1
|
Gwenzi W, Adelodun B, Kumar P, Ajibade FO, Silva LFO, Choi KS, Selvarajan R, Abia ALK, Gholipour S, Mohammadi F, Nikaeen M. Human viral pathogens in the wastewater-source water-drinking water continuum: Evidence, health risks, and lessons for future outbreaks in low-income settings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170214. [PMID: 38278242 DOI: 10.1016/j.scitotenv.2024.170214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Human viral pathogens, including SARS-CoV-2 continue to attract public and research attention due to their disruption of society, global health, and the economy. Several earlier reviews have investigated the occurrence and fate of SARS-CoV-2 in wastewater, and the potential to use such data in wastewater-based epidemiology. However, comprehensive reviews tracking SARS-CoV-2 and other viral pathogens in the wastewater-water-drinking water continuum and the associated risk assessment are still lacking. Therefore, to address this gap, the present paper makes the following contributions: (1) critically examines the early empirical results to highlight the occurrence and stability of SARS-CoV-2 in the wastewater-source water-drinking water continuum, (2) discusses the anthropogenic and hydro(geo)logical processes controlling the circulation of SARS-CoV-2 in the wastewater-source water-drinking water continuum, (3) discusses the risky behaviour, drivers and high-risk settings in the wastewater-source water-drinking water continuum, (4) uses the available empirical data on SARS-CoV-2 occurrence in the wastewater-source water-drinking water continuum to discuss human health risks from multiple exposure pathways, gendered aspects of SARS-CoV-2 transmission via shared on-site sanitation systems, and (5) develops and risk mitigation strategy based on the available empirical evidence and quantitative human risk assessment data. Finally, it presents a comprehensive research agenda on SARS-CoV-2/COVID-19 to guide the mitigation of future similar outbreaks in low-income settings.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Westgate, Harare, Zimbabwe; Currently Alexander von Humboldt Fellow and Guest/Visiting Professor at: Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469, Potsdam, Germany.
| | - Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin 240003, Nigeria; Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar 249404, India; Research and Development Division, Society for AgroEnvironmental Sustainability, Dehradun 248007, India.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, 340001, Nigeria.
| | - Luis F O Silva
- Department of Civil and Environmental Engineering, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlàntico, Colombia.
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences, University of South Africa, Florida branch, Johannesburg, South Africa
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Environmental Research Foundation, Westville 3630, Kwazulu-Natal, South Africa
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Rishan ST, Kline RJ, Rahman MS. New prospects of environmental RNA metabarcoding research in biological diversity, ecotoxicological monitoring, and detection of COVID-19: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11406-11427. [PMID: 38183542 DOI: 10.1007/s11356-023-31776-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Ecosystems are multifaceted and complex systems and understanding their composition is crucial for the implementation of efficient conservation and management. Conventional approaches to biodiversity surveys can have limitations in detecting the complete range of species present. In contrast, the study of environmental RNA (eRNA) offers a non-invasive and comprehensive method for monitoring and evaluating biodiversity across different ecosystems. Similar to eDNA, the examination of genetic material found in environmental samples can identify and measure many species, including ones that pose challenges to traditional methods. However, eRNA is degraded quickly and therefore shows promise in detection of living organisms closer to their actual location than eDNA methods. This method provides a comprehensive perspective on the well-being of ecosystems, facilitating the development of focused conservation approaches to save at-risk species and uphold ecological equilibrium. Furthermore, eRNA has been recognized as a valuable method for the identification of COVID-19 in the environment, besides its established uses in biodiversity protection. The SARS-CoV-2 virus, which is accountable for the worldwide epidemic, releases RNA particles into the surrounding environment via human waste, providing insights into the feasibility of detecting it in wastewater and other samples taken from the environment. In this article, we critically reviewed the recent research activities that use the eRNA method, including its utilization in biodiversity conservation, ecological surveillance, and ecotoxicological monitoring as well as its innovative potential in identifying COVID-19. Through this review, the reader can understand the recent developments, prospects, and challenges of eRNA research in ecosystem management and biodiversity conservation.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
3
|
Dutra LB, Stein JF, da Rocha BS, Berger A, de Souza BA, Prandi BA, Mangini AT, Jarenkow A, Campos AAS, Fan FM, de Almeida Silva MC, Lipp-Nissinen KH, Loncan MR, Augusto MR, Franco AC, de Freitas Bueno R, Rigotto C. Environmental monitoring of SARS-CoV-2 in the metropolitan area of Porto Alegre, Rio Grande do Sul (RS), Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2129-2144. [PMID: 38057673 PMCID: PMC10791933 DOI: 10.1007/s11356-023-31081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Since starts the coronavirus disease 2019 (COVID-19) pandemic identified the presence of genomic fragments of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in various environmental matrices: domestic sewage, surface waters, and contaminated freshwater. Environmental monitoring of SARS-CoV-2 is a tool for evaluating trend curves over the months, compared to several clinical cases of the disease. The objective of this study was to monitor the SARS-CoV-2 in environmental samples collected in different sites in a metropolitan area of Porto Alegre, Southern Brazil. During 10 months from 2020 to 2021, 300 samples were collected weekly and biweekly from nine points located in 3 cities: one point from a wastewater treatment plant (WWTP) in São Leopoldo (fortnightly collection), two points in Dilúvio Stream in Porto Alegre (fortnightly collection), two points in Pampa and Luiz Rau Streams (weekly collection), and two points in public fountains (fortnightly collection) in Novo Hamburgo. After collection, samples were concentrated by ultracentrifugation, and viral nucleic acids were extracted using MagMax® Core Nucleic Acid Purifications kits and submitted to RT-qPCR, using E, N1, and N2 gene targets of SARS-CoV-2. Only 7% (3/41) samples from public fountains were positive, with a mean viral load (VL) of SARS-CoV-2 RNA of 5.02 × 101 gc/l (2.41~8.59 × 101 gc/l), while the streams had average VL of 7.43 × 105 gc/l (Pampa), 7.06 × 105 gc/l (Luiz Rau), 2.01 × 105 gc/l (Dilúvio), and 4.46 × 105 cg/l (WWTP). The results showed varying levels of viral presence in different sample types, with a demonstrated correlation between environmental viral load and clinical COVID-19 cases. These findings contribute to understanding virus persistence and transmission pathways in the environment. Continuous monitoring, especially in less developed regions, is crucial for early detection of vaccine resistance, new variants, and potential COVID-19 resurgence.
Collapse
Affiliation(s)
- Leticia Batista Dutra
- Laboratory of Molecular Microbiology and Cytotoxicity, Health Sciences Institute, Feevale University, ERS 239 n° 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Janaína Francieli Stein
- Laboratory of Molecular Microbiology and Cytotoxicity, Health Sciences Institute, Feevale University, ERS 239 n° 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Bruna Seixas da Rocha
- Laboratory of Molecular Microbiology and Cytotoxicity, Health Sciences Institute, Feevale University, ERS 239 n° 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Andresa Berger
- Division of Laboratories, Henrique Luis Roessler State Foundation for Environmental Protection (FEPAM), Porto Alegre, RS, CEP 90020-021, Brazil
| | - Beatriz Andrade de Souza
- Division of Laboratories, Henrique Luis Roessler State Foundation for Environmental Protection (FEPAM), Porto Alegre, RS, CEP 90020-021, Brazil
| | - Bruno Aschidamini Prandi
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Arthur Tonietto Mangini
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, CEP 90050-170, Brazil
| | - André Jarenkow
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, RS, CEP 90119-900, Brazil
| | - Aline Alves Scarpellini Campos
- State Center for Health Surveillance, Rio Grande do Sul State Health Department, Porto Alegre, RS, CEP 90119-900, Brazil
| | - Fernando Mainardi Fan
- Hydraulic Research Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, CEP 91501-970, Brazil
| | | | - Katia Helena Lipp-Nissinen
- Division of Laboratories, Henrique Luis Roessler State Foundation for Environmental Protection (FEPAM), Porto Alegre, RS, CEP 90020-021, Brazil
| | - Manuel Rodrigues Loncan
- Division of Laboratories, Henrique Luis Roessler State Foundation for Environmental Protection (FEPAM), Porto Alegre, RS, CEP 90020-021, Brazil
| | - Matheus Ribeiro Augusto
- Center of Engineering, Modelling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo Andre, SP, CEP 09210-580, Brazil
| | - Ana Cláudia Franco
- Virology Laboratory, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Rodrigo de Freitas Bueno
- Center of Engineering, Modelling and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo Andre, SP, CEP 09210-580, Brazil
| | - Caroline Rigotto
- Laboratory of Molecular Microbiology and Cytotoxicity, Health Sciences Institute, Feevale University, ERS 239 n° 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil.
| |
Collapse
|
4
|
Kumar M, Joshi M, Prajapati B, Sirikanchana K, Mongkolsuk S, Kumar R, Gallage TP, Joshi C. Early warning of statewide COVID-19 Omicron wave by sentineled urbanized sewer network monitoring using digital PCR in a province capital city, of Gujarat, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167060. [PMID: 37709091 DOI: 10.1016/j.scitotenv.2023.167060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Wastewater-based epidemiology (WBE) has been implemented globally. However, there remains confusion about the number and frequency of samples to be collected, as well as which types of treatment systems can provide reliable specific details about the virus prevalence in specific areas or communities, enabling prompt management and intervention measures. More research is necessary to fully comprehend the possibility of deploying sentinel locations in sewer networks in larger geographic areas. The present study introduces the first report on wastewater-based surveillance in Gandhinagar City using digital PCR (d-PCR) as a SARS-Cov-2 quantification tool, which describes the viral load from five pumping stations in Gandhinagar from October 2021 to March 2022. Raw wastewater samples (n = 119) were received and analyzed weekly to detect SARS-CoV-2 RNA, 109 of which were positive for N1 or N2 genes. The monthly variation analysis in viral genome copies depicted the highest concentrations in January 2022 and February 2022 (p < 0.05; Wilcoxon signed rank test) coincided with the Omicron wave, which contributed mainly from Vavol and Jaspur pumping stations. Cross-correlation analysis indicated that WBE from five stations in Gandhinagar, i.e., capital city sewer networks, provided two-week lead times to the citywide and statewide active cases (time-series cross-correlation function [CCF]; 0.666 and 0.648, respectively), mainly from individual contributions of the urbanized Kudasan and Vavol stations (CCF; 0.729 and 0.647, respectively). These findings suggest that sewer pumping stations in urbanized neighborhoods can be used as sentinel sites for statewide clinical surveillance and that WBE surveillance using digital PCR can be an efficient monitoring and management tool.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Technologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| | - Bhumika Prajapati
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India; Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Tharindu Pollwatta Gallage
- Program in Environmental Toxicology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| |
Collapse
|
5
|
Mogili NV, Mallu MR, Kodavaty J, Erva RR. Surveillance of SARS-CoV-2 RNA in wastewater matrix: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:67. [PMID: 38117369 DOI: 10.1007/s10661-023-12178-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
SARS-CoV-2 is the agent responsible for the global pandemic sickness, COVID-19. It is an enveloped virus that belongs to the family Coronaviridae. Recent studies have revealed the fecal shedding of the virus and have been found to enter wastewater and aquatic systems. Prolonged viral presence in fecal samples is a common observation in the reported literature. Survival of the virus in the recipient environment could be a crucial factor that influences its fecal-oral transmission. The detection of a novel coronavirus in wastewater opportunity has potential for environmental surveillance at the community or population level. Such a surveillance system can enable the early detection of disease outbreaks in zones with pre-symptomatic/asymptomatic patients and act as a complementary tool for continuous monitoring of quarantine zones. In contrast to developed regions, resource constraints in underdeveloped communities coupled with different sanitation settings may pose a challenge to wastewater sampling and surveillance. To begin, this review summarizes the literature on the presence of SARS-CoV-2 in feces. The approaches for viral extraction, concentration, and detection in wastewater matrices are then highlighted. Finally, investigations on wastewater-based epidemiology for SARS-CoV-2 surveillance are reviewed.
Collapse
Affiliation(s)
- Nitish Venkateswarlu Mogili
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India
| | - Maheswara Reddy Mallu
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Jagadeeshwar Kodavaty
- Department of Chemical Engineering, University of Petroleum & Energy studies, Via Prem Nagar, Bidholi, Dehradun, India
| | - Rajeswara Reddy Erva
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India.
| |
Collapse
|
6
|
Kumar M, Joshi M, Jiang G, Yamada R, Honda R, Srivastava V, Mahlknecht J, Barcelo D, Chidambram S, Khursheed A, Graham DW, Goswami R, Kuroda K, Tiwari A, Joshi C. Response of wastewater-based epidemiology predictor for the second wave of COVID-19 in Ahmedabad, India: A long-term data Perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122471. [PMID: 37652227 DOI: 10.1016/j.envpol.2023.122471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
In this work, we present an eight-month longitudinal study of wastewater-based epidemiology (WBE) in Ahmedabad, India, where wastewater surveillance was introduced in September 2020 after the successful containment of the first wave of COVID-19 to predict the resurge of the infection during the second wave of the pandemic. The study aims to elucidate the weekly resolution of the SARS-CoV-2 RNA data for eight months in wastewater samples to predict the COVID-19 situation and identify hotspots in Ahmedabad. A total of 287 samples were analyzed for SARS-CoV-2 RNA using RT-PCR, and Spearman's rank correlation was applied to depict the early warning potential of WBE. During September 2020 to April 2021, the increasing number of positive wastewater influent samples correlated with the growing number of confirmed clinical cases. It also showed clear evidence of early detection of the second wave of COVID-19 in Ahmedabad (March 2021). 258 out of a total 287 samples were detected positive with at least two out of three SARS-CoV-2 genes (N, ORF- 1 ab, and S). Monthly variation represented a significant decline in all three gene copies in October compared to September 2020, followed by an abrupt increase in November 2020. A similar increment in the gene copies was observed in March and April 2021, which would be an indicator of the second wave of COVID-19. A lead time of 1-2 weeks was observed in the change of gene concentrations compared with clinically confirmed cases. Measured wastewater ORF- 1 ab gene copies ranged from 6.1 x 102 (October 2020) to 1.4 x 104 (November 2020) copies/mL, and wastewater gene levels typically lead to confirmed cases by one to two weeks. The study highlights the value of WBE as a monitoring tool to predict waves within a pandemic, identify local disease hotspots within a city, and guide rapid management interventions.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, 248007, India
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Australia
| | - Rintaro Yamada
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, 920-1192, Japan; Yachiyo Engineering Co., Ltd. Tokyo, 111-8648, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Vaibhav Srivastava
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, 211002, India
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Damia Barcelo
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand, 248007, India; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnol'ogic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003, Girona, Spain
| | | | - Anwar Khursheed
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - David W Graham
- Department of Civil and Environmental Engineering, Newcastle University, Newcastle, UK
| | - Ritusmita Goswami
- Centre for Ecology, Environment and Sustainable Development, Tata Institute of Social Sciences, Guwahati, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, 939-0398, Japan
| | - Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, 248007, India
| |
Collapse
|
7
|
Parida VK, Saidulu D, Bhatnagar A, Gupta AK, Afzal MS. A critical assessment of SARS-CoV-2 in aqueous environment: Existence, detection, survival, wastewater-based surveillance, inactivation methods, and effective management of COVID-19. CHEMOSPHERE 2023; 327:138503. [PMID: 36965534 PMCID: PMC10035368 DOI: 10.1016/j.chemosphere.2023.138503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 06/01/2023]
Abstract
In early January 2020, the causal agent of unspecified pneumonia cases detected in China and elsewhere was identified as a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was the major cause of the COVID-19 outbreak. Later, the World Health Organization (WHO) proclaimed the COVID-19 pandemic a worldwide public health emergency on January 30, 2020. Since then, many studies have been published on this topic. In the present study, bibliometric analysis has been performed to analyze the research hotspots of the coronavirus. Coronavirus transmission, detection methods, potential risks of infection, and effective management practices have been discussed in the present review. Identification and quantification of SARS-CoV-2 viral loads in various water matrices have been reviewed. It was observed that the viral shedding through urine and feces of COVID-19-infected patients might be a primary mode of SARS-CoV-2 transmission in water and wastewater. In this context, the present review highlights wastewater-based epidemiology (WBE)/sewage surveillance, which can be utilized as an effective tool for tracking the transmission of COVID-19. This review also emphasizes the role of different disinfection techniques, such as chlorination, ultraviolet irradiation, and ozonation, for the inactivation of coronavirus. In addition, the application of computational modeling methods has been discussed for the effective management of COVID-19.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland.
| | - Ashok Kumar Gupta
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Mohammad Saud Afzal
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
8
|
Ferreira RDO, Guimarães ATB, Luz TMD, Rodrigues ASDL, Islam ARMT, Rahman MM, Ragavendran C, Kamaraj C, Charlie-Silva I, Durigon EL, Braz HLB, Arias AH, Santiago OC, Barceló D, Malafaia G. First report on the toxicity of SARS-CoV-2, alone and in combination with polyethylene microplastics in neotropical fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163617. [PMID: 37088384 PMCID: PMC10122543 DOI: 10.1016/j.scitotenv.2023.163617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has caused unprecedented negative impacts in the modern era, including economic, social, and public health losses. On the other hand, the potential effects that the input of SARS-CoV-2 in the aquatic environment from sewage may represent on non-target organisms are not well known. In addition, it is not yet known whether the association of SARS-CoV-2 with other pollutants, such as microplastics (MPs), may further impact the aquatic biota. Thus, we aimed to evaluate the possible ecotoxicological effects of exposure of male adults Poecilia reticulata, for 15 days, to inactivated SARS-CoV-2 (0.742 pg/L; isolated SARS.CoV2/SP02.2020.HIAE.Br) and polyethylene MP (PE MPs) (7.1 × 104 particles/L), alone and in combination, from multiple biomarkers. Our data suggest that exposure to SARS-CoV-2 induced behavioral changes (in the open field test), nephrotoxic effect (inferred by the increase in creatinine), hepatotoxic effect (inferred by the increase in bilirubin production), imbalance in the homeostasis of Fe, Ca, and Mg, as well as an anticholinesterase effect in the animals [marked by the reduction of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity]. On the other hand, exposure to PE MPs induced a genotoxic effect (assessed by the comet assay), as well as an increase in enzyme activity alpha-amylase, alkaline phosphatase, and carboxylesterases. However, we did not show synergistic, antagonistic, or additive effects caused by the combined exposure of P. reticulata to SARS-CoV-2 and PE MPs. Principal component analysis (PCA) and values from the "Integrated Biomarker Response" index indicate that exposure to SARS-CoV-2 was determinant for a more prominent effect in the evaluated animals. Therefore, our study sheds light on the ecotoxicity of the new coronavirus in non-target organisms and ratifies the need for more attention to the impacts of COVID-19 on aquatic biota.
Collapse
Affiliation(s)
- Raíssa de Oliveira Ferreira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona 1826, 08034 Barcelona, Spain
| | | | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Ives Charlie-Silva
- Chemistry Institute, São Paulo State University (UNESP) Campus Araraquara, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Andrés Hugo Arias
- National University of the South Bahía Blanca, CONICET Instituto Argentino de Oceanografía (IADO), Argentina
| | - Omar Cruz Santiago
- Multidisciplinary Postgraduate Program for Environmental Sciences, Universidad Autónoma de San Luis Potosí, Mexico
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
9
|
Zhang X, Zhang L, Wang Y, Zhang M, Zhou J, Liu X, Wang Y, Qu C, Han W, Hou M, Deng F, Luo Y, Mao Y, Gu W, Dong Z, Pan Y, Zhang D, Tang S, Zhang L. Detection of the SARS-CoV-2 Delta Variant in the Transboundary Rivers of Yunnan, China. ACS ES&T WATER 2022; 2:2367-2377. [PMID: 37552741 PMCID: PMC9631342 DOI: 10.1021/acsestwater.2c00224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 05/30/2023]
Abstract
Ruili and Longchuan, two border counties in southwestern China, are facing epidemic control challenges due to the high rate of COVID-19 infections originating from neighboring Myanmar. Here, we aimed to establish the applicability of wastewater and environmental water surveillance of SARS-CoV-2 and conduct whole-genome sequencing (WGS) to trace the possible infection origin. In August 2021, total 72 wastewater and river water samples were collected from 32 sampling sites. SARS-CoV-2 ORF1ab and N genes were measured by RT-qPCR. We found that 19 samples (26.39%) were positive, and the viral loads of ORF1ab and N genes were 6.62 × 102-2.55×105 and 1.86 × 103-2.32 × 105 copies/L, respectively. WGS further indicated the sequences in two transboundary river samples, and one hospital wastewater sample belonged to the delta variant, suggesting that the infection source might be areas with high COVID-19 delta variant incidence in Southeast Asia (e.g., Myanmar). We reported for the first time the detection and quantification of SARS-CoV-2 RNA in the transboundary rivers of Myanmar-China. Our findings demonstrate that wastewater and environmental water may provide independent and nonintrusive surveillance points to monitor the global spread of emerging COVID-19 variants of concern, particularly in high-risk regions or border areas with considerable epidemic challenges and poor wastewater treatment facilities.
Collapse
Affiliation(s)
- Xiao Zhang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Liang Zhang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Yuanyuan Wang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Meiling Zhang
- Acute Infectious Disease Prevention and Control
Institute, Yunnan Center for Disease Control and Prevention,
Kunming, Yunnan650022, China
| | - Jienan Zhou
- Acute Infectious Disease Prevention and Control
Institute, Yunnan Center for Disease Control and Prevention,
Kunming, Yunnan650022, China
| | - Xin Liu
- Ruili Center for Disease Control and
Prevention, Ruili, Yunnan678599, China
| | - Yan Wang
- Ruili Center for Disease Control and
Prevention, Ruili, Yunnan678599, China
| | - Changsheng Qu
- Longchuan Center for Disease Control and
Prevention, Longchuan, Yunnan678799, China
| | - Wenxiang Han
- Longchuan Center for Disease Control and
Prevention, Longchuan, Yunnan678799, China
| | - Min Hou
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Yueyun Luo
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Yixin Mao
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Zhaomin Dong
- School of Space and Environment, Beihang
University, Beijing100191, China
| | - Yang Pan
- Institute for Infectious Disease and Endemic Disease Control,
Beijing Center for Disease Prevention and Control,
Beijing100013, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control,
Beijing Center for Disease Prevention and Control,
Beijing100013, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Lan Zhang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| |
Collapse
|
10
|
Kumar M. Spectrum of environmental surveillance of SARS-CoV-2 fragments: Questions, quests, and conquest. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 30:100401. [PMID: 36339883 PMCID: PMC9617644 DOI: 10.1016/j.coesh.2022.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This works examines the entire spectrum of 'Environmental Surveillance (EnvSurv)' of SARS-CoV-2 fragments i.e. the questions, quests, and conquests of the technology since early year 2020. The prime focus of the present work to document the journey with achieved objectives and remaining ambitions associated with the technology. Despite the EnvSurv may be regarded as the techniques, which rather achieved more than expected, will it win the struggle for its existence or lose its way once the pandemic and fear associated with it completely fades. Pertaining to this discussions, major researched topics were investigated, followed by enlisting of ten bullets of the past experiences along with corresponding challenges, and finally key targets for the techniques are enlisted. The article targets to be a simple guide of the journey of EnvSur in terms of its effectiveness for treatment, infectivity, monitoring & estimation (TIME) till date.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, Enery Agcres, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
11
|
Joshi M, Kumar M, Srivastava V, Kumar D, Rathore DS, Pandit R, Graham DW, Joshi CG. Genetic sequencing detected the SARS-CoV-2 delta variant in wastewater a month prior to the first COVID-19 case in Ahmedabad (India). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119757. [PMID: 35853573 PMCID: PMC9287018 DOI: 10.1016/j.envpol.2022.119757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 05/23/2023]
Abstract
Wastewater-based genomic surveillance can identify a huge majority of variants shed by the infected individuals within a population, which goes beyond genomic surveillance based on clinical samples (i.e., symptomatic patients only). We analyzed four samples to detect key mutations in the SARS-CoV-2 genome and track circulating variants in Ahmedabad during the first wave (Sep/Nov 2020) and before the second wave (in Feb 2021) of COVID-19 in India. The analysis identified a total of 34 mutations in the spike protein across samples categorized into 23 types. The spike protein mutations were linked to the VOC-21APR-02; B.1.617.2 lineage (Delta variant) with 57% frequency in wastewater samples of Feb 2021. The key spike protein mutations were T19R, L452R, T478K, D614G, & P681R and deletions at 22029 (6 bp), 28248 (6 bp), & 28271 (1 bp). Interestingly, these mutations were not seen in the samples from Sep/Nov 2020 but did appear before the massive second wave of COVID-19 cases, which in India started in early April 2021. In fact, genetic traces of the Delta variant were found in samples of early Feb 2021, more than a month before the first clinically confirmed case of this in March 2021 in Ahmedabad, Gujarat. The present work describes the circulating of SARS-CoV-2 variants in Ahmedabad and confirms the consequential value of wastewater surveillance for the early detection of variants of concerns (VOCs). Such monitoring must be included as a major component of future health protection systems.
Collapse
Affiliation(s)
- Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Sector- 11, Gandhinagar, Gujarat, 382 011, India
| | - Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat, 382 355, India; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| | - Vaibhav Srivastava
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Sector- 11, Gandhinagar, Gujarat, 382 011, India
| | - Dalip Singh Rathore
- Gujarat Biotechnology Research Centre (GBRC), Sector- 11, Gandhinagar, Gujarat, 382 011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Sector- 11, Gandhinagar, Gujarat, 382 011, India
| | - David W Graham
- Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Sector- 11, Gandhinagar, Gujarat, 382 011, India.
| |
Collapse
|
12
|
Kumar M, Jiang G, Kumar Thakur A, Chatterjee S, Bhattacharya T, Mohapatra S, Chaminda T, Kumar Tyagi V, Vithanage M, Bhattacharya P, Nghiem LD, Sarkar D, Sonne C, Mahlknecht J. Lead time of early warning by wastewater surveillance for COVID-19: Geographical variations and impacting factors. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 441:135936. [PMID: 35345777 PMCID: PMC8942437 DOI: 10.1016/j.cej.2022.135936] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 05/05/2023]
Abstract
The global data on the temporal tracking of the COVID-19 through wastewater surveillance needs to be comparatively evaluated to generate a proper and precise understanding of the robustness, advantages, and sensitivity of the wastewater-based epidemiological (WBE) approach. We reviewed the current state of knowledge based on several scientific articles pertaining to temporal variations in COVID-19 cases captured via viral RNA predictions in wastewater. This paper primarily focuses on analyzing the WBE-based temporal variation reported globally to check if the reported early warning lead-time generated through environmental surveillance is pragmatic or latent. We have compiled the geographical variations reported as lead time in various WBE reports to strike a precise correlation between COVID-19 cases and genome copies detected through wastewater surveillance, with respect to the sampling dates, separately for WASH and non-WASH countries. We highlighted sampling methods, climatic and weather conditions that significantly affected the concentration of viral SARS-CoV-2 RNA detected in wastewater, and thus the lead time reported from the various climatic zones with diverse WASH situations were different. Our major findings are: i) WBE reports around the world are not comparable, especially in terms of gene copies detected, lag-time gained between monitored RNA peak and outbreak/peak of reported case, as well as per capita RNA concentrations; ii) Varying sanitation facility and climatic conditions that impact virus degradation rate are two major interfering features limiting the comparability of WBE results, and iii) WBE is better applicable to WASH countries having well-connected sewerage system.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Alok Kumar Thakur
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Shreya Chatterjee
- Encore Insoltech Pvt Ltd, Randesan, Gandhinagar, Gujarat 382 307, India
| | - Tanushree Bhattacharya
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra 835215, India
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Tushara Chaminda
- Department of Civil and Environmental Engineering, University of Ruhuna, Sri Lanka
| | - Vinay Kumar Tyagi
- Environmental BioTechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Meththika Vithanage
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology,SE-100 44, Stockholm, Sweden
| | - Long D Nghiem
- Centre for Technology in Water & Wastewater, University of Technology Sydney, Ultimo 2007, Australia
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, NJ 07030, USA
| | - Christian Sonne
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
- Department of Ecoscience, Aarhus University, Roskilde DK-4000, Denmark
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
13
|
Parida VK, Sikarwar D, Majumder A, Gupta AK. An assessment of hospital wastewater and biomedical waste generation, existing legislations, risk assessment, treatment processes, and scenario during COVID-19. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114609. [PMID: 35101807 PMCID: PMC8789570 DOI: 10.1016/j.jenvman.2022.114609] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 05/23/2023]
Abstract
Hospitals release significant quantities of wastewater (HWW) and biomedical waste (BMW), which hosts a wide range of contaminants that can adversely affect the environment if left untreated. The COVID-19 outbreak has further increased hospital waste generation over the past two years. In this context, a thorough literature study was carried out to reveal the negative implications of untreated hospital waste and delineate the proper ways to handle them. Conventional treatment methods can remove only 50%-70% of the emerging contaminants (ECs) present in the HWW. Still, many countries have not implemented suitable treatment methods to treat the HWW in-situ. This review presents an overview of worldwide HWW generation, regulations, and guidelines on HWW management and highlights the various treatment techniques for efficiently removing ECs from HWW. When combined with advanced oxidation processes, biological or physical treatment processes could remove around 90% of ECs. Analgesics were found to be more easily removed than antibiotics, β-blockers, and X-ray contrast media. The different environmental implications of BMW have also been highlighted. Mishandling of BMW can spread infections, deadly diseases, and hazardous waste into the environment. Hence, the different steps associated with collection to final disposal of BMW have been delineated to minimize the associated health risks. The paper circumscribes the multiple aspects of efficient hospital waste management and may be instrumental during the COVID-19 pandemic when the waste generation from all hospitals worldwide has increased significantly.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Divyanshu Sikarwar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|