1
|
Godono A, Quattrocolo A, Caradonna R, Picciaiola MV, Boffetta P, Seyyedsalehi MS. Occupational Benzene Exposure and Risk of Male Genital Cancers: A Systematic Review and Meta-Analysis. Am J Ind Med 2025. [PMID: 40420647 DOI: 10.1002/ajim.23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/28/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND Benzene is an established Group 1 carcinogen due to its leukemogenic properties. Recent studies suggest that occupational benzene exposure may be associated with solid cancers. However, little is known about its association with male genital cancers. We aimed to summarize the scientific evidence on occupational benzene exposure and the risk of male genital cancers. METHODS We searched for relevant articles in three electronic databases. Methodological quality and the certainty of evidence were evaluated using a modified version of the Newcastle-Ottawa Scale (NOS) and Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment tool. We performed pooled and stratified meta-analyses, as well as meta-regressions to explore potential sources of heterogeneity. RESULTS Thirty-one publications were included. Pooled results of incidence and mortality for prostate and testis cancer did not indicate a significant association with occupational benzene exposure. A borderline association was found for the incidence of prostate cancer (standardized incidence ratio (SIR): 1.07, 95% CI 0.97-1.19). Subgroup analyses stratified by study design and study quality revealed significant heterogeneity, with case-control (relative risk (RR): 1.19, 95% CI 1.04-1.36) and high-quality studies (RR: 1.22, 95% CI 1.14-1.31) showing an increased risk. Both NOS and GRADE assessments yielded mostly low to very low-quality results. CONCLUSIONS This review provides no clear evidence of an association between occupational exposure to benzene and the risk of male genital cancers. Subgroup analysis suggests an increased risk of prostate cancer in high-quality studies. Nevertheless, it is important to acknowledge the methodological limitations of the available studies. Further analyses including methodologically sound studies are needed to corroborate these findings.
Collapse
Affiliation(s)
- Alessandro Godono
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - Andrea Quattrocolo
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - Roberta Caradonna
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | | | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | | |
Collapse
|
2
|
Magnifico S, Hinault-Boyer C, Bost F, Chevalier N. Prostate cancer and pollution: Dangerous connections. ANNALES D'ENDOCRINOLOGIE 2025; 86:101769. [PMID: 40339692 DOI: 10.1016/j.ando.2025.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Prostate cancer is the archetypal hormone-dependent cancer in men, mirroring breast cancer in women. The increase in its prevalence over time raises questions, and occupational exposure data, particularly among agricultural workers, have shown a probable or possible link with exposure to certain endocrine disruptors. The best-known of these is probably chlordecone, used in the French West Indies and responsible for an increased risk of prostate cancer. Outside these situations of occupational and/or acute exposure, it is more difficult to prove that endocrine disruptors are responsible for prostate cancer, particularly through epidemiological studies, the interpretation of which is still difficult. Animal models, in particular murine models, have demonstrated the role of fetal or early neonatal exposure in the development of prostate cancer in adulthood. In vitro models, meanwhile, are shedding light on the mechanisms involved in tumor promotion and progression, involving both classic hormone receptors (AR, ER) and other new signaling pathways. The aim of this review is to report the available data showing the link between exposure to endocrine disruptors and the risk of prostate cancer.
Collapse
Affiliation(s)
- Sébastien Magnifico
- Université Nice Côte d'Azur, Centre Hospitalier Universitaire de Nice, Département d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Hôpital de l'Archet 2, Nice, France; Université Nice Côte d'Azur, Inserm U1065, C3M (Centre Méditerranéen de Médecine Moléculaire), équipe 5 « Cancer, métabolisme et environnement », Nice, France
| | - Charlotte Hinault-Boyer
- Université Nice Côte d'Azur, Inserm U1065, C3M (Centre Méditerranéen de Médecine Moléculaire), équipe 5 « Cancer, métabolisme et environnement », Nice, France; Université Nice Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratoire d'Hormonologie, Hôpital Pasteur, Nice, France
| | - Frédéric Bost
- Université Nice Côte d'Azur, Inserm U1065, C3M (Centre Méditerranéen de Médecine Moléculaire), équipe 5 « Cancer, métabolisme et environnement », Nice, France
| | - Nicolas Chevalier
- Université Nice Côte d'Azur, Centre Hospitalier Universitaire de Nice, Département d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Hôpital de l'Archet 2, Nice, France; Université Nice Côte d'Azur, Inserm U1065, C3M (Centre Méditerranéen de Médecine Moléculaire), équipe 5 « Cancer, métabolisme et environnement », Nice, France.
| |
Collapse
|
3
|
Feijó M, Carvalho TMA, Fonseca LRS, Vaz CV, Pereira BJ, Cavaco JEB, Maia CJ, Duarte AP, Kiss-Toth E, Correia S, Socorro S. Endocrine-disrupting chemicals as prostate carcinogens. Nat Rev Urol 2025:10.1038/s41585-025-01031-9. [PMID: 40379948 DOI: 10.1038/s41585-025-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds that are ubiquitous in the environment and in daily-usage products and interfere with the normal function of the endocrine system leading to adverse health effects in humans. Exposure to these chemicals might elevate the risk of metabolic disorders, developmental and reproductive defects, and endocrine-related cancers. Prostate cancer is the most common hormone-dependent cancer in men, and the fifth leading cause of cancer-related mortality, partly owing to a lack of knowledge about the mechanisms that lead to aggressive castration-resistant forms. In addition to the dependence of early-stage prostate cancer on androgen actions, the prostate is a target of oestrogenic regulation. This hormone dependence, along with the fact that exogenous influences are major risk factors for prostate cancer, make the prostate a likely target of harmful actions from EDCs. Various sources of EDCs and their different modes of action might explain their role in prostate carcinogenesis.
Collapse
Affiliation(s)
- Mariana Feijó
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Bruno J Pereira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - José Eduardo B Cavaco
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J Maia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana P Duarte
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Endre Kiss-Toth
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Sara Correia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Sílvia Socorro
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
4
|
Coradduzza D, Sanna A, Di Lorenzo B, Congiargiu A, Marra S, Cossu M, Tedde A, De Miglio MR, Zinellu A, Mangoni AA, Cogoni AA, Madonia M, Carru C, Medici S. Associations between plasma and urinary heavy metal concentrations and the risk of prostate cancer. Sci Rep 2025; 15:14274. [PMID: 40274938 PMCID: PMC12022027 DOI: 10.1038/s41598-025-97682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Prostate cancer is a leading cause of morbidity and mortality worldwide, with incidence rates projected to double between 2020 and 2040. This growing health challenge highlights the need for improved diagnostic strategies and risk assessment tools to better understand disease etiology and progression. Among environmental factors, heavy metals have been implicated in inflammation and carcinogenesis, yet their specific role in prostate disease remains insufficiently explored. This novel study analyses the relationship between heavy metal concentrations in plasma and urine of patients with benign prostatic hyperplasia, precancerous lesions and prostate cancer. In addition to evaluating key clinical parameters, including age, total PSA levels, hemoglobin concentrations and monocyte/lymphocyte ratio, it aims to determine whether specific heavy metals contribute to the progression of prostate disease and whether they can serve as potential biomarkers for early diagnosis. Our findings reveal significant differences in vanadium and antimony concentrations in plasma, suggesting a potential role in prostate disease pathophysiology. Notably, lower plasma antimony concentrations are associated with an increased risk of PC, while plasma vanadium concentrations are significantly higher in the PL group. Regression analysis further supports the association between heavy metal concentrations and the risk of PL and PC, highlighting the potential of vanadium and copper as biomarkers or therapeutic targets for prostate health. The study also explores the impact of lead exposure on prostate cancer risk, revealing a significant association between urine lead concentration and PC. These findings underscore the complex interaction between heavy metal concentrations and prostate disease risk, emphasizing the need for further research to elucidate underlying mechanisms and explore therapeutic interventions.
Collapse
Affiliation(s)
| | - Andrea Sanna
- SC Chimica Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, 8, 07100, Sassari, Italy
| | - Biagio Di Lorenzo
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | | | - Sonia Marra
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Unit of Urology, University Hospital of Sassari (A.O.U. SS), Sassari, Italy
| | - Maurizio Cossu
- SC Chimica Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, 8, 07100, Sassari, Italy
| | - Alessandro Tedde
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Unit of Urology, University Hospital of Sassari (A.O.U. SS), Sassari, Italy
| | | | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, Flinders University, Adelaide, Australia
| | - Alessio Aligio Cogoni
- Medical Oncology Department, Azienda Ospedaliero-Universitaria di Sassari, Sassari, Italy
| | - Massimo Madonia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Unit of Urology, University Hospital of Sassari (A.O.U. SS), Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- Medical Oncology Department, Azienda Ospedaliero-Universitaria di Sassari, Sassari, Italy
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
5
|
Zhang T, Guo J, Sun W, Huang X, Zhang Z, Jin Y, Hu Z, Qiu S, Zou X. Analysis of Phthalate Monoesters and Bisphenols in Human Prostate Cancer Tissue and Urine. J Sep Sci 2025; 48:e70154. [PMID: 40290064 DOI: 10.1002/jssc.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
A growing concern has been raised about human exposure to phthalates and bisphenols, while data is limited regarding the accumulation of these endocrine disrupting chemicals at the target tissue. In this study, a novel, simple, and sensitive method was successfully developed for the simultaneous determination of nine phthalate monoesters and nine bisphenols in human prostate tissue samples. A solid-liquid extraction procedure was applied following ultra-high performance liquid chromatography tandem mass spectrometry analysis. The detection and quantification limits were in the range of 4.12 × 10-3 to 0.370 ng/g and 1.38 × 10-3 to 1.23 ng/g, respectively. The average spiked recoveries varied from 71.4% to 102%, with relative standard deviations ≤ 10%. Finally, this method was applied to 76 human prostate tissue samples. Four phthalate monoesters (mono-ethyl phthalate, mono-iso-butyl phthalate, mono-n-butyl phthalate, and mono-benzyl phthalate) were detected with the highest frequency of 98.68%, followed by other five phthalate monoesters (71.05% ∼ 94.74%), bisphenol S (72.37%), and bisphenol A (57.89%). Five bisphenols were not detected in any tissue sample. The concentrations of detected phthalate monoesters and bisphenols ranged from 1.12 × 10-3 to 1.86 × 102 ng/g and 6.08 × 10-3 to 39.0 ng/g, respectively, with standard errors ranging from 3.25×10-3 to 4.64 ng/g. Besides, a positive correlation for the concentration of seven phthalate monoesters and bisphenol A could be observed between tissue and urine, which indicates that these metabolites in urine can serve as noninvasive biomarkers to evaluate the true exposure level of prostate tissue. This study provides data and information on exposure to phthalate monoesters and bisphenols in human prostate tissue and the association with their urinary metabolites, supporting further studies of pollutant exposure and prostate disease.
Collapse
Affiliation(s)
- Tianai Zhang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqi Guo
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiyang Sun
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Huang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zilong Zhang
- Department of Urology, Institute of Urology and Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuming Jin
- Department of Urology, Institute of Urology and Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zifan Hu
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shi Qiu
- Department of Urology, Institute of Urology and Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Oncology Institute of Southern Switzerland (IOSI), Institute of Oncology Research, IOR, Bellinzona, Switzerland
| | - Xiaoli Zou
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Lee J, Song M, Kim JH. Carbon footprints in the urologic field: From diagnosis to surgery. Investig Clin Urol 2025; 66:106-113. [PMID: 40047123 PMCID: PMC11885924 DOI: 10.4111/icu.20250004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 03/09/2025] Open
Abstract
Climate change and its effects on society represent an increasingly critical concern. The healthcare industry contributes substantially to carbon emissions and bears responsibility for managing its environmental impact. This review examines recent progress, challenges, and future prospects in reducing the carbon footprint of diagnostic urology without compromising patient care, with particular emphasis on imaging. We analyze the environmental effects of urological procedures and devices, along with practices that can minimize greenhouse gas emissions. Promoting sustainability in healthcare requires a comprehensive approach from manufacturing to disposal, including examination of sterilization-related carbon footprints. This work aims to analyze existing literature on urological carbon footprints, focusing on processes and practices within the field.
Collapse
Affiliation(s)
- Jongsoo Lee
- Department of Urology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Miho Song
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jae Heon Kim
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Yu Z, Yang W, Zhang Q, Zheng M. Unveiling the impact of estrogen exposure on ovarian cancer: a comprehensive risk model and immune landscape analysis. Toxicol Mech Methods 2025; 35:279-291. [PMID: 39252197 DOI: 10.1080/15376516.2024.2402865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
This study examines the impact of estrogenic compounds like bisphenol A (BPA), estradiol (E2), and zearalenone (ZEA) on human ovarian cancer, focusing on constructing a risk model, conducting gene set variation analysis (GSVA), and evaluating immune infiltration. Differential gene expression analysis identified 980 shared differentially expressed genes (DEGs) in human ovarian cells exposed to BPA, E2, and ZEA, indicating disruptions in ribosome biogenesis and RNA processing. Using the cancer genome atlas ovarian cancer (TCGA-OV) dataset, a least absolute shrinkage and selection operator (LASSO)-based risk model was developed incorporating prognostic genes 4-hydroxyphenylpyruvate dioxygenase like (HPDL), Thy-1 cell surface antigen (THY1), and peptidase inhibitor 3 (PI3). This model effectively stratified ovarian cancer patients into high-risk and low-risk categories, showing significant differences in overall survival, disease-specific survival, and progression-free survival. GSVA analysis linked HPDL expression to pathways related to the cell cycle, DNA damage, and repair, while THY1 and PI3 were associated with apoptosis, hypoxia, and proliferation pathways. Immune infiltration analysis revealed distinct immune cell profiles for high and low-expression groups of HPDL, THY1, and PI3, indicating their influence on the tumor microenvironment. The findings demonstrate that estrogenic compounds significantly alter gene expression and oncogenic pathways in ovarian cancer. The risk model integrating HPDL, THY1, and PI3 offers a strong prognostic tool, with GSVA and immune infiltration analyses providing insights into the interplay between these genes and the tumor microenvironment, suggesting potential targets for personalized therapies.
Collapse
Affiliation(s)
- Zhongna Yu
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Weili Yang
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qinwei Zhang
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Mengyu Zheng
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Hassan M, Flanagan TW, Eshaq AM, Altamimi OK, Altalag H, Alsharif M, Alshammari N, Alkhalidi T, Boulifa A, El Jamal SM, Haikel Y, Megahed M. Reduction of Prostate Cancer Risk: Role of Frequent Ejaculation-Associated Mechanisms. Cancers (Basel) 2025; 17:843. [PMID: 40075690 PMCID: PMC11898507 DOI: 10.3390/cancers17050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Prostate cancer (PCa) accounts for roughly 15% of diagnosed cancers among men, with disease incidence increasing worldwide. Age, family history and ethnicity, diet, physical activity, and chemoprevention all play a role in reducing PCa risk. The prostate is an exocrine gland that is characterized by its multi-functionality, being involved in reproductive aspects such as male ejaculation and orgasmic ecstasy, as well as playing key roles in the regulation of local and systemic concentrations of 5α-dihydrotestosterone. The increase in androgen receptors at the ventral prostate is the first elevated response induced by copulation. The regulation of prostate growth and function is mediated by an androgen-dependent mechanism. Binding 5-DHT to androgen receptors (AR) results in the formation of a 5α-DHT:AR complex. The interaction of the 5α-DHT:AR complex with the specific DNA enhancer element of androgen-regulated genes leads to the regulation of androgen-specific target genes to maintain prostate homeostasis. Consequently, ejaculation may play a significant role in the reduction of PCa risk. Thus, frequent ejaculation in the absence of risky sexual behavior is a possible approach for the prevention of PCa. In this review, we provide an insight into possible mechanisms regulating the impact of frequent ejaculation on reducing PCa risk.
Collapse
Affiliation(s)
- Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulaziz M. Eshaq
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Osama K. Altamimi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Hassan Altalag
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Mohamed Alsharif
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Nouf Alshammari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Tamadhir Alkhalidi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Abdelhadi Boulifa
- Berlin Institute of Health, Charité University Hospital, 10117 Berlin, Germany;
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Charité-University Hospital, 10117 Berlin, Germany
| | - Siraj M. El Jamal
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| |
Collapse
|
9
|
Xiong Y, Li Z, Xiong X, Luo Z, Zhong K, Hu J, Sun S, Chen C. Associations between phenol and paraben exposure and the risk of developing breast cancer in adult women: a cross-sectional study. Sci Rep 2025; 15:4038. [PMID: 39900803 PMCID: PMC11791042 DOI: 10.1038/s41598-025-88765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
Increasing evidence suggests that endocrine-disrupting chemicals (EDCs) have adverse effects on breast cancer (BC). The aim of this study was to assess the association between exposure to prevalent EDCs-phenols and parabens-and the risk of developing BC. Data on urinary bisphenol A (BPA), triclosan (TRS), benzophenone-3 (BP3), methyl paraben (MPB), ethyl paraben (EPB), propyl paraben (PPB), and butyl paraben (BUP) were obtained from the 2005-2014 National Health and Nutrition Examination Survey. A total of 4455 subjects were included in this cross-sectional study. The results from the weighted multivariable regression models indicated that exposure to elevated concentrations of TRS increased the risk of developing BC by 2.33 (Q2: 95% CI = 1.45-3.75, p < 0.001) and 1.94 times (Q3: 95% CI = 1.21-3.09, p = 0.006), respectively. The nonlinear association between TRS concentrations and the risk of developing BC was statistically significant (P nonlinear = 0.007), with the restricted cubic splines (RCS) curve exhibiting an inverted U shape. The association between TRS concentrations and the risk of developing BC was more pronounced among overweight individuals (BMI ≥ 25 kg/m2), those aged < 60 years, and white individuals. Weighted quantile sum (WQS) and Bayesian Kernel Machine Regression (BKMR) analysis revealed no significant overall association between mixtures of urinary phenol and paraben metabolites and BC risk. However, TRS exposure was the most influential, with higher TRS concentrations (both continuous and categorical) significantly associated with an increased BC risk, particularly in overweight individuals (BMI ≥ 25 kg/m2), those aged < 60 years, and white individuals.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Xiong Xiong
- Department of Information, Electronic and Bioengineering, Politecnico Di Milano., Piazza Leonardo da Vinci, 32, 20133, Milano, MI, Italy
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Kaixin Zhong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China.
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Ling F, Xie W, Kui X, Cai Y, He M, Ma J. miR-141-3p inhibited BPA-induced proliferation and migration of lung cancer cells through PTGER4. Cytotechnology 2025; 77:28. [PMID: 39741890 PMCID: PMC11683044 DOI: 10.1007/s10616-024-00692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
The chemical substance bisphenol A (BPA) is widely used in household products, and its effect on human health has frequently been the focus of research. The aim of this study was to explore the potential molecular regulatory mechanism of BPA on the proliferation and migration of lung cancer cells. In this study, the H1299 and A549 lung cancer cell lines were selected as the study objects. The cells were treated with different concentrations of BPA (0, 0.1, 1, or 10 μM), and cell viability, proliferation, and migration were evaluated by CCK-8, EdU, clonogenic, and scratch test assays. Western blotting and RT‒qPCR were used to detect the expression of related proteins and genes. Our findings indicated that BPA markedly enhanced both the proliferation and migration capacities of lung cancer cells. In BPA-treated lung cancer cells, the level of miR-141-3p was decreased, PTGER4 expression was significantly increased, and PTGER4 knockdown reduced BPA-induced lung cancer cell proliferation and migration. In addition, miR-141-3p can target and negatively regulate the expression of PTGER4 and further inhibit PI3K/AKT signaling pathway activation and MMPs expression. Moreover, PTGER4 overexpression weakened the inhibitory effect of the miR-141-3p mimic on the proliferation and migration of lung cancer cells. In conclusion, miR-141-3p can inhibit the proliferation and migration of BPA-induced lung cancer cells by downregulating PTGER4, providing a new potential target for the treatment and prevention of lung cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00692-5.
Collapse
Affiliation(s)
- Feng Ling
- Thoracic Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| | - Wenbo Xie
- Digestive System Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| | - Xiang Kui
- Pathology Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| | - Yuyin Cai
- Thoracic Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| | - Meng He
- Thoracic Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| | - Jianqiang Ma
- Thoracic Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| |
Collapse
|
11
|
Tsai YS, Jou YC, Cheong IS, Tung HT, Hsu LN, Tsai HT, Tzai TS. Phthalate exposure induces microRNA-5010/Nrf2-EGR1/GDF15 signaling expression in prostate cancer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117759. [PMID: 39837010 DOI: 10.1016/j.ecoenv.2025.117759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Phthalate exposure is linked to prostate enlargement through sex hormonal changes and oxidative stress. However, its role and action mechanism in prostate cancer remain unclear. This study examined two patient cohorts: 204 patients undergoing prostate biopsy (24 benign and 180 malignancies) and 85 with confirmed prostate cancer receiving robotic-assisted radical prostatectomy. Urine samples, collected with informed consent, were analyzed for urinary DEHP metabolites using HPLC-MS and ELISA. Patients with prostate cancer exhibited significantly higher urinary MEOHP and ΣDEHP metabolite levels than those who underwent benign biopsy (unpaired t-test, p = 0.027 and 0.039, respectively). MIR-5010 upregulation and MIR-205 downregulation were observed in two paired small RNA sequencing analyses (urine pellets of benign vs. malignant patients and PC3 cells without or with DEHP treatment), correlating with tumor staging in the TCGA prostate cancer cohort. Unlike MIR-205, a known tumor suppressor gene in prostate cancer, gene set enrichment analysis revealed that higher MIR-5010 expression was linked to increased Nrf-2 downstream signaling (enriched score: 0.35; p = 0.17). In vitro assays in prostate cancer cells showed that DEHP enhanced Nrf-2 protein expression and its downstream signaling molecules (i.e., SOD2, Heme oxygenase-1, and EGR-1) while increasing GDF15 mRNA expression via EGR-1 regulation in a dose- and time-dependent manner. Furthermore, urinary GDF15 levels were positively associated with urinary MEOHP and MEHP metabolites in the biopsy cohort (p = 0.0007 and 0.011, respectively) and with urinary oxidative stress marker 8-OHdG, aggressive marker VEGF, and CCL2/MCP-1 levels in the prostatectomy cohort (p = 0.0004, 0.006, and 0.0034, respectively). These findings suggest that phthalate exposure induces Nrf-2 and its downstream signaling (i.e., EGR-1/GDF-15) through microRNA regulation, contributing to prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Yuh-Shyan Tsai
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yeong-Chin Jou
- Division of Urology, Department of Surgery, St Martin De Porres Hospital, Chia-Yi City, Taiwan
| | - Ian Seng Cheong
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Hsiu-Ting Tung
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lin-Nei Hsu
- Department of Urology, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Hsin-Tzu Tsai
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shin Tzai
- Department of Urology, An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
12
|
Nas B, Dolu T, Ateş H, Dinç S, Kara M, Argun ME, Yel E. Occurrence, distribution, and fate evaluation of endocrine disrupting compounds in three wastewater treatment plants with different treatment technologies in Türkiye. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175869. [PMID: 39214356 DOI: 10.1016/j.scitotenv.2024.175869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Nowadays, two of the endocrine disrupting compounds (EDCs) in the group of alkylphenols (APs), nonylphenol (4-NP) and octylphenol (4-t-OP), have attracted great scientific and regulatory attention mainly due to concerns about their aquatic toxicity and endocrine disrupting activity. This paper investigated the occurrence, distribution behavior, fate, and removal of 4-NP and 4-t-OP in liquid and solid phases of three full-scale wastewater treatment plants (WWTPs) with different treatment technologies comparatively. In this context, (i) advanced biological WWTP, (ii) wastewater stabilization pond (WSP), and (iii) constructed wetland (CW) were utilized. In all three investigated WWTPs, the concentrations of 4-NP (219.9-19,354.4 ng/L) in raw wastewater were higher than those of 4-t-OP (13.9-2822.4 ng/L). Within the scope of annual average removal efficiencies, 4-NP was treated highly in advanced biological WWTP (93.5 %), while it was almost not treated in WSP (3.1 %) and treated with negative removal (<0 %) in CW. While 4-t-OP was treated at a similar removal rate (93.5 %) to 4-NP in advanced biological WWTP, it was treated moderately in WSP (52.5 %) and very poorly in CW (12.4 %). It has been determined that the most important removal mechanism of both 4-NP and 4-t-OP in WWTPs is biodegradation, followed by sorption onto sewage sludge. According to the mass balance performed in advanced biological WWTP, the biodegradation rates for 4-NP and 4-t-OP were found to be 70.4 % and 86.6 %, respectively, while the sorption onto sewage sludge were determined to be 23.3 % and 6.8 %. One of the critical findings obtained within the scope of the study is that while the concentrations of both metabolites, especially 4-NP, in wastewater and sewage sludge, decreased considerably under aerobic conditions, on the contrary, their concentrations increased significantly under anaerobic conditions. Both compounds were detected at higher concentrations in primary sludge compared to secondary sludge in advanced biological WWTP, while in WSP, they were determined at higher concentrations in anaerobic stabilization pond sludge compared to facultative stabilization pond sludge. Besides, it was also determined that the sorption behavior of these alkylphenols is much more dominant than desorption.
Collapse
Affiliation(s)
- B Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye; Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA.
| | - T Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| | - H Ateş
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| | - S Dinç
- Çumra School of Applied Sciences, Selçuk University, Konya, Türkiye.
| | - M Kara
- Çumra Vocational High School, Selçuk University, Konya, Türkiye.
| | - M E Argun
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| | - E Yel
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| |
Collapse
|
13
|
García-Pérez J, Fernández de Larrea-Baz N, Lope V, Domínguez-Castillo A, Espinosa A, Dierssen-Sotos T, Contreras-Llanes M, Sierra MÁ, Castaño-Vinyals G, Tardón A, Jiménez-Moleón JJ, Molina-Barceló A, Aragonés N, Kogevinas M, Pollán M, Pérez-Gómez B. Risk of prostate cancer in the proximity of industrial installations: A multicase-control study in Spain (MCC-Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174347. [PMID: 38944307 DOI: 10.1016/j.scitotenv.2024.174347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Prostate cancer (PC) is the second most frequent tumor in men worldwide; however, its etiology remains largely unknown, with the exception of age and family history. The wide variability in incidence/mortality across countries suggests a certain role for environmental exposures that has not yet been clarified. OBJECTIVE To evaluate the association between risk of PC (by clinical profile) and residential proximity to pollutant industrial installations (by industrial groups, groups of carcinogens, and specific pollutants released), within the context of a Spanish population-based multicase-control study of incident cancer (MCC-Spain). METHODS This study included 1186 controls and 234 PC cases, frequency matched by age and province of residence. Distances from participants' residences to the 58 industries located in the study area were calculated and categorized into "near" (considering different limits between ≤1 km and ≤ 3 km) or "far" (>3 km). Odds ratios (ORs) and 95 % confidence intervals (95%CIs) were estimated using mixed and multinomial logistic regression models, adjusted for potential confounders and matching variables. RESULTS No excess risk was detected near the overall industries, with ORs ranging from 0.66 (≤2 km) to 1.11 (≤1 km). However, positive associations (OR; 95%CI) were found, by industrial group, near (≤3 km) industries of ceramic (2.54; 1.28-5.07), food/beverage (2.18; 1.32-3.62), and disposal/recycling of animal waste (2.67; 1.12-6.37); and, by specific pollutant, near plants releasing fluorine (4.65; 1.45-14.91 at ≤1.5 km) and chlorine (5.21; 1.56-17.35 at ≤1 km). In contrast, inverse associations were detected near industries releasing ammonia, methane, dioxins+furans, polycyclic aromatic hydrocarbons, trichloroethylene, and vanadium to air. CONCLUSIONS The results suggest no association between risk of PC and proximity to the overall industrial installations. However, some both positive and inverse associations were detected near certain industrial groups and industries emitting specific pollutants.
Collapse
Affiliation(s)
- Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Nerea Fernández de Larrea-Baz
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Virginia Lope
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Alejandro Domínguez-Castillo
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Ana Espinosa
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), Carrer Del Dr. Aiguader, 88, 08003 Barcelona, Spain; University Pompeu Fabra, Plaça de La Mercè, 10-12, 08002 Barcelona, Spain; Hospital Del Mar Medical Research Institute (IMIM), Carrer Del Dr. Aiguader, 88, 08003 Barcelona, Spain.
| | - Trinidad Dierssen-Sotos
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Department of Medical and Surgical Sciences, Faculty of Medicine, University of Cantabria, IDIVAL, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain.
| | - Manuel Contreras-Llanes
- Research Center on Natural Resources, Health, and Environment (RENSMA), University of Huelva, Campus de El Carmen, Av. del Tres de Marzo, s/n, 21071 Huelva, Spain.
| | - María Ángeles Sierra
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Gemma Castaño-Vinyals
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), Carrer Del Dr. Aiguader, 88, 08003 Barcelona, Spain; University Pompeu Fabra, Plaça de La Mercè, 10-12, 08002 Barcelona, Spain; Hospital Del Mar Medical Research Institute (IMIM), Carrer Del Dr. Aiguader, 88, 08003 Barcelona, Spain.
| | - Adonina Tardón
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Health Research Institute of Asturias (ISPA), University of Oviedo, Av. Del Hospital Universitario, 33011 Oviedo, Spain.
| | - José J Jiménez-Moleón
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Av. de La Investigación, 11, 18016 Granada, Spain; Institute of Health Research IBS., Granada, Spain.
| | - Ana Molina-Barceló
- Cancer and Public Health Area, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Av. de Catalunya, 21, 46020 Valencia, Spain.
| | - Nuria Aragonés
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Cancer Surveillance and Registry Unit, Division of Public Health, Department of Health of Madrid, C. López de Hoyos, 35, 28002 Madrid, Spain.
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), Carrer Del Dr. Aiguader, 88, 08003 Barcelona, Spain; University Pompeu Fabra, Plaça de La Mercè, 10-12, 08002 Barcelona, Spain; Hospital Del Mar Medical Research Institute (IMIM), Carrer Del Dr. Aiguader, 88, 08003 Barcelona, Spain.
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Beatriz Pérez-Gómez
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Instituto de Salud Carlos III (Carlos III Institute of Health), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain.
| |
Collapse
|
14
|
Toso A, Garoche C, Balaguer P. Human and fish differences in steroid receptors activation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174889. [PMID: 39047839 DOI: 10.1016/j.scitotenv.2024.174889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Steroid receptors (SRs) are transcription factors activated by steroid hormones (SHs) that belong to the nuclear receptors (NRs) superfamily. Several studies have shown that SRs are targets of endocrine disrupting chemicals (EDCs), widespread substances in the environment capable of interfering with the endogenous hormonal pathways and causing adverse health effects in living organisms and/or their progeny. Cell lines with SRs reporter gene are currently used for in vitro screening of large quantities of chemicals with suspected endocrine-disrupting activities. However, most of these cell lines express human SRs and therefore the toxicological data obtained are also extrapolated to non-mammalian species. In parallel, in vivo tests have recently been developed on fish species whose data are also extrapolated to mammalian species. As some species-specific differences in SRs activation by natural and synthetic chemicals have been recently reported, the aim of this review is to summarize those between human and fish SRs, as representatives of mammalian and non-mammalian toxicology, respectively. Overall, this literature study aims to improve inter-species extrapolation of toxicological data on EDCs and to understand which reporter gene cell lines expressing human SRs are relevant for the assessment of effects in fish and whether in vivo tests on fish can be properly used in the assessment of adverse effects on human health.
Collapse
Affiliation(s)
- Anna Toso
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France; Department Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| |
Collapse
|
15
|
Lawaczeck L, Rudolph J, Norz V, Tsaur I, Rausch S. The role of planetary health in urologic oncology. Expert Rev Anticancer Ther 2024; 24:513-523. [PMID: 38709157 DOI: 10.1080/14737140.2024.2350631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Climate change and global warming are an omnipresent topic in our daily lives. Planetary health and oncology represent two critical domains within the broader spectrum of healthcare, each addressing distinct yet interconnected aspects of human well-being. We are encouraged to do our part in saving our planet. This should include the decisions we make in our professional life, especially in uro-oncology, as the healthcare sector significantly contributes to environmental pollution. AREAS COVERED There are many aspects that can be addressed in the healthcare sector in general, as there are structural problems in terms of energy consumption, water waste, therapeutic techniques, transportation and drug manufacturing, as well as in uro-oncology specific areas. For example, the use of different surgical techniques, forms of anesthesia and the use of disposable or reusable instruments, each has a different impact on our environment. The literature search was carried out using PubMed, a medical database. EXPERT OPINION We are used to making decisions based on the best outcome for patients without considering the impact that each decision can have on the environment. In the present article, we outline options and choices for a more climate-friendly approach in urologic oncology.
Collapse
Affiliation(s)
- Laura Lawaczeck
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | - Julia Rudolph
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | - Valentina Norz
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | - Igor Tsaur
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| | - Steffen Rausch
- Department of Urology, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
16
|
Chianese T, Trinchese G, Leandri R, De Falco M, Mollica MP, Scudiero R, Rosati L. Glyphosate Exposure Induces Cytotoxicity, Mitochondrial Dysfunction and Activation of ERα and ERβ Estrogen Receptors in Human Prostate PNT1A Cells. Int J Mol Sci 2024; 25:7039. [PMID: 39000147 PMCID: PMC11241661 DOI: 10.3390/ijms25137039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Glyphosate, the active ingredient of several broad-spectrum herbicides, is widely used throughout the world, although many adverse effects are known. Among these, it has been recognized as an endocrine disruptor. This work aimed to test the effects and potential endocrine disrupting action of glyphosate on PNT1A human prostate cells, an immortalized non-tumor epithelial cell line, possessing both ERα and ERβ estrogen receptors. The results showed that glyphosate induces cytotoxicity, mitochondrial dysfunction, and rapid activation of ERα and ERβ via nuclear translocation. Molecular analysis indicated a possible involvement of apoptosis in glyphosate-induced cytotoxicology. The apoptotic process could be attributed to alterations in mitochondrial metabolism; therefore, the main parameters of mitochondrial functionality were investigated using the Seahorse analyzer. Impaired mitochondrial function was observed in glyphosate-treated cells, with reductions in ATP production, spare respiratory capacity, and proton leakage, along with increased efficiency of mitochondrial coupling. Finally, the results of immunofluorescence analysis demonstrated that glyphosate acts as an estrogen disruptor determining the nuclear translocation of both ERs. Nuclear translocation occurred independent of dose, faster than the specific hormone, and persisted throughout treatment. In conclusion, the results collected show that in non-tumor prostate cells glyphosate can cause cell death and acts as a xenoestrogen, activating estrogen receptors. The consequent alteration of hormonal functions can have negative effects on the reproductive health of exposed animals, compromising their fertility.
Collapse
Affiliation(s)
- Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Giovanna Trinchese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Rebecca Leandri
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Maria De Falco
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Portici, Italy
| | - Maria Pina Mollica
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Portici, Italy
| | - Luigi Rosati
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Portici, Italy
- CIRAM—Centro Interdipartimentale di Ricerca “Ambiente”, University Federico II, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
17
|
Park CG, Adnan KM, Cho H, Ryu CS, Yoon J, Kim YJ. A combined in vitro-in silico method for assessing the androgenic activities of bisphenol A and its analogues. Toxicol In Vitro 2024; 98:105838. [PMID: 38710238 DOI: 10.1016/j.tiv.2024.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Interactions between endocrine-disruptor chemicals (EDCs) and androgen receptor (AR) have adverse effects on the endocrine system, leading to human reproductive dysfunction. Bisphenol A (BPA) is an EDC that can damage both the environment and human health. Although numerous BPA analogues have been produced as substitutes for BPA, few studies have evaluated their endocrine-disrupting abilities. We assessed the (anti)-androgenic activities of BPA and its analogues using a yeast-based reporter assay. The BPA analogues tested were bisphenol S (BPS), 4-phenylphenol (4PP), 4,4'-(9-fluorenyliden)-diphenol (BPFL), tetramethyl bisphenol F (TMBPF), and tetramethyl bisphenol A (TMBPA). We also conducted molecular docking and dynamics simulations to assess the interactions of BPA and its analogues with the ligand-binding domain of human AR (AR-LBD). Neither BPA nor its analogues had androgenic activity; however, all except BPFL exerted robust anti-androgenic effects. Consistent with the in vitro results, anti-androgenic analogues of BPA formed hydrogen bonding patterns with key residues that differed from the patterns of endogenous hormones, indicating that the analogues display in inappropriate orientations when interacting with the binding pocket of AR-LBD. Our findings indicate that BPA and its analogues disrupt androgen signaling by interacting with the AR-LBD. Overall, BPA and its analogues display endocrine-disrupting activity, which is mediated by AR.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany; Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Karim Md Adnan
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany; Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Hyunki Cho
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany; Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany
| | - Juyong Yoon
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany.
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany.
| |
Collapse
|
18
|
Tuli A, Suresh G, Halder N, Velpandian T. Analysis and remediation of phthalates in aquatic matrices: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23408-23434. [PMID: 38456985 DOI: 10.1007/s11356-024-32670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Phthalic acid esters (PAEs) are high production volume chemicals used extensively as plasticizers, to increase the flexibility of the main polymer. They are reported to leach into their surroundings from plastic products and are now a ubiquitous environmental contaminant. Phthalate levels have been determined in several environmental matrices, especially in water. These levels serve as an indicator of plasticizer abuse and plastic pollution, and also serve as a route of exposure to different species including humans. Reports published on effects of different PAEs on experimental models demonstrate their carcinogenic, teratogenic, reproductive, and endocrine disruptive effects. Therefore, regular monitoring and remediation of environmental water samples is essential to ascertain their hazard quotient and daily exposure levels. This review summarises the extraction and detection techniques available for phthalate analysis in water samples such as chromatography, biosensors, immunoassays, and spectroscopy. Current remediation strategies for phthalate removal such as adsorption, advanced oxidation, and microbial degradation have also been highlighted.
Collapse
Affiliation(s)
- Anannya Tuli
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gayatri Suresh
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nabanita Halder
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Thirumurthy Velpandian
- High Precision Bio-Analytical Facility (DST-FIST Sponsored), Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
19
|
Fernández-Martínez NF, Rodríguez-Barranco M, Zamora-Ros R, Guevara M, Colorado-Yohar SM, Jiménez-Zabala A, Arrebola JP, Iribarne-Durán LM, Molina G, Agudo A, Trobajo-Sanmartín C, Chirlaque MD, Amiano P, Sánchez MJ. Relationship between exposure to parabens and benzophenones and prostate cancer risk in the EPIC-Spain cohort. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6186-6199. [PMID: 38147240 DOI: 10.1007/s11356-023-31682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The etiology of prostate cancer is not fully elucidated. Among environmental risk factors, endocrine-disrupting chemicals (EDCs) deserve special mention, as they alter metabolic pathways involved in hormone-dependent cancers. Epidemiological evidence assessing the carcinogenicity of EDCs is scarce. The aim of this study was to analyze the relationship between exposure to parabens and benzophenones and prostate cancer risk. We conducted a case-cohort study nested within the EPIC-Spain prospective multi-center cohort. Study population comprised 1,838 sub-cohort participants and 467 non-sub-cohort prostate cancer cases. Serum concentrations of four parabens and two benzophenones were assessed at recruitment. Covariates included age, physical activity, tobacco smoking, alcohol consumption, body mass index, educational level and diabetes. Borgan II weighted Cox proportional hazard models stratified by study center were applied. Median follow-up time was 18.6 years (range = 1.0-21.7 years). Most sub-cohort participants reached primary education at most (65.5%), were overweight (57.7%) and had a low level of physical activity (51.3%). Detection percentages varied widely, being lowest for butyl-paraben (11.3%) and highest for methyl-paraben (80.7%), which also showed the highest geometric mean (0.95 ng/ml). Cases showed significantly higher concentrations of methyl-paraben (p = 0.041) and propyl-paraben (p < 0.001). In the multivariable analysis, methyl-paraben - log-transformed (HR = 1.07; 95%CI = 1.01-1.12) and categorized into tertiles (HR = 1.60 for T3; 95%CI = 1.16-2.20) -, butyl-paraben - linear (HR = 1.19; 95%CI = 1.14-1.23) and log-transformed (HR = 1.17; 95%CI = 1.01-1.35) - and total parabens - log-transformed (HR = 1.09; 95%CI = 1.02-1.17) and categorized into tertiles (HR = 1.62 for T3; 95%CI = 1.10-2.40) - were associated with an increased prostate cancer risk. In this study, higher concentrations of methyl-, butyl-, and total parabens were positively associated with prostate cancer risk. Further research is warranted to confirm these findings.
Collapse
Affiliation(s)
- Nicolás Francisco Fernández-Martínez
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
- Escuela Andaluza de Salud Pública (EASP), Cuesta del Observatorio, 4. 18011, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
| | - Miguel Rodríguez-Barranco
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain.
- Escuela Andaluza de Salud Pública (EASP), Cuesta del Observatorio, 4. 18011, Granada, Spain.
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain.
| | - Raúl Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
| | - Marcela Guevara
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Navarra Public Health Institute, 31003, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Sandra Milena Colorado-Yohar
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30008, Murcia, Spain
| | - Ana Jiménez-Zabala
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Sub Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, 20013, San Sebastian, Spain
- Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071, Granada, Spain
| | - Luz María Iribarne-Durán
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
- Department of Radiology, School of Medicine, University of Granada, 18071, Granada, Spain
| | - Germán Molina
- Department of Preventive Medicine and Public Health, University Hospital of Santiago de Compostela, 15706 A, Coruña, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908, Barcelona, Spain
| | - Camino Trobajo-Sanmartín
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Navarra Public Health Institute, 31003, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - María Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30008, Murcia, Spain
- Department of Health and Social Sciences, Murcia University, 30100, Murcia, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Sub Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, 20013, San Sebastian, Spain
- Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - María-José Sánchez
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
- Escuela Andaluza de Salud Pública (EASP), Cuesta del Observatorio, 4. 18011, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071, Granada, Spain
| |
Collapse
|
20
|
Vitku J, Skodova T, Varausova A, Gadus L, Michnova L, Horackova L, Kolatorova L, Simkova M, Heracek J. Endocrine Disruptors and Estrogens in Human Prostatic Tissue. Physiol Res 2023; 72:S411-S422. [PMID: 38116777 DOI: 10.33549/physiolres.935246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Endocrine disruptors (EDs) are ubiquitous substances both in the environment and everyday products that interfere with the hormonal system. Growing evidence demonstrates their adverse effects on the organism, including the reproductive system and the prostate, owing to their (anti)estrogenic or antiandrogenic effects. Since EDs can interact with steroid hormone actions on-site, understanding the levels of intraprostatic EDs in conjunction with steroids may hold particular significance. The aim of this study was to develop and validate a method for determining estrogens, various groups of EDs (bisphenols, parabens, oxybenzone and nonylphenol) and phytoestrogens in their unconjugated and conjugated forms in prostate tissue by liquid chromatography-tandem mass spectrometry, and subsequently analyze 20 human prostate tissue samples. The method enabled 20 compounds to be analyzed: estrogens (estrone, estradiol, estriol), bisphenols (bisphenol A- BPA, BPS, BPF, BPAF, BPAP, BPZ, BPP), parabens (methyl-, ethyl-, propyl-, butyl-, benzyl- paraben), oxybenzone, nonylphenol and phytoestrogens (daidzein, genistein, equol) with LLOQs between 0.017-2.86 pg/mg of tissue. The most frequently detected EDs in prostate tissues were propylparaben (conjugated and unconjugated forms in 100 % of tissues), methylparaben (unconjugated in 45 % and conjugated in 100 %), ethylparaben (unconjugated in 25 % and conjugated in 100 % BPA (unconjugated in 35 % and conjugated in 60 % and oxybenzone (both forms in 45 % To the best of our knowledge, this is the first study detecting EDs, phytoestrogens and estriol conjugate (E3C) in the prostate. E3C was the most abundant estrogen in prostatic tissue. This highlights the need for further explorations into estrogen metabolism within the prostate.
Collapse
Affiliation(s)
- J Vitku
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sousa TC, de Souza LP, Ricardo MLS, Yoshigae AY, Hinokuma KD, Gorzoni ABR, de Aquino AM, Scarano WR, de Sousa Castillho AC, Tavares MEA, Veras ASC, Teixeira GR, Nai GA, de Oliveira Mendes L. Long exposure to a mixture of endocrine disruptors prediposes the ventral prostate of rats to preneoplastic lesions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104015-104028. [PMID: 37697193 DOI: 10.1007/s11356-023-29768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Endocrine disruptors (ED) are compounds dispersed in the environment that modify hormone biosynthesis, affecting hormone-dependent organs such as the prostate. Studies have only focused on evaluating the effects of ED alone or in small groups and short intervals and have not adequately portrayed human exposure. Therefore, we characterized the prostate histoarchitecture of rats exposed to an ED mixture (ED Mix) mimicking human exposure. Pregnant females of the Sprague-Dawley strain were randomly distributed into two experimental groups: Control group (vehicle: corn oil, by gavage) and ED Mix group: received 32.11 mg/kg/day of the ED mixture diluted in corn oil (2 ml/kg), by gavage, from gestational day 7 (DG7) to post-natal day 21 (DPN21). After weaning at DPN22, the male pups continued to receive the complete DE mixture until they were 220 days old when they were euthanized. The ED Mix decreased the epithelial compartment, increased the fractal dimension, and decreased glandular dilation. In addition, low-grade prostatic intraepithelial neoplasia was observed in addition to regions of epithelial atrophy in the group exposed to the ED Mix. Exposure to the mixture decreased both types I and III collagen area in the stroma. We concluded that the ED Mix was able to cause alterations in the prostatic histoarchitecture and induce the appearance of preneoplastic lesions.
Collapse
Affiliation(s)
- Thaina Cavalleri Sousa
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
| | - Letícia Pereira de Souza
- Faculty of Healthy Sciences, Western São Paulo University (UNOESTE), R. José Bongiovani, 700 - Cidade Universitária, Presidente Prudente, SP, Brazil
| | - Maria Luiza Silva Ricardo
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
| | - Andreia Yuri Yoshigae
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
| | - Karianne Delalibera Hinokuma
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
| | - Ana Beatriz Ratto Gorzoni
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
| | | | | | - Anthony César de Sousa Castillho
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
| | - Maria Eduarda Almeida Tavares
- Experimental Laboratory of Exercise Biology (LEBioEx), São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Alice Santos Cruz Veras
- Experimental Laboratory of Exercise Biology (LEBioEx), São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Giovana Rampazzo Teixeira
- Experimental Laboratory of Exercise Biology (LEBioEx), São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Gisele Alborghetti Nai
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil
- Graduate Program in Health Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, km 572 - Bairro do Limoeiro, Presidente Prudente, SP, CEP 19067-175, Brazil
| | - Leonardo de Oliveira Mendes
- Graduate Program in Animal Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, Km 572 - Bairro Do Limoeiro, Presidente Prudente, SP, Brazil.
- Graduate Program in Health Science, Western São Paulo University (UNOESTE), Rodovia Raposo Tavares, km 572 - Bairro do Limoeiro, Presidente Prudente, SP, CEP 19067-175, Brazil.
| |
Collapse
|
22
|
Mileo A, Chianese T, Fasciolo G, Venditti P, Capaldo A, Rosati L, De Falco M. Effects of Dibutylphthalate and Steroid Hormone Mixture on Human Prostate Cells. Int J Mol Sci 2023; 24:14341. [PMID: 37762641 PMCID: PMC10531810 DOI: 10.3390/ijms241814341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Phthalates are a family of aromatic chemical compounds mainly used as plasticizers. Among phthalates, di-n-butyl phthalate (DBP) is a low-molecular-weight phthalate used as a component of many cosmetic products, such as nail polish, and other perfumed personal care products. DBP has toxic effects on reproductive health, inducing testicular damage and developmental malformations. Inside the male reproductive system, the prostate gland reacts to both male and female sex steroids. For this reason, it represents an important target of endocrine-disrupting chemicals (EDCs), compounds that are able to affect the estrogen and androgen signaling pathways, thus interfering with prostate homeostasis and inducing several prostate pathologies. The aim of this project was to investigate the effects of DBP, alone and in combination with testosterone (T), 17β-estradiol (E2), and both, on the normal PNT1A human prostate cell-derived cell line, to mimic environmental contamination. We showed that DBP and all of the tested mixtures increase cell viability through activation of both estrogen receptor α (ERα) and androgen receptor (AR). DBP modulated steroid receptor levels in a nonmonotonic way, and differently to endogenous hormones. In addition, DBP translocated ERα to the nucleus over different durations and for a more prolonged time than E2, altering the normal responsiveness of prostate cells. However, DBP alone seemed not to influence AR localization, but AR was continuously and persistently activated when DBP was used in combination. Our results show that DBP alone, and in mixture, alters redox homeostasis in prostate cells, leading to a greater increase in cell oxidative susceptibility. In addition, we also demonstrate that DBP increases the migratory potential of PNT1A cells. In conclusion, our findings demonstrate that DBP, alone and in mixtures with endogenous steroid hormones, acts as an EDC, resulting in an altered prostate cell physiology and making these cells more prone to cancer transformation.
Collapse
Affiliation(s)
- Aldo Mileo
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Teresa Chianese
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Gianluca Fasciolo
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Paola Venditti
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Anna Capaldo
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Luigi Rosati
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
- CIRAM, Centro Interdipartimentale di Ricerca “Ambiente”, University Federico II of Naples, Via Mezzocannone 16, 80134 Naples, Italy
| | - Maria De Falco
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| |
Collapse
|
23
|
Lacouture A, Breton Y, Weidmann C, Goulet SM, Germain L, Pelletier M, Audet-Walsh É. Estrogens and endocrine-disrupting chemicals differentially impact the bioenergetic fluxes of mammary epithelial cells in two- and three-dimensional models. ENVIRONMENT INTERNATIONAL 2023; 179:108132. [PMID: 37657410 DOI: 10.1016/j.envint.2023.108132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Due to its sensitivity to hormonal signaling, the mammary gland is often referred to as a sentinel organ for the study of endocrine-disrupting chemicals (EDCs), environmental pollutants that can interfere with the estrogen signaling pathway and induce mammary developmental defects. If and how EDCs impact mammary epithelial cell metabolism has not yet been documented. Herein, to study how estrogens and EDCs modulate mammary gland metabolism, we performed bioenergetic flux analyses using mouse mammary epithelial organoids compared to cells grown in monolayer culture. Several EDCs were tested, including bisphenol A (BPA), its close derivative BPS, a new BPA replacement copolyester called TritanTM, and the herbicide glyphosate. We report that estrogens reprogrammed mammary epithelial cell metabolism differently when grown in two- and three-dimensional models. Specific EDCs were also demonstrated to alter bioenergetic fluxes, thus identifying a new potential adverse effect of these molecules. Notably, organoids were more sensitive to low EDC concentrations, highlighting them as a key model for screening the impact of various environmental pollutants. Mechanistically, transcriptomic analyses revealed that EDCs interfered with the regulation of estrogen target genes and the expression of metabolic genes in organoids. Furthermore, co-treatment with the anti-estrogen fulvestrant blocked these metabolic impacts of EDCs, suggesting that, at least partially, they act through modulation of the estrogen receptor activity. Finally, we demonstrate that mammary organoids can be used for long-term studies on EDC exposure to study alterations in organogenesis/morphogenesis and that past pregnancies can modulate the sensitivity of mammary epithelial organoids to specific EDCs. Overall, this study demonstrates that estrogens and EDCs modulate mammary epithelial cell metabolism in monolayer and organoid cultures. A better understanding of the metabolic impacts of EDCs will allow a better appreciation of their adverse effects on mammary gland development and function.
Collapse
Affiliation(s)
- Aurélie Lacouture
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada
| | - Yann Breton
- Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada
| | - Lucas Germain
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Martin Pelletier
- Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada; Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Québec City, Canada.
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada.
| |
Collapse
|
24
|
Ledda C, Bracci M, Spadafora A, Motta G, Smecca G, Catelan D, Rapisarda V. Unmasking the Hidden Danger: A Decade-Long Systematic Review of Case-Control Studies on Single Occupational Risks and Prostate Cancer. Life (Basel) 2023; 13:1820. [PMID: 37763224 PMCID: PMC10532927 DOI: 10.3390/life13091820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
The present systematic review addresses the influence of occupational exposures on prostate cancer risk. Eleven studies were analyzed for a range of occupational exposures, including but not limited to firefighting, physical activity, night shift work, chemical exposure, and solar ultraviolet radiation. The results of the review reveal that firefighters exposed to harmful substances, individuals engaged in physically strenuous work, and workers with chronic night shift routines showed an increased likelihood of developing prostate cancer. Moreover, the review identified an increased risk associated with exposure to certain chemicals, including alkylphenolic compounds and benzene-related substances. The evidence underscores the importance of considering the cumulative effect of multiple risk factors in a comprehensive risk assessment. However, the conclusions indicate the necessity for further research to deepen these relationships and develop more effective strategies for the prevention of prostate cancer.
Collapse
Affiliation(s)
- Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy;
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60121 Ancona, Italy;
| | - Alba Spadafora
- Occupational Health and Safety Unit, Provincial Health Agency of Siracusa, 96100 Siracusa, Italy;
| | - Giuseppe Motta
- Occupational Medicine Unit, “Garibaldi” Hospital of Catania, 95123 Catania, Italy;
| | - Giuseppe Smecca
- Prevention and Protection Unit, Provincial Health Agency of Ragusa, 97100 Ragusa, Italy;
| | - Dolores Catelan
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy;
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy;
| |
Collapse
|
25
|
Jefferi NES, Shamhari A‘A, Noor Azhar NKZ, Shin JGY, Kharir NAM, Azhar MA, Hamid ZA, Budin SB, Taib IS. The Role of ERα and ERβ in Castration-Resistant Prostate Cancer and Current Therapeutic Approaches. Biomedicines 2023; 11:biomedicines11030826. [PMID: 36979805 PMCID: PMC10045750 DOI: 10.3390/biomedicines11030826] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Castration-resistant prostate cancer, or CRPC, is an aggressive stage of prostate cancer (PCa) in which PCa cells invade nearby or other parts of the body. When a patient with PCa goes through androgen deprivation therapy (ADT) and the cancer comes back or worsens, this is called CRPC. Instead of androgen-dependent signalling, recent studies show the involvement of the estrogen pathway through the regulation of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in CRPC development. Reduced levels of testosterone due to ADT lead to low ERβ functionality in inhibiting the proliferation of PCa cells. Additionally, ERα, which possesses androgen independence, continues to promote the proliferation of PCa cells. The functions of ERα and ERβ in controlling PCa progression have been studied, but further research is needed to elucidate their roles in promoting CRPC. Finding new ways to treat the disease and stop it from becoming worse will require a clear understanding of the molecular processes that can lead to CRPC. The current review summarizes the underlying processes involving ERα and ERβ in developing CRPC, including castration-resistant mechanisms after ADT and available medication modification in mitigating CRPC progression, with the goal of directing future research and treatment.
Collapse
Affiliation(s)
- Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nur Khayrin Zulaikha Noor Azhar
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Joyce Goh Yi Shin
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nur Annisa Mohd Kharir
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Muhammad Afiq Azhar
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Correspondence: ; Tel.: +0603-92897608
| |
Collapse
|
26
|
Sibuh BZ, Quazi S, Panday H, Parashar R, Jha NK, Mathur R, Jha SK, Taneja P, Jha AK. The Emerging Role of Epigenetics in Metabolism and Endocrinology. BIOLOGY 2023; 12:256. [PMID: 36829533 PMCID: PMC9953656 DOI: 10.3390/biology12020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Each cell in a multicellular organism has its own phenotype despite sharing the same genome. Epigenetics is a somatic, heritable pattern of gene expression or cellular phenotype mediated by structural changes in chromatin that occur without altering the DNA sequence. Epigenetic modification is an important factor in determining the level and timing of gene expression in response to endogenous and exogenous stimuli. There is also growing evidence concerning the interaction between epigenetics and metabolism. Accordingly, several enzymes that consume vital metabolites as substrates or cofactors are used during the catalysis of epigenetic modification. Therefore, altered metabolism might lead to diseases and pathogenesis, including endocrine disorders and cancer. In addition, it has been demonstrated that epigenetic modification influences the endocrine system and immune response-related pathways. In this regard, epigenetic modification may impact the levels of hormones that are important in regulating growth, development, reproduction, energy balance, and metabolism. Altering the function of the endocrine system has negative health consequences. Furthermore, endocrine disruptors (EDC) have a significant impact on the endocrine system, causing the abnormal functioning of hormones and their receptors, resulting in various diseases and disorders. Overall, this review focuses on the impact of epigenetics on the endocrine system and its interaction with metabolism.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore 560043, India
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Clinical Bioinformatics, School of Health Sciences, The University of Manchester, Manchester M13 9P, UK
- SCAMT Institute, ITMO University, St. Petersburg 197101, Russia
| | - Hrithika Panday
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Ritika Parashar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| |
Collapse
|
27
|
Arterburn JB, Prossnitz ER. G Protein-Coupled Estrogen Receptor GPER: Molecular Pharmacology and Therapeutic Applications. Annu Rev Pharmacol Toxicol 2023; 63:295-320. [PMID: 36662583 PMCID: PMC10153636 DOI: 10.1146/annurev-pharmtox-031122-121944] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The actions of estrogens and related estrogenic molecules are complex and multifaceted in both sexes. A wide array of natural, synthetic, and therapeutic molecules target pathways that produce and respond to estrogens. Multiple receptors promulgate these responses, including the classical estrogen receptors of the nuclear hormone receptor family (estrogen receptors α and β), which function largely as ligand-activated transcription factors, and the 7-transmembrane G protein-coupled estrogen receptor, GPER, which activates a diverse array of signaling pathways. The pharmacology and functional roles of GPER in physiology and disease reveal important roles in responses to both natural and synthetic estrogenic compounds in numerous physiological systems. These functions have implications in the treatment of myriad disease states, including cancer, cardiovascular diseases, and metabolic disorders. This review focuses on the complex pharmacology of GPER and summarizes major physiological functions of GPER and the therapeutic implications and ongoing applications of GPER-targeted compounds.
Collapse
Affiliation(s)
- Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
| | - Eric R Prossnitz
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
28
|
Xiao M, Zhang Y, Zhang X, Zhang G, Jin C, Yang J, Wu S, Lu X. Bisphenol A and Di(2-Ethylhexyl) Phthalate promote pulmonary carcinoma in female rats via estrogen receptor beta: In vivo and in silico analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114496. [PMID: 36608567 DOI: 10.1016/j.ecoenv.2022.114496] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The prevalence of lung cancer in women currently merits our attentions. However, cigarette exposure alone does not tell the whole story that lung cancer is more prevalent among non-smoking women. Since female lung cancer is closely linked to estrogen levels, many of endocrine disrupting chemicals (EDCs), as the substances similar to estrogen, affect hormone levels and become a potential risk of female lung cancer. Additionally, the combined toxicity of EDCs in daily environment has only been discussed on a limited scale. Consequently, this study explored the cancer-promoting effect of two representative substances of EDCs namely Bisphenol A (BPA) and Di(2-Ethylhexyl) Phthalate (DEHP) after their exposure alone or in combination, using a rat pulmonary tumor model published previously, combining bioinformatics analysis based on The Comparative Toxicogenomics Database (CTD) and The Cancer Genome Atlas (TCGA) databases. It demonstrated that BPA and DEHP enhanced the promotion of pulmonary tumor in female rats, either alone or in combination. Mechanistically, BPA and DEHP mainly directly bound and activated ESR2 protein, phosphorylated CREB protein, activated HDAC6 transcriptionally, induced the production of the proto-oncogene c-MYC, and accelerated the formation of pulmonary tumor in female rats. Remarkably, BPA, rather than DEHP, exhibited a much more critical effect in female lung cancer. Additionally, the transcription factor ESR2 was most affected in carcinogenesis, causing genetic disruption. Furthermore, the TCGA database revealed that ESR2 could enhance the promotion and progression of non-small cell lung cancer in females via activating the WNT/β-catenin pathway. Finally, our findings demonstrated that BPA and DEHP could enhance the promotion of pulmonary carcinoma via ESR2 in female rats and provide a potential and valuable insight into the causes and prevention of lung cancer in non-smoking women due to EDCs exposure.
Collapse
Affiliation(s)
- Mingyang Xiao
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Yating Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Xuan Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Guopei Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Cuihong Jin
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Jinghua Yang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Shengwen Wu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Xiaobo Lu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China.
| |
Collapse
|
29
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
30
|
Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, Sharma A, Dewali S, Yadav M, Kumari R, Singh S, Mohapatra A, Pandey V, Rana N, Cunill JM. Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Front Microbiol 2022; 13:962619. [PMID: 36060785 PMCID: PMC9428564 DOI: 10.3389/fmicb.2022.962619] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Pesticides are either natural or chemically synthesized compounds that are used to control a variety of pests. These chemical compounds are used in a variety of sectors like food, forestry, agriculture and aquaculture. Pesticides shows their toxicity into the living systems. The World Health Organization (WHO) categorizes them based on their detrimental effects, emphasizing the relevance of public health. The usage can be minimized to a least level by using them sparingly with a complete grasp of their categorization, which is beneficial to both human health and the environment. In this review, we have discussed pesticides with respect to their global scenarios, such as worldwide distribution and environmental impacts. Major literature focused on potential uses of pesticides, classification according to their properties and toxicity and their adverse effect on natural system (soil and aquatic), water, plants (growth, metabolism, genotypic and phenotypic changes and impact on plants defense system), human health (genetic alteration, cancer, allergies, and asthma), and preserve food products. We have also described eco-friendly management strategies for pesticides as a green solution, including bacterial degradation, myco-remediation, phytoremediation, and microalgae-based bioremediation. The microbes, using catabolic enzymes for degradation of pesticides and clean-up from the environment. This review shows the importance of finding potent microbes, novel genes, and biotechnological applications for pesticide waste management to create a sustainable environment.
Collapse
Affiliation(s)
| | - Vijay K. Verma
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Balwant Singh Rawat
- Department of Pharmaceutical Sciences, Gurukul Kangri Deemed to be University, Haridwar, India
| | - Baljinder Kaur
- Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Neelesh Babu
- Department of Microbiology, Baba Farid Institute of Technology, Sudhowala, India
| | - Akansha Sharma
- Allergy and Immunology Section, CSIR-IGIB, New Delhi, India
| | - Seeta Dewali
- Laboratory of Alternative Protocols in Zoology and Biotechnology Research Laboratory, Department of Zoology, Kumaun University, Nainital, India
| | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Reshma Kumari
- Department of Botany & Microbiology, Gurukul Kangri Deemed to be University, Haridwar, India
| | - Sevaram Singh
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Asutosh Mohapatra
- Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
| | - Varsha Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Newai Tonk, India
| | - Nitika Rana
- Department of Environmental Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, India
| | - Jose Maria Cunill
- Biotechnology Engineering, Universidad Politécnica Metropolitana de Puebla, Mexico, Mexico
| |
Collapse
|
31
|
Prasad B, Prasad KS, Dave H, Das A, Asodariya G, Talati N, Swain S, Kapse S. Cumulative human exposure and environmental occurrence of phthalate esters: A global perspective. ENVIRONMENTAL RESEARCH 2022; 210:112987. [PMID: 35219627 DOI: 10.1016/j.envres.2022.112987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/21/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
In the current investigation, the distribution and extent of human exposure of phthalate esters (PAEs) have been reported on global extent based on computed indices. The proposed indices were calculated based on environmental concentrations, toxicity, occurrence, environmental fate, and transport of PAEs. The cumulative phthalate exposure index (PEI) based on the phthalate pollution index (PPI) was mapped on a global scale based on the existing data reported in the literature. The results revealed that the PAEs are heterogeneously distributed globally, and about 30% of total environmental PAEs are ultimately exposed to the average human being. The comparative distribution of PAEs in various environmental compartments including urban-rural, indoor-outdoor, home-dormitory-classroom, and their exposure likelihood were studied based on indices. More than 90% of total human exposure of PAEs was observed to be from indoor environmental compartments. Significantly high exposure was observed in the urban population as compared to the rural population. About 70% of the total phthalate pollution sub-index of dust was observed from home followed by a classroom of ∼15% and then a dormitory of ∼10%. In addition, the indices were equated with the current human development index (HDI), gross national income (GNI), and exposure of particulate matter of each country. Based on current findings, the population living in the areas where >20 μg/m3 of particulate matter has been reported are possibly exposed with higher PAEs. The indices were highly diversified at high HDI (0.9) values and between 40,000 and 50,000 $ per capita income due to different usage of phthalate-containing products, disposal, and extensive monitoring work carried out by the developed and developing countries.
Collapse
Affiliation(s)
- Bablu Prasad
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| | - Kumar Suranjit Prasad
- Centre of Environmental Science, Institute of Interdisciplinary Studies, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Hemen Dave
- Institute of Research and Development, Gujarat Forensic Sciences University (GFSU) Gandhinagar, Gujarat, India
| | - Aditee Das
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Gargi Asodariya
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Nisha Talati
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Sunita Swain
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Shruti Kapse
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| |
Collapse
|
32
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. Quantitative structure–activity relationship modeling of hydroxylated polychlorinated biphenyls as constitutive androstane receptor agonists. Struct Chem 2022. [DOI: 10.1007/s11224-022-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Corti M, Lorenzetti S, Ubaldi A, Zilli R, Marcoccia D. Endocrine Disruptors and Prostate Cancer. Int J Mol Sci 2022; 23:1216. [PMID: 35163140 PMCID: PMC8835300 DOI: 10.3390/ijms23031216] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/22/2023] Open
Abstract
The role of endocrine disruptors (EDs) in the human prostate gland is an overlooked issue even though the prostate is essential for male fertility. From experimental models, it is known that EDs can influence several molecular mechanisms involved in prostate homeostasis and diseases, including prostate cancer (PCa), one of the most common cancers in the male, whose onset and progression is characterized by the deregulation of several cellular pathways including androgen receptor (AR) signaling. The prostate gland essentiality relies on its function to produce and secrete the prostatic fluid, a component of the seminal fluid, needed to keep alive and functional sperms upon ejaculation. In physiological condition, in the prostate epithelium the more-active androgen, the 5α-dihydrotestosterone (DHT), formed from testosterone (T) by the 5α-reductase enzyme (SRD5A), binds to AR and, upon homodimerization and nuclear translocation, recognizes the promoter of target genes modulating them. In pathological conditions, AR mutations and/or less specific AR binding by ligands modulate differently targeted genes leading to an altered regulation of cell proliferation and triggering PCa onset and development. EDs acting on the AR-dependent signaling within the prostate gland can contribute to the PCa onset and to exacerbating its development.
Collapse
Affiliation(s)
- Margherita Corti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Alessandro Ubaldi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| | - Romano Zilli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| |
Collapse
|