1
|
Shi X, Yang D, Li S, Yu K, Yan W, Xu H. Research progress on coupling and stacking systems to enhance power generation performance of microbial fuel cell. J Environ Sci (China) 2025; 154:784-804. [PMID: 40049916 DOI: 10.1016/j.jes.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 05/13/2025]
Abstract
Microbial fuel cells (MFCs) face significant challenges related to low power output, which severely limits their practical applications. Coupling MFC with other technologies and stacking MFCs are feasible solutions to enhance power output. In recent years, the coupling and stacking technology of MFCs has become a research hotspot in the field of environmental energy. This paper first outlines the basic configurations of MFCs and then analyzes the advantages and disadvantages of different setups in the context of coupling and stacking. Subsequently, it discusses in detail the coupling systems of MFC with other technologies, as well as several configurations of stacked MFCs and the phenomenon of voltage reversal. Based on these investigations, the paper proposes future research directions aimed at optimizing MFC performance, thereby enhancing their potential for energy recovery from wastewater and supporting the commercialization and scaling of MFC technology.
Collapse
Affiliation(s)
- Xueyao Shi
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Kedi Yu
- Shenzhen Water Affairs Bureau, Guangdong, Shenzhen 518036, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Oliveira WV, Silva MCF, Araújo BR, Romão LPC. Assessment of homogeneous electro-Fenton process coupled with microbial fuel cell utilizing Serratia sp. AC-11 for glyphosate degradation in aqueous phase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122797. [PMID: 39383744 DOI: 10.1016/j.jenvman.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Glyphosate (GLY), a globally-used organophosphate herbicide, is frequently detected in various environmental matrices, including water, prompting significant attention due to its persistence and potential ecological impacts. In light of this environmental concern, innovative remediation strategies are warranted. This study utilized Serratia sp. AC-11 isolated from a tropical peatland as a biocatalyst in a microbial fuel cell (MFC) coupled with a homogeneous electron-Fenton (EF) process to degrade glyphosate in aqueous medium. After coupling the processes with a resistance of 100 Ω, an output voltage value of 0.64 V was obtained and maintained stable throughout the experiment. A bacterial biofilm of Serratia sp. AC-11 was formed on the carbon felt electrode, confirmed by attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). In the anodic chamber, the GLY biodegradation rate was 100% after 48 h of experimentation, with aminomethylphosphonic acid (AMPA) remaining in the solution. In the cathodic chamber, the GLY degradation rate for the EF process was 69.5% after 48 h experimentation, with almost all of the AMPA degraded by the in situ generated hydroxyl radicals. In conclusion, the results demonstrated that Serratia sp. AC-11 not only catalyzed the biodegradation of glyphosate but also facilitated the generation of electrons for subsequent transfer to initiate the EF reaction to degrade glyphosate. This dual functionality emphasizes the unique capabilities of Serratia sp. AC-11, it as an electrogenic microorganism with application in innovative bioelectrochemical processes, and highlighting its role in sustainable strategies for environmental remediation.
Collapse
Affiliation(s)
- Weverton V Oliveira
- Laboratory of Natural Organic Matter, Department of Chemistry, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Mércia C F Silva
- Laboratory of Natural Organic Matter, Department of Chemistry, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Bruno R Araújo
- Laboratory of Forensic Chemistry, Scientific Police, Secretary of Public Security, 49107-230, São Cristóvão, SE, Brazil
| | - Luciane P C Romão
- Laboratory of Natural Organic Matter, Department of Chemistry, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, Araraquara, SP, 14800-900, Brazil.
| |
Collapse
|
3
|
Huang W, Liu S, Zhang T, Wu H, Pu S. Bibliometric analysis and systematic review of electrochemical methods for environmental remediation. J Environ Sci (China) 2024; 144:113-136. [PMID: 38802224 DOI: 10.1016/j.jes.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 05/29/2024]
Abstract
Electrochemical methods are increasingly favored for remediating polluted environments due to their environmental compatibility and reagent-saving features. However, a comprehensive understanding of recent progress, mechanisms, and trends in these methods is currently lacking. Web of Science (WoS) databases were utilized for searching the primary data to understand the knowledge structure and research trends of publications on electrochemical methods and to unveil certain hotspots and future trends of electrochemical methods research. The original data were sampled from 9080 publications in those databases with the search deadline of June 1st, 2022. CiteSpace and VOSviewer software facilitated data visualization and analysis of document quantities, source journals, institutions, authors, and keywords. We discussed principles, influencing factors, and progress related to seven major electrochemical methods. Notably, publications on this subject have experienced significant growth since 2007. The most frequently-investigated areas in electrochemical methods included novel materials development, heavy metal remediation, organic pollutant degradation, and removal mechanism identification. "Advanced oxidation process" and "Nanocomposite" are currently trending topics. The major remediation mechanisms are adsorption, oxidation, and reduction. The efficiency of electrochemical systems is influenced by material properties, system configuration, electron transfer efficiency, and power density. Electro-Fenton exhibits significant advantages in achieving synergistic effects of anodic oxidation and electro-adsorption among the seven techniques. Future research should prioritize the improvement of electron transfer efficiency, the optimization of electrode materials, the exploration of emerging technology coupling, and the reduction in system operation and maintenance costs.
Collapse
Affiliation(s)
- Wenbin Huang
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China.
| | - Tao Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China
| | - Hao Wu
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
4
|
Kim HJ, Kim H, Lee U, Oh HS, Kim HW, Lee J. Removal of tetramethylammonium hydroxide (TMAH) by cold plasma treatment combined with periodate oxidation: Degradation, kinetics, and toxicity study. CHEMOSPHERE 2024; 362:142704. [PMID: 38925518 DOI: 10.1016/j.chemosphere.2024.142704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Tetramethylammonium hydroxide (TMAH), which is a chemical used in the electronic industry, is classified as a hazardous material (HAZMAT class 8) that threatens aquatic ecosystems and human health. Consequently, numerous studies have attempted to remove TMAH using various treatment methods, including advanced oxidation processes such as ozone, UV, or Fenton oxidation. However, prior research has indicated a low kinetic rate of TMAH removal. In this context, we proposed an alternative to TMAH degradation by combining a cold plasma (CP) process with periodate oxidation. As for the kinetics of TMAH removal, the kinetic constant was improved by 5 times (0.1661 and 0.0301 for 40.56 and 2.2 W, respectively) as the electric power of a CP system increased from 2.2 to 40.56 W. The kinetic constant of a 40.56 W CP system further increased by 54 times (1.6250) than a 2 W CP system when 4 mM periodate was used simultaneously. As a result, the integrated CP/periodate system represented 2 times higher TMAH removal efficiency (29.5%) than a 2 W CP system (14.4%). This excellent TMAH degradation capability of the integrated CP/periodate system became pronounced at pH 10 and 25 °C. Overall, the integrated CP/periodate system is expected to be a viable management option for effectively controlling hazardous TMAH chemicals.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Hyeok Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Uje Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Hyun-Suk Oh
- Department of Environmental Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Hyun-Woo Kim
- Department of Environmental Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
5
|
Sudarsan JS, Dogra K, Kumar R, Raval NP, Leifels M, Mukherjee S, Trivedi MH, Jain MS, Zang J, Barceló D, Mahlknecht J, Kumar M. Tricks and tracks of prevalence, occurrences, treatment technologies, and challenges of mixtures of emerging contaminants in the environment: With special emphasis on microplastic. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104389. [PMID: 38941876 DOI: 10.1016/j.jconhyd.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This paper aims to emphasize the occurrence of various emerging contaminant (EC) mixtures in natural ecosystems and highlights the primary concern arising from the unregulated release into soil and water, along with their impacts on human health. Emerging contaminant mixtures, including pharmaceuticals, personal care products, dioxins, polychlorinated biphenyls, pesticides, antibiotics, biocides, surfactants, phthalates, enteric viruses, and microplastics (MPs), are considered toxic contaminants with grave implications. MPs play a crucial role in transporting pollutants to aquatic and terrestrial ecosystems as they interact with the various components of the soil and water environments. This review summarizes that major emerging contaminants (ECs), like trimethoprim, diclofenac, sulfamethoxazole, and 17α-Ethinylestradiol, pose serious threats to public health and contribute to antimicrobial resistance. In addressing human health concerns and remediation techniques, this review critically evaluates conventional methods for removing ECs from complex matrices. The diverse physiochemical properties of surrounding environments facilitate the partitioning of ECs into sediments and other organic phases, resulting in carcinogenic, teratogenic, and estrogenic effects through active catalytic interactions and mechanisms mediated by aryl hydrocarbon receptors. The proactive toxicity of ECs mixture complexation and, in part, the yet-to-be-identified environmental mixtures of ECs represent a blind spot in current literature, necessitating conceptual frameworks for assessing the toxicity and risks with individual components and mixtures. Lastly, this review concludes with an in-depth exploration of future scopes, knowledge gaps, and challenges, emphasizing the need for a concerted effort in managing ECs and other organic pollutants.
Collapse
Affiliation(s)
- Jayaraman Sethuraman Sudarsan
- School of Energy and Environment, NICMAR (National Institute of Construction Management and Research) University, Pune 411045, India
| | - Kanika Dogra
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh 522 240, India
| | - Mats Leifels
- Division Water Quality and Health, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Mrugesh H Trivedi
- Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj-Kachchh, Gujarat 370001, India
| | - Mayur Shirish Jain
- Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, 453552, India
| | - Jian Zang
- School of Civil Engineering, Chongqing University, Chongqing, China
| | - Damià Barceló
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120, Almería, Spain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico
| | - Manish Kumar
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico.
| |
Collapse
|
6
|
Lv J, Zhao Q, Jiang J, Ding J, Wei L. Sludge dewaterability improvement with microbial fuel cell powered electro-Fenton system (MFCⓅEFs): Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171422. [PMID: 38432365 DOI: 10.1016/j.scitotenv.2024.171422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Throughout the entire process of sludge treatment and disposal, it is crucial to explore stable and efficient techniques to improve sludge dewaterability, which can facilitate subsequent resource utilization and space and cost savings. Traditional Fenton oxidation has been widely researched to enhance the performance of sludge dewaterability, which was limited by the additional energy input and the instabilities of Fe2+ and H2O2. To reduce the consumption of energy and chemicals and further break the rate-limiting step of the iron cycle, a novel and feasible method that constructed microbial fuel cell powered electro-Fenton systems (MFCⓅEFs) with ferrite and biochar electrode (MgFe2O4@BC/CF) was successfully demonstrated. The MFCⓅEFs with MgFe2O4@BC/CF electrode achieved specific resistance filtration and sludge cake water content of 2.52 × 1012 m/kg and 66.54 %. Cellular structure and extracellular polymeric substances (EPS) were disrupted, releasing partially bound water and destroying hydrophilic structures to facilitate sludge flocs aggregation, which was attributed to the oxidation of hydroxyl radicals. The consistent electron supply supplied by MFCⓅEFs and catalytically active sites on the surface of the multifunctional functional group electrode was responsible for producing more hydroxyl radicals and possessing a better oxidizing ability. The study provided an innovative process for sludge dewaterability improvement with high efficiency and low energy consumption, which presented new insights into the green treatment of sludge.
Collapse
Affiliation(s)
- Jiaqi Lv
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
Dixit A, Pandey H, Rana R, Kumar A, Herojeet R, Lata R, Mukhopadhyay R, Mukherjee S, Sarkar B. Ecological and human health risk assessment of pharmaceutical compounds in the Sirsa River of Indian Himalayas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123668. [PMID: 38442820 DOI: 10.1016/j.envpol.2024.123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The Baddi-Barotiwala-Nalagarh (BBN) region of Indian Himalayas is one of the most important pharmaceutical industrial clusters in Asia. This study investigated the distribution, and ecological and human health risks of four most frequently used pharmaceuticals [ciprofloxacin (CIP), norfloxacin (NOR), cetirizine (CTZ) and citalopram oxalate (ECP)] when co-occurring with metal ions in the Sirsa river water of the BBN region. The concentration range of the selected pharmaceuticals was between 'not detected' to 50 μgL-1 with some exception for CIP (50-100 μgL-1) and CTZ (100-150 μgL-1) in locations directly receiving wastewater discharges. A significant correlation was found between the occurrences of NOR and Al (r2 = 0.65; p = 0.01), and CTZ and K (r2 = 0.50; p = 0.01) and Mg (r2 = 0.50; p = 0.01). A high-level ecological risk [risk quotient (RQ) > 1] was observed for algae from all the pharmaceuticals. A medium-level risk (RQ = 0.01-0.1) was observed for Daphnia from CIP, NOR and ECP, and a high-level risk from CTZ. A low-level risk was observed for fishes from CIP and NOR, whereas CTZ and ECP posed a high-level risk to fishes. The overall risk to ecological receptors was in the order: CTZ > CIP > ECP > NOR. Samples from the river locations receiving water from municipal drains or situated near landfill and pharmaceutical factories exhibited RQ > 1 for all pharmaceuticals. The average hazard quotient (HQ) values for the compounds followed the order: CTZ (0.18) > ECP (0.15) > NOR (0.001) > CIP (0.0003) for children (0-6 years); ECP (0.49) > CTZ (0.29) > NOR (0.005) > CIP (0.001) for children (7-17 years), and ECP (0.34) > CTZ (0.21) > NOR (0.007) > CIP (0.001) for adults (>17 years). The calculated risk values did not readily confirm the status of water as safe or unsafe because the values of predicted no-effect concentration (PNEC) would depend on various other environmental factors such as quality of the toxicity data, and species sensitivity and distribution, which warrants further research.
Collapse
Affiliation(s)
- Arohi Dixit
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India; Galgotias College of Engineering and Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Himanshu Pandey
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rajiv Rana
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Anil Kumar
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India; School of Health Sciences, Amity University Punjab, Mohali, 140306, India
| | - Rajkumar Herojeet
- Department of Environmental Studies, Post Graduate Government College, Sector 11, Chandigarh, India
| | - Renu Lata
- G.B. Pant National Institute of Himalayan Environment, Mohal-Kullu, 175126, Himachal Pradesh, India
| | - Raj Mukhopadhyay
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, 15213, United States; Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Santanu Mukherjee
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA14YQ, United Kingdom; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
8
|
Zhong J, Zhu W, Wang X, Sun J, Mu B, Xu Y, Li G. Effect mechanism of iron conversion on adsorption performance of hydrochar derived from coking sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165427. [PMID: 37451467 DOI: 10.1016/j.scitotenv.2023.165427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
In this study, Fe conversion during hydrothermal carbonization (HTC) of coking sludge were investigated, and the effect mechanism of Fe component on the adsorption performance of coking sludge hydrochar (CHC) was explored. The results showed that after HTC treatment, more than 95 % of Fe remained in the CHC. Fe3+ was reduced to Fe2+ by sugar and amino acids. Fe was stabilized during the HTC process and was still predominantly in the Fe manganese oxidation state. The CHC prepared at 270 °C exhibited excellent adsorption capacities for Congo red (CR), tetracycline (TC), and Cr (VI). Their maximum adsorption capacities were 140.85, 147.06, and 19.92 mg/g, respectively. Quantitative adsorption mechanism experiments, XRD and VSM characterization revealed that Fe component played a significant role in adsorption, and CHC with more Fe3O4 exhibited better adsorption capacity. The results of the XPS characterization of CHC before and after adsorption showed that Fe3O4 provided rich Fe adsorption sites on the surface of CHC to strengthen the adsorption efficiency of pollutants through Fe3+/Fe2+ reduction and complexation of Fe-O/N. In addition, the formed Fe3O4 also imparted CHC with magnetic properties (Ms = 4.12 emu/g) to facilitate the subsequent separation and recovery. These results demonstrated that the prepared CHC has great potential for treating actual wastewater containing CR and TC.
Collapse
Affiliation(s)
- Jun Zhong
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wei Zhu
- Center for Taihu Basin, Hohai University, Nanjing 210098, PR China.
| | - Xin Wang
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jipeng Sun
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Biao Mu
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yucheng Xu
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guorui Li
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
9
|
Mosur Nagarajan A, Subramanian A, Prasad Gobinathan K, Mohanakrishna G, Sivagami K. Electrochemical-based approaches for the treatment of pharmaceuticals and personal care products in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118385. [PMID: 37392690 DOI: 10.1016/j.jenvman.2023.118385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
In recent times, emerging contaminants (ECs) like pharmaceuticals and personal care products (PPCPs) in water and wastewater have become a major concern in the environment. Electrochemical treatment technologies proved to be more efficient to degrade or remove PPCPs present in the wastewater. Electrochemical treatment technologies have been the subject of intense research for the past few years. Attention has been given to electro-oxidation and electro-coagulation by industries and researchers, indicating their potential to remediate PPCPs and mineralization of organic and inorganic contaminants present in wastewater. However, difficulties arise in the successful operation of scaled-up systems. Hence, researchers have identified the need to integrate electrochemical technology with other treatment technologies, particularly advanced oxidation processes (AOPs). Integration of technologies addresses the limitation of indiviual technologies. The major drawbacks like formation of undesired or toxic intermediates, s, energy expenses, and process efficacy influenced by the type of wastewater etc., can be reduced in the combined processes. The review discusses the integration of electrochemical technology with various AOPs, like photo-Fenton, ozonation, UV/H2O2, O3/UV/H2O2, etc., as an efficient way to generate powerful radicals and augment the degradation of organic and inorganic pollutants. The processes are targeted for PPCPs such as ibuprofen, paracetamol, polyparaben and carbamezapine. The discussion concerns itself with the various advantages/disadvantages, reaction mechanisms, factors involved, and cost estimation of the individual and integrated technologies. The synergistic effect of the integrated technology is discussed in detail and remarks concerning the prospects subject to the investigation are also stated.
Collapse
Affiliation(s)
- Aditya Mosur Nagarajan
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India; Faculty of Process and Systems Engineering, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Aishwarya Subramanian
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India; School of Process Engineering, Technische Universität Hamburg, Hamburg, Germany
| | - Krishna Prasad Gobinathan
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India; School of Process Engineering, Technische Universität Hamburg, Hamburg, Germany
| | - Gunda Mohanakrishna
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubli, India.
| | - Krishnasamy Sivagami
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
10
|
Roy SV, Raychaudhuri A, Behera M, Neelancherry R. Elimination of pharmaceuticals from wastewater using microbial fuel cell-based bio-electro-Fenton process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28424-w. [PMID: 37402924 DOI: 10.1007/s11356-023-28424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
This study highlights the potential of the microbial fuel cell (MFC)-based bio-electro-Fenton (BEF) process as an efficient and highly adaptable strategy for wastewater treatment. The research aims to optimize the pH of the cathodic chamber (3-7) and catalyst doses (Fe) (0-18.56%) on the graphite felt (GF) cathode, and examine the effect of operating parameters on chemical oxygen demand (COD) removal, mineralization efficiency, pharmaceuticals (ampicillin, diclofenac, and paracetamol) removal, and power generation. The study found that lower pH and higher catalyst dosage on the GF led to better performance of the MFC-BEF system. Under neutral pH, mineralization efficiency, paracetamol removal, and ampicillin removal were enhanced by 1.1 times, and power density improved by 1.25 times as catalyst dosage increased from 0 to 18.56%. Additionally, employing full factorial design (FFD) statistical optimization, the study identifies the optimized conditions for maximum COD removal, mineralization efficiency, and power generation, which are determined to be a pH of 3.82 and a catalyst dose of 18.56%.
Collapse
Affiliation(s)
- Sruthi V Roy
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, 752050, India
| | - Aryama Raychaudhuri
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, 752050, India
| | - Manaswini Behera
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, 752050, India.
| | - Remya Neelancherry
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, 752050, India
| |
Collapse
|
11
|
Zhou X, Yan G, Majdi HS, Le BN, Khadimallah MA, Ali HE, Assilzadeh H. Spotlighting of microbial electrodeionization cells for sustainable wastewater treatment: Application of machine learning. ENVIRONMENTAL RESEARCH 2023; 219:115113. [PMID: 36574799 DOI: 10.1016/j.envres.2022.115113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/29/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Microbial electrodeionization cells (MECs) have been investigated for various potential applications, including the elimination of persistent pollutants, chemical synthesis, the recovery of resources, and the development of biosensors. Nevertheless, MEC technology is still developing, and practical large-scale applications face significant obstacles. This review aims to investigate MEC implementations in sustainable wastewater treatment. Ideas and concepts of MEC technology, the setup of the electrodeionization component, the membranes of MECs, the working mechanism of MECs, and the various microorganisms used in MECs are discussed. Additionally, difficulties and prospective outcomes were discussed. The goal of this review is to support scientists and engineers in fully grasping the most recent developments in MEC technologies and applications.
Collapse
Affiliation(s)
- Xia Zhou
- School of Intelligent Construction, Luzhou Vocational and Technical College, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Intelligent Construction and Low-carbon Technology, Luzhou 646000, Sichuan, China
| | - Gongxing Yan
- School of Intelligent Construction, Luzhou Vocational and Technical College, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Intelligent Construction and Low-carbon Technology, Luzhou 646000, Sichuan, China.
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Mohamed Amine Khadimallah
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - H Elhosiny Ali
- Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Physics Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hamid Assilzadeh
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| |
Collapse
|
12
|
Wang K, Li H, Yang Y, Wang P, Zheng Y, Song L. Making cathode composites more efficient for electro-fenton and bio-electro-fenton systems: A review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Ahirwar A, Das S, Das S, Yang YH, Bhatia SK, Vinayak V, Ghangrekar MM. Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bio-economy approach. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Hou Y, Liu F, Zhang B, Tong M. Thiadiazole-Based Covalent Organic Frameworks with a Donor-Acceptor Structure: Modulating Intermolecular Charge Transfer for Efficient Photocatalytic Degradation of Typical Emerging Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16303-16314. [PMID: 36305749 DOI: 10.1021/acs.est.2c06056] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As novel metal-free photocatalysts, covalent organic frameworks (COFs) have great potential to decontaminate pollutants in water. Fast charge recombination in COFs yet inhibits their photocatalytic performance. We found that the intramolecular charge transfer within COFs could be modulated via constructing a donor-acceptor (D-A) structure, leading to the improved photocatalytic performance of COFs toward pollutant degradation. By integrating electron donor units (1,3,4-thiadiazole or 1,2,4-thiadiazole ring) and electron acceptor units (quinone), two COFs (COF-TD1 and COF-TD2) with robust D-A characteristics were fabricated as visible-light-driven photocatalysts to decontaminate paracetamol. With the readily excited electrons in 1,3,4-thiadiazole rings, COF-TD1 exhibited efficient electron-hole separation through a push-pull electronic effect, resulting in superior paracetamol photodegradation performance (>98% degradation in 60 min) than COF-TD2 (∼60% degradation within 120 min). COF-TD1 could efficiently photodegrade paracetamol in complicated water matrices even in river water, lake water, and sewage wastewater. Diclofenac, bisphenol A, naproxen, and tetracycline hydrochloride were also effectively degraded by COF-TD1. Efficient photodegradation of paracetamol in a scaled-up reactor could be achieved either by COF-TD1 in a powder form or that immobilized onto a glass slide (to further ease recovery and reuse) under natural sunlight irradiation. Overall, this study provided an effective strategy for designing excellent COF-based photocatalysts to degrade emerging contaminants.
Collapse
Affiliation(s)
- Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
15
|
Sathe SM, Chakraborty I, Doki MM, Dubey BK, Ghangrekar MM. Waste-derived iron catalyzed bio-electro-Fenton process for the cathodic degradation of surfactants. ENVIRONMENTAL RESEARCH 2022; 212:113141. [PMID: 35337835 DOI: 10.1016/j.envres.2022.113141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
The application of waste-derived iron for reuse in wastewater treatment is an effective way of utilizing waste and attaining sustainability in the overall process. In the present investigation, bio-electro-Fenton process was initiated for the cathodic degradation of surfactants using waste-iron catalyzed MFC (WFe-MFC). The waste-iron was derived from spent tonner ink using calcination at 600 °C. Three surfactants namely, sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide, and Triton x-100 were selected as target pollutants. The effect of experimental factors like application of catalyst, contact time, external resistance, and anodic substrate concentration on the SDS degradation was investigated. At a neutral pH, the cathodic surfactants removal efficiency in WFe-MFC was above 85% in a contact time of 180 min with the initial surfactant concentration of ∼20 mg L-1 and external resistance of 100 Ω. The long-term operation using secondary treated real wastewater with unchanged cathode proved that the catalyst was still active to produce effluent SDS concentration of less than 1 mg L-1 in 4 h of contact time after 16 cycles. In a way, the present investigation suggests a potential application for spent tonner ink in the form of Fenton catalyst for wastewater treatment via bio-electro-Fenton MFC.
Collapse
Affiliation(s)
- S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Manikanta M Doki
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
16
|
Zheng LL, Zhang J, Liu XZ, Tian L, Xiong ZS, Xiong X, Chen P, Wu DS, Zou JP. Degradation of pesticide wastewater with simultaneous resource recovery via ozonation coupled with anaerobic biochemical technology. CHEMOSPHERE 2022; 300:134520. [PMID: 35398067 DOI: 10.1016/j.chemosphere.2022.134520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The effective treatment of pesticide wastewater with high organic content, complex composition and high-toxicity has attracted enormous attention of researchers. This work proposes a new idea for removing the pesticide wastewater with simultaneous resource recovery, which is different from the traditional view of mineralization of pesticide wastewater via composite technology. This novel strategy involved a sequential three-step treatment: (a) acidic Ozonation process, to remove the venomous aromatic heterocyclic compounds; (b) hydrolysis and ozonation in alkaline conditions, enhancing the biodegradability of pesticide wastewater, mainly due to the dehalogenation, elimination of C=C bonds and production of low molecular-weight carboxylate anions; (c) the final step is anaerobic biological reactions. Based on the characterizations, this two-stage acidic-alkaline ozonation can efficiently degraded the virulence of pesticide wastewater and enhance its biodegradability from 0.08 to 0.32. The final anaerobic biochemical treatment can stably remove the residuals and convert the low molecular-weight organics into CH4, achieving the resource recovery. This work explored the pH-dependent of ozonized degradation of pesticide wastewater and gives a new perspective of wastewater treatment.
Collapse
Affiliation(s)
- Ling-Ling Zheng
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Jun Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xiao-Zhen Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China.
| | - Lei Tian
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhen-Sheng Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xin Xiong
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Peng Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Dai-She Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China
| | - Jian-Ping Zou
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
17
|
Application of Microbial Fuel Cell (MFC) for Pharmaceutical Wastewater Treatment: An Overview and Future Perspectives. SUSTAINABILITY 2022. [DOI: 10.3390/su14148379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pharmaceutical wastewater (PWW) is rapidly growing into one of the world’s most serious environmental and public health issues. Existing wastewater treatment systems carry numerous loopholes in supplying the ever-increasing need for potable water resulting from rises in population, urbanization, and industrial growth, and the volume of wastewater produced is growing each day. At present, conventional treatment methods, such as coagulation, sedimentation, oxidation, membrane filtration, flocculation, etc., are used to treat PWW. In contrast to these, the application of microbial fuel cells (MFCs) for decontaminating PWW can be a promising technology to replace these methods. MFC technologies have become a trending research topic in recent times. MFCs have also garnered the interest of researchers worldwide as a promising environmental remediation technique. This review extensively discusses the flaws in standalone conventional processes and the integration of MFCs to enhance electricity production and contaminant removal rates, especially with respect to PWW. This article also summarizes the studies reported on various antibiotics and wastes from pharmaceutical industries treated by MFCs, and their efficiencies. Furthermore, the review explains why further research is needed to establish the actual efficiency of MFCs to achieve sustainable, environmentally friendly, and cost-effective wastewater treatment. A brief on technoeconomic impacts has also been made to provide a glimpse of the way these technologies might replace present-day conventional methods.
Collapse
|
18
|
Brillas E. Progress of homogeneous and heterogeneous electro-Fenton treatments of antibiotics in synthetic and real wastewaters. A critical review on the period 2017-2021. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153102. [PMID: 35041950 DOI: 10.1016/j.scitotenv.2022.153102] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics are widely supplied over all the world to animals and humans to fight and heal bacteriological diseases. The uptake of antibiotics has largely increased the average-life expectancy of living beings. However, these recalcitrant products have been detected at low concentrations in natural waters, with potential health risks due to alterations in food chains and an increase in the resistance to bacterial infection, control of infectious diseases, and damage of the beneficial bacteria. The high stability of antibiotics at mild conditions prevents their effective removal in conventional wastewater treatment plants. A powerful advanced oxidation processes such as the electro-Fenton (EF) process is being developed as a guarantee for their destruction by •OH generated as strong oxidant. This review presents a critical, exhaustive, and detailed analysis on the application of EF to remediate synthetic and real wastewaters contaminated with common antibiotics, covering the period 2017-2021. Homogeneous EF and heterogeneous EF involving iron solid catalysts or iron functionalized cathodes, as well as their hybrid and sequential treatments, are exhaustively examined. Their fundamentals and characteristics are detailed, and the main results obtained for the removal of the most used antibiotic families are carefully described and discussed. The role of generated oxidizing agents is explained, and the by-products generated, and reaction sequences proposed are detailed.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
19
|
Noori MT, Thatikayala D, Pant D, Min B. A critical review on microbe-electrode interactions towards heavy metal ion detection using microbial fuel cell technology. BIORESOURCE TECHNOLOGY 2022; 347:126589. [PMID: 34929327 DOI: 10.1016/j.biortech.2021.126589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Implicit interaction of electroactive microbes with solid electrodes is an interesting phenomenon in nature, which supported development of bioelectrochemical systems (BESs), especially the microbial fuel cell (MFCs) for valorization of low-value waste streams into bioelectricity. Intriguingly, the metabolism of interacted microbes with electrode is affected by the microenvironment at electrodes, which influences the current response. For instance, when heavy metal ions (HMIs) are imposed in the medium, the current production decreases due to their intrinsic toxic effect. This event provides an immense opportunity to utilize MFC as a sensor to selectively detect HMIs in the environment, which has been explored vastly in recent decade. In this review, we have concisely discussed the microbial interaction with electrodes and mechanism of detection of HMIs using an MFC. Recent advancement in sensing elements and their application is elaborated with a future perspective section for follow-up research and development in this field.
Collapse
Affiliation(s)
- Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea
| | - Dayakar Thatikayala
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
20
|
Khan MI, Almesfer MK, Elkhaleefa A, Shigidi I, Shamim MZ, Ali IH, Rehan M. Conductive Polymers and Their Nanocomposites as Adsorbents in Environmental Applications. Polymers (Basel) 2021; 13:3810. [PMID: 34771368 PMCID: PMC8587430 DOI: 10.3390/polym13213810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/29/2022] Open
Abstract
Proper treatment and disposal of industrial pollutants of all kinds are a global issue that presents significant techno-economical challenges. The presence of pollutants such as heavy metal ions (HMIs) and organic dyes (ODs) in wastewater is considered a significant problem owing to their carcinogenic and toxic nature. Additionally, industrial gaseous pollutants (GPs) are considered to be harmful to human health and may cause various environmental issues such as global warming, acid rain, smog and air pollution, etc. Conductive polymer-based nanomaterials have gained significant interest in recent years, compared with ceramics and metal-based nanomaterials. The objective of this review is to provide detailed insights into different conductive polymers (CPs) and their nanocomposites that are used as adsorbents for environmental remediation applications. The dominant types of CPs that are being used as adsorbent materials include polyaniline (PANI), polypyrrole (Ppy), and polythiophene (PTh). The various adsorption mechanisms proposed for the removal of ODs, HMIs, and other GPs by the different CPs are presented, together with their maximum adsorption capacities, experimental conditions, adsorption, and kinetic models reported.
Collapse
Affiliation(s)
- Mohammad Ilyas Khan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 62529, Saudi Arabia; (M.K.A.); (A.E.); (I.S.)
| | - Mohammed Khaloufa Almesfer
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 62529, Saudi Arabia; (M.K.A.); (A.E.); (I.S.)
| | - Abubakr Elkhaleefa
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 62529, Saudi Arabia; (M.K.A.); (A.E.); (I.S.)
| | - Ihab Shigidi
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 62529, Saudi Arabia; (M.K.A.); (A.E.); (I.S.)
| | - Mohammed Zubair Shamim
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 62529, Saudi Arabia;
| | - Ismat H. Ali
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia;
| | - Mohammad Rehan
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21577, Saudi Arabia;
| |
Collapse
|