricultural soils exceeded the concentration of at least one single heavy metal when European LVs were fixed following the soil pH in Strategy II compared to those national ones in Strategy I. Generally, all member states apply similar or stricter limit values than those laid down in the SSD. Our work indicates that choosing LVs quantitatively affects further actions such as monitoring and remediation of contaminated soils. The actual soil parameters, such as heavy metal concentrations and soil pH values from the LUCAS 2009 topsoil database, could be used by SSD-involved policy stakeholders not only to lay down the LVs for concentrations of heavy metal in soils but also for monitoring the SSD compliance grade by using the LUCAS surveys over time (past and upcoming LUCAS datasets).
Collapse
Affiliation(s)
- Felipe Yunta
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy.
| | | | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | - Elise Van Eynde
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | - Piotr Wojda
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | - Arwyn Jones
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| |
Collapse
|
11
|
Liu YR, Guo L, Yang Z, Xu Z, Zhao J, Wen SH, Delgado-Baquerizo M, Chen L. Multidimensional Drivers of Mercury Distribution in Global Surface Soils: Insights from a Global Standardized Field Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12442-12452. [PMID: 37506289 DOI: 10.1021/acs.est.3c04313] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Soil stores a large amount of mercury (Hg) that has adverse effects on human health and ecosystem safety. Significant uncertainties still exist in revealing environmental drivers of soil Hg accumulation and predicting global Hg distribution owing to the lack of field data from global standardized analyses. Here, we conducted a global standardized field survey and explored a holistic understanding of the multidimensional environmental drivers of Hg accumulation in global surface soils. Hg content in surface soils from our survey ranges from 3.8 to 618.2 μg kg-1 with an average of 74.0 μg kg-1 across the globe. Atmospheric Hg deposition, particularly vegetation-induced elemental Hg0 deposition, is the major source of surface soil Hg. Soil organic carbon serves as the major substrate for sequestering Hg in surface soils and is significantly influenced by agricultural management, litterfall, and elevation. For human activities, changing land-use could be a more important contributor than direct anthropogenic emissions. Our prediction of a new global Hg distribution highlights the hot spots (high Hg content) in East Asia, the Northern Hemispheric temperate/boreal regions, and tropical areas, while the cold spots (low Hg content) are in arid regions. The holistic understanding of multidimensional environmental drivers helps to predict the Hg distribution in global surface soils under a changing global environment.
Collapse
Affiliation(s)
- Yu-Rong Liu
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Guo
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Zeng Xu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Jiating Zhao
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Hai Wen
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla 41012, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
Matthews F, Verstraeten G, Borrelli P, Vanmaercke M, Poesen J, Steegen A, Degré A, Rodríguez BC, Bielders C, Franke C, Alary C, Zumr D, Patault E, Nadal-Romero E, Smolska E, Licciardello F, Swerts G, Thodsen H, Casalí J, Eslava J, Richet JB, Ouvry JF, Farguell J, Święchowicz J, Nunes JP, Pak LT, Liakos L, Campo-Bescós MA, Żelazny M, Delaporte M, Pineux N, Henin N, Bezak N, Lana-Renault N, Tzoraki O, Giménez R, Li T, Zuazo VHD, Bagarello V, Pampalone V, Ferro V, Úbeda X, Panagos P. EUSEDcollab: a network of data from European catchments to monitor net soil erosion by water. Sci Data 2023; 10:515. [PMID: 37542067 PMCID: PMC10403541 DOI: 10.1038/s41597-023-02393-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
As a network of researchers we release an open-access database (EUSEDcollab) of water discharge and suspended sediment yield time series records collected in small to medium sized catchments in Europe. EUSEDcollab is compiled to overcome the scarcity of open-access data at relevant spatial scales for studies on runoff, soil loss by water erosion and sediment delivery. Multi-source measurement data from numerous researchers and institutions were harmonised into a common time series and metadata structure. Data reuse is facilitated through accompanying metadata descriptors providing background technical information for each monitoring station setup. Across ten European countries, EUSEDcollab covers over 1600 catchment years of data from 245 catchments at event (11 catchments), daily (22 catchments) and monthly (212 catchments) temporal resolution, and is unique in its focus on small to medium catchment drainage areas (median = 43 km2, min = 0.04 km2, max = 817 km2) with applicability for soil erosion research. We release this database with the aim of uniting people, knowledge and data through the European Union Soil Observatory (EUSO).
Collapse
Affiliation(s)
- Francis Matthews
- European Commission, Joint Research Centre, Via Enrico Fermi, 2749, Ispra, VA, 21026, Italy
- Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200e - box 2409, 3001, Leuven, Belgium
| | - Gert Verstraeten
- Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200e - box 2409, 3001, Leuven, Belgium
| | - Pasquale Borrelli
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 146, Roma, Italy
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056, Basel, Switzerland
| | - Matthias Vanmaercke
- Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200e - box 2409, 3001, Leuven, Belgium
| | - Jean Poesen
- Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200e - box 2409, 3001, Leuven, Belgium
- Institute of Earth and Environmental Sciences, Maria Curie-Sklodowska University (UMCS), Kra´snicka Av. 2d, Lublin, 20-718, Poland
| | - An Steegen
- Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200e - box 2409, 3001, Leuven, Belgium
| | - Aurore Degré
- Gembloux Agro-Bio Tech, Uliège, Passage des Déportés 2, Gembloux, 5030, Belgium
| | - Belén Cárceles Rodríguez
- Natural Resources and Forestry, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Camino de Purchil s/n, Granada, 18005, Spain
| | - Charles Bielders
- Earth and Life Institute - environmental sciences, UCLouvain, Croix du sud 2, Louvain-la-Neuve, 1348, Belgium
| | - Christine Franke
- Centre of Geosciences and Geoengineering, Mines Paris-PSL, 35 Rue Saint Honoré, Fontainebleau, 77305, France
| | - Claire Alary
- LGCgE, IMT Nord-Europe, 942 rue Charles Bourseul, Douai, 59508, France
| | - David Zumr
- Department of Landscape Water Conservation, Czech Technical University in Prague, Thákurova 7, Praha 6, Prague, 16629, Czech Republic
| | - Edouard Patault
- Altereo, Innovation and Digital division, 2 Av. Madeleine Bonnaud, Venelles, 13770, France
| | - Estela Nadal-Romero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Montañana 1005, Zaragoza, 50059, Spain
| | - Ewa Smolska
- Faculty of Geography and Regional Studies, University of Warsaw, Krakowskie Przedmieście 30, 00-927, Warsaw, Poland
| | - Feliciana Licciardello
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, Catania, 95123, Italy
| | - Gilles Swerts
- Gembloux Agro-Bio Tech, Uliège, Passage des Déportés 2, Gembloux, 5030, Belgium
| | - Hans Thodsen
- Ecoscience, Aarhus University, C.F. Møllers Allé 3, Aarhus, 8000, Denmark
| | - Javier Casalí
- Department of Engineering; IS-FOOD Institute (Innovation & Sustainable Development in Food Chain), Public University of Navarre, Campus de Arrosadia, Cataluña avenue, Pamplona, Navarra, 31006, Spain
| | - Javier Eslava
- Division of Soils and Climatology, Department of Rural Development and Environment, Government of Navarre, González Tablas Street, 9, Pamplona, Navarra, 31003, Spain
| | | | | | - Joaquim Farguell
- Geography, University of Barcelona, Montalegre 6, Barcelona, 8001, Spain
| | - Jolanta Święchowicz
- Institute of Geography and Spatial Management, Jagiellonian University in Kraków, 7 Gronostajowa Str., Kraków, 30-387, Poland
| | - João Pedro Nunes
- Soil Physics and Land Management, Wageningen University, P.O. Box 47, Wageningen, 6700 AA, Netherlands
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Edifício C2, Piso 5, Sala 2.5.46, Campo Grande, Lisbon, 1749-016, Portugal
| | - Lai Ting Pak
- AREAS, 2 Avenue Foch, 76460, Saint-Valery-en-Caux, France
| | - Leonidas Liakos
- UNISYSTEMS, Rue du Puits Romain 29, Bertrange, L-8070, Luxembourg
| | - Miguel A Campo-Bescós
- Department of Engineering; IS-FOOD Institute (Innovation & Sustainable Development in Food Chain), Public University of Navarre, Campus de Arrosadia, Cataluña avenue, Pamplona, Navarra, 31006, Spain
| | - Mirosław Żelazny
- Institute of Geography and Spatial Management, Jagiellonian University in Kraków, 7 Gronostajowa Str., Kraków, 30-387, Poland
| | - Morgan Delaporte
- LGCgE, IMT Nord-Europe, 942 rue Charles Bourseul, Douai, 59508, France
| | - Nathalie Pineux
- UNISYSTEMS, Rue du Puits Romain 29, Bertrange, L-8070, Luxembourg
| | - Nathan Henin
- Earth and Life Institute - environmental sciences, UCLouvain, Croix du sud 2, Louvain-la-Neuve, 1348, Belgium
| | - Nejc Bezak
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000, Ljubljana, Slovenia
| | - Noemí Lana-Renault
- Ciencias Humanas, University of La Rioja, Luis de Ulloa 2, 26004, La Rioja, Spain
- Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Ourania Tzoraki
- Marine Sciences Department, University of the Aegean, University hill, Mytilene, 81100, Greece
| | - Rafael Giménez
- Department of Engineering; IS-FOOD Institute (Innovation & Sustainable Development in Food Chain), Public University of Navarre, Campus de Arrosadia, Cataluña avenue, Pamplona, Navarra, 31006, Spain
| | - Tailin Li
- Department of Landscape Water Conservation, Czech Technical University in Prague, Thákurova 7, Praha 6, Prague, 16629, Czech Republic
| | - Víctor Hugo Durán Zuazo
- Natural Resources and Forestry, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Camino de Purchil s/n, Granada, 18005, Spain
| | - Vincenzo Bagarello
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, Palermo, 90128, Italy
| | - Vincenzo Pampalone
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, Palermo, 90128, Italy
| | - Vito Ferro
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, Palermo, 90128, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Xavier Úbeda
- Geography, University of Barcelona, Montalegre 6, Barcelona, 8001, Spain
| | - Panos Panagos
- European Commission, Joint Research Centre, Via Enrico Fermi, 2749, Ispra, VA, 21026, Italy.
| |
Collapse
|
13
|
González-Reguero D, Robas-Mora M, Probanza Lobo A, Jiménez Gómez PA. Bioremediation of environments contaminated with mercury. Present and perspectives. World J Microbiol Biotechnol 2023; 39:249. [PMID: 37438584 PMCID: PMC10338569 DOI: 10.1007/s11274-023-03686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
Mercury is a highly toxic heavy metal whose emission sources can be both natural and the result of anthropic activity. Its polluting action on soils, and its ability to spread through the atmosphere and aquatic environments, constitutes a threat to human and environmental health; both for its bioaccumulation capacity and for biomagnification through the trophic chain. For this reason, there is a growing scientific and social interest in the reduction of this heavy metal in ecosystems. Bioremediation based on the use of microorganisms and/or plants is postulated as a sustainable alternative to traditional physicochemical methods. The main strategies used for this purpose (individually or in combination) are the volatilization of the contaminant, biosorption, phytoextraction and phytoremediation. All these tools are based on taking advantage of the natural and evolutionary capacity that different organisms have developed to adapt to the presence of various pollutants in the environment. Based on the consulted bibliography, these bioremediation methodologies focus on the use of microorganisms (freely or associated with plants) have been successfully applied in different ecosystems, postulating themselves as a respectful alternative for the future for the recovery of degraded environments. For these reasons there is a growing interest in the scientific community to design and use new techniques in a "One Health" context, which allow interpreting the positive impact of bioremediation. In this sense, the universalization of Omics techniques has allowed to abound in the knowledge of new bacterial taxa, and their biotechnological application. This study pretends to cover the present knowledge about mercury bioremediation techniques. In the same way, some new techniques and perspectives are presented in order to expand the frontiers of future research.
Collapse
Affiliation(s)
- Daniel González-Reguero
- Department of Pharmaceutical Science and Health, CEU San Pablo University, Montepríncipe Campus, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Madrid, Spain.
| | - Marina Robas-Mora
- Department of Pharmaceutical Science and Health, CEU San Pablo University, Montepríncipe Campus, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Madrid, Spain.
| | - Agustín Probanza Lobo
- Department of Pharmaceutical Science and Health, CEU San Pablo University, Montepríncipe Campus, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Madrid, Spain
| | - Pedro Antonio Jiménez Gómez
- Department of Pharmaceutical Science and Health, CEU San Pablo University, Montepríncipe Campus, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Madrid, Spain
| |
Collapse
|
14
|
Méndez-López M, Eimil-Fraga C, Alonso-Vega F, Rodríguez-Soalleiro R, Álvarez-Rodríguez E, Arias-Estévez M, Nóvoa-Muñoz JC. Variation of Hg concentration and accumulation in the soil of maritime pine plantations along a coast-inland transect in SW Europe. ENVIRONMENTAL RESEARCH 2023; 231:116155. [PMID: 37196692 DOI: 10.1016/j.envres.2023.116155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/13/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Climatic conditions have been shown as a major driver of the fate of Hg in forest ecosystems at a global scale, but less is known about climatic effects at shorter scales. This study assesses whether the concentration and pools of Hg in soils collected from seventeen Pinus pinaster stands describing a coastal-inland transect in SW Europe vary along a regional climatic gradient. In each stand, samples of the organic subhorizons (OL, OF + OH) and the mineral soil (up to 40 cm) were collected and some general physico-chemical properties and total Hg (THg) were analyzed. Total Hg was significantly higher in the OF + OH than in the OL subhorizons (98 and 38 μg kg-1, respectively), favored by a greater organic matter humification in the former. In the mineral soil, mean THg values decreased with depth, ranging from 96 μg kg-1 in the 0-5 cm layers to 54 μg kg-1 in the deepest layers (30-40 cm), respectively. The average Hg pool (PHg) was 0.30 mg m-2 in the organic horizons (92% accumulated in the OF + OH subhorizons), and 27.4 mg m-2 in the mineral soil. Changes in climatic factors, mainly precipitation, along the coast-inland transect resulted in a remarkable variation of THg in the OL subhorizons, consistent with their role as the first receiver of atmospheric Hg inputs. The high precipitation rate and the occurrence of fogs in coastal areas characterized by the oceanic influence would explain the higher THg found in the uppermost soil layers of pine stands located close to the coastline. The regional climate is key to the fate of mercury in forest ecosystems by influencing the plant growth and subsequent atmospheric Hg uptake, the atmospheric Hg transference to the soil surface (wet and dry deposition and litterfall) and the dynamics that determine net Hg accumulation in the forest floor.
Collapse
Affiliation(s)
- Melissa Méndez-López
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain.
| | - Cristina Eimil-Fraga
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela. Rúa Benigno Ledo S/n, 27002, Lugo, Spain
| | - Flora Alonso-Vega
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Roque Rodríguez-Soalleiro
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela. Rúa Benigno Ledo S/n, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Departamento de Edafología y Química Agrícola, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo S/n, 27002, Lugo, Spain
| | - Manuel Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Juan Carlos Nóvoa-Muñoz
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| |
Collapse
|
15
|
Panagos P, Köningner J, Ballabio C, Liakos L, Muntwyler A, Borrelli P, Lugato E. Improving the phosphorus budget of European agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158706. [PMID: 36099959 DOI: 10.1016/j.scitotenv.2022.158706] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Despite phosphorus (P) being crucial for plant nutrition and thus food security, excessive P fertilization harms soil and aquatic ecosystems. Accordingly, the European Green Deal and derived strategies aim to reduce P losses and fertilizer consumption in agricultural soils. The objective of this study is to calculate a soil P budget, allowing the quantification of the P surpluses/deficits in the European Union (EU) and the UK, considering the major inputs (inorganic fertilizers, manure, atmospheric deposition, and chemical weathering) and outputs (crop production, plant residues removal, losses by erosion) for the period 2011-2019. The Land Use/Cover Area frame Survey (LUCAS) topsoil data include measured values for almost 22,000 samples for both available and total P. With advanced machine learning models, we developed maps for both attributes at 500 m resolution. We estimated the available P for crops at a mean value of 83 kg ha-1 with a clear distinction between North and South. The ratio of available P to the total P is about 1:17. The inorganic fertilizers and manure contribute almost equally as P inputs (mean 16 ± 2 kg P ha-1 yr-1 at 90 % confidence level) to agricultural soils, with high regional variations depending on farming practices, livestock density, and cropping systems. The P outputs came mainly from the exportation by the harvest of crop products and residues (97.5 %) and, secondly, by erosion. Using a sediment distribution model, we quantified the P fluxes to river basins and sea outlets. In the EU and UK, we estimated an average surplus of 0.8 kg P ha-1 yr-1 with high variability between countries with some regional variations. The P annual budget at regional scale showed ample possibility to improve P management by both reducing inputs in regions with high surplus (and P soil available) and rebalancing fertilization in those at risk of soil fertility depletion.
Collapse
Affiliation(s)
- Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Julia Köningner
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Leonidas Liakos
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Muntwyler
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Emanuele Lugato
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
16
|
Bardelli F, Rimondi V, Lattanzi P, Rovezzi M, Isaure MP, Giaccherini A, Costagliola P. Pinus nigra bark from a mercury mining district studied with high resolution XANES spectroscopy. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1748-1757. [PMID: 35972271 DOI: 10.1039/d2em00239f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tree bark near former mercury (Hg) mines and roasting plants is known to have exceptionally high (up to several mg kg-1) Hg concentrations. This study explores the change of Hg speciation with depth (down to 25-30 mm from the outermost surface) in black pine (Pinus nigra) bark by means of high-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy at the Hg LIII-edge. Principal component analysis and linear combination fitting applied to the HR-XANES spectra suggested that in the outermost layer (∼0-2 mm from the surface), roughly 50% of Hg is in the form of nanoparticulate metacinnabar (nano-β-HgS). A progressive increase in Hg-organic species (Hg bound to thiol groups) is found in deeper bark layers, while nano-β-HgS may decrease below the detection limit in the deepest layers. Notably, bark layers did not contain cinnabar (α-HgS), which was found in the nearby soils along with β-HgS (bulk), nor Hg0, which is the main Hg species in the atmosphere surrounding the sampled trees. These observations suggested that nano-β-HgS, at least in part, does not originate from mechanically trapped wind-blown particulates from the surrounding soil, but may be the product of biochemical reactions between gaseous elemental Hg and the bark tissue.
Collapse
Affiliation(s)
| | | | | | - Mauro Rovezzi
- Univ. Grenoble Alpes, CNRS, IRD, Irstea, OSUG, FAME, Météo France, Grenoble, France.
| | - Marie-Pierre Isaure
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| | | | | |
Collapse
|
17
|
Gfeller L, Caplette JN, Frossard A, Mestrot A. Organo-mercury species in a polluted agricultural flood plain: Combining speciation methods and polymerase chain reaction to investigate pathways of contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119854. [PMID: 35998774 DOI: 10.1016/j.envpol.2022.119854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The analysis of organic mercury (Hg) species in polluted soils is a necessary tool to assess the environmental risk(s) of mercury in contaminated legacy sites. The artificial formation of monomethylmercury (MeHg) during soil extraction and/or analysis is a well-known limitation and is especially relevant in highly polluted areas where MeHg/Hg ratios are notoriously low. Although this has been known for almost 30 years, the thorough characterisation of artificial formation rates is rarely a part of the method development in scientific literature. Here we present the application of two separate procedures (inorganic Hg (iHg) spiking and double-spike isotope dilution analyses (DSIDA)) to determine and correct for artificial Hg methylation in MeHg-selective acid-leaching/organic solvent extraction procedure. Subsequently, we combined corrected MeHg and ethylmercury (EtHg) measurements with PCR amplification of hgcA genes to distinguish between naturally formed MeHg from primary deposited MeHg in soils from a legacy site in a Swiss mountain valley. We found the DSIDA procedure incompatible with the organomercury selective extraction method due to the quantitative removal of iHg. Methylation factors from iHg spiking were in the range of (0.0075 ± 0.0001%) and were consistent across soils and sediment matrices. Further, we suggest that MeHg was deposited and not formed in-situ in two out of three studied locations. Our line of evidence consists of 1) the concomitant detection of EtHg, 2) the elevated MeHg concentrations (up to 4.84 μg kg-1), and 3) the absence of hgcA genes at these locations. The combination of Hg speciation and methylation gene (hgcA) abundance analyses are tools suited to assess Hg pollution pathways at Hg legacy sites.
Collapse
Affiliation(s)
- Lorenz Gfeller
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland
| | - Jaime N Caplette
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland
| | - Aline Frossard
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Hallerstrasse 12, CH-3012 Bern, Switzerland.
| |
Collapse
|
18
|
Vieira AMD, Vaňková M, Campos I, Trubač J, Baieta R, Mihaljevič M. Estimation of mercury emissions from the forest floor of a pine plantation during a wildfire in central Portugal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:755. [PMID: 36083387 DOI: 10.1007/s10661-022-10436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) concentrations in soils and Hg releases from soils during wildfires are not well characterised in Portugal, even though wildfire activity continues to increase around the Mediterranean. This study focused on the low to moderate severity wildfire in Pombal (Portugal) in 2019, which consumed 12.5 ha of maritime pine (Pinus pinaster Ait.). We evaluated Hg concentrations in soil profiles and Hg pools in organic horizons to assess the fire-induced Hg emissions. Moreover, impacts of the fire on forest floor properties were estimated. Four soil profiles were sampled, two at the burned area and two at a nearby unburned area. The soil profiles displayed a typical Hg distribution, with higher Hg concentrations (156 µg kg-1) in the organic horizons with a sharp decrease in the mineral layers. The bond between organic matter and Hg was evident along the profiles, with a strong correlation between TOC and Hg. Ratios of Hg/TOC in the surface layers of the soil were similar in all profiles. The mean organic Hg pool at the studied site was calculated at 10.6 g ha-1. The fire did not seem to affect the topsoil properties based on visual indicators and the lack of statistical differences (p > 0.05) among measured fire-sensitive chemical soil properties (pH, CEC, TOC, TS) between the topsoils of the burned and unburned areas. If we consider a hypothetical complete combustion of the organic layer (743 Mg) and unaffected topsoil, we estimated a release of 133 g of Hg from the burned area. The study emphasised the importance of the forest floor for Hg retention and its crucial role in Hg emissions during wildfires in a country increasingly affected by climate change.
Collapse
Affiliation(s)
- Alda Maria Domingues Vieira
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic.
| | - Maria Vaňková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Isabel Campos
- Centre for Environmental and Marine Studies, Department of Environment and Planning, CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jakub Trubač
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Rafael Baieta
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| |
Collapse
|
19
|
Reimann C, Fabian K. Quantifying diffuse contamination: Comparing silver and mercury in organogenic and minerogenic soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155065. [PMID: 35395296 DOI: 10.1016/j.scitotenv.2022.155065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
For both, silver (Ag) and mercury (Hg), the median concentrations in an aqua regia extraction of minerogenic top- and subsoil from continental scale geochemical surveys (Australia, China, Europe) are around 0.02 mg/kg. When the soil O horizon is collected as topsoil sample, the concentration of again both elements is higher by about a factor of 10 (range 7-30), with median concentrations around 0.2 mg/kg Ag and Hg. Geochemical maps of top- and subsoil at different scales for both elements display regional patterns which reflect mainly geology, climate and topography. Anthropogenic sources like mines, power plants, or major cities visually occur only as local anomalies. For Ag in organogenic topsoil the maximum possible input due to diffuse contamination is estimated to be in the 0.02 mg/kg range, about 10% of the median concentration in the soil O horizon. For Hg this value is slightly higher at 0.03 mg/kg. In the soil O horizon Hg concentrations show less variability than in the C horizon. Substantial Hg soil contamination should lead to noticeably increased Hg/Ag ratios.
Collapse
Affiliation(s)
| | - Karl Fabian
- Norwegian University of Science and Technology (NTNU), S. P. Andersens veg 15a, 7031 Trondheim, Norway.
| |
Collapse
|
20
|
Lv Q, Xia N, Gao L, Han B. Detection of mercury ions using graphene oxide sensors assisted by Ag@SiO2. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Cossa D, Knoery J, Bănaru D, Harmelin-Vivien M, Sonke JE, Hedgecock IM, Bravo AG, Rosati G, Canu D, Horvat M, Sprovieri F, Pirrone N, Heimbürger-Boavida LE. Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3840-3862. [PMID: 35244390 DOI: 10.1021/acs.est.1c03044] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) and especially its methylated species (MeHg) are toxic chemicals that contaminate humans via the consumption of seafood. The most recent UNEP Global Mercury Assessment stressed that Mediterranean populations have higher Hg levels than people elsewhere in Europe. The present Critical Review updates current knowledge on the sources, biogeochemical cycling, and mass balance of Hg in the Mediterranean and identifies perspectives for future research especially in the context of global change. Concentrations of Hg in the Western Mediterranean average 0.86 ± 0.27 pmol L-1 in the upper water layer and 1.02 ± 0.12 pmol L-1 in intermediate and deep waters. In the Eastern Mediterranean, Hg measurements are in the same range but are too few to determine any consistent oceanographical pattern. The Mediterranean waters have a high methylation capacity, with MeHg representing up to 86% of the total Hg, and constitute a source of MeHg for the adjacent North Atlantic Ocean. The highest MeHg concentrations are associated with low oxygen water masses, suggesting a microbiological control on Hg methylation, consistent with the identification of hgcA-like genes in Mediterranean waters. MeHg concentrations are twice as high in the waters of the Western Basin compared to the ultra-oligotrophic Eastern Basin waters. This difference appears to be transferred through the food webs and the Hg content in predators to be ultimately controlled by MeHg concentrations of the waters of their foraging zones. Many Mediterranean top-predatory fish still exceed European Union regulatory Hg thresholds. This emphasizes the necessity of monitoring the exposure of Mediterranean populations, to formulate adequate mitigation strategies and recommendations, without advising against seafood consumption. This review also points out other insufficiencies of knowledge of Hg cycling in the Mediterranean Sea, including temporal variations in air-sea exchange, hydrothermal and cold seep inputs, point sources, submarine groundwater discharge, and exchanges between margins and the open sea. Future assessment of global change impacts under the Minamata Convention Hg policy requires long-term observations and dedicated high-resolution Earth System Models for the Mediterranean region.
Collapse
Affiliation(s)
- Daniel Cossa
- Université Grenoble Alpes, ISTerre, CS 40700, 38058 Grenoble Cedex 9, France
| | - Joël Knoery
- Ifremer, Centre Atlantique de Nantes, BP 44311, 44980 Nantes, France
| | - Daniela Bănaru
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Mireille Harmelin-Vivien
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse, CNRS/Observatoire Midi-Pyrénées (OMP)/Université de Toulouse, 31400 Toulouse, France
| | - Ian M Hedgecock
- Istituto sull'inquinamento atmosferico, CNR-IIA, 87036 Rende, Italy
| | | | - Ginevra Rosati
- Istituto Nazionale di Oceanografia e di Geofisca Sperimentale (OGS), 34010 Trieste, Italy
| | - Donata Canu
- Istituto Nazionale di Oceanografia e di Geofisca Sperimentale (OGS), 34010 Trieste, Italy
| | | | | | - Nicola Pirrone
- Istituto sull'inquinamento atmosferico, CNR-IIA, 87036 Rende, Italy
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| |
Collapse
|
22
|
The Renaissance of Wild Food Plants: Insights from Tuscany (Italy). Foods 2022; 11:foods11030300. [PMID: 35159452 PMCID: PMC8834290 DOI: 10.3390/foods11030300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
This paper provides an overview of wild food plants traditionally used in the gastronomy of Tuscany, an Italian region with high biological diversity and whose cultural heritage is well known. Forty-nine bibliographic sources, including five unpublished studies, were reviewed. A list of species with ecological characteristics, plant parts used, use category (food, liquor, or seasoning), methods of preparation (raw or cooked), and recipes is presented. The use of 357 taxa (3711 use reports, URs), was recorded, belonging to 215 genera and 72 botanical families. Over the total taxa, 12 are new for Tuscany, 52 seem not to be present in other Italian regions, and 54 were not detected in the consulted European ethnobotanical literature. Of these taxa, 324 (3117 URs) were used as food, while 49 (178 URs) and 81 (416 URs) were used for liquor and seasoning, respectively. Of the 17 different food recipes, cooked vegetables constituted the largest group, followed by salads, omelets, snacks, and fillings. The chemical composition of the recorded food plants and the possible safety risks associated to their consumption, as well as their traditional medicinal use, are also shown. This review highlights the richness of ethnobotanical knowledge in Tuscany. Such biocultural heritage can be a “source of inspiration” for agriculture. As a reservoir of potential new crops, wild edible flora may contribute to the development of emerging horticultural sectors such as vertical farming and microgreens production. Moreover, the nutrient content and healthy properties of many wild food plants reported in this study has the ability to meet consumer demand for functional foods.
Collapse
|