1
|
Zhang H, Xu H, Qin B, Fu Y, Yao Y, Zhao Y, Qin C. Review on the sources, distribution and treatment of per- and polyfluoroalkyl substances in global groundwater. ENVIRONMENTAL RESEARCH 2025; 275:121387. [PMID: 40086577 DOI: 10.1016/j.envres.2025.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have garnered increasing global attention due to their widespread occurrence in groundwater and the potential health risks to humans. This review aimed to clarify the occurrence and treatment of PFAS in groundwater by summarizing literature published in the Web of Science Core Collection from January 2000 to April 2024. Information on 461 reported PFAS-contaminated groundwater sites was compiled, revealing key characteristics of pollution sources and concentrations. The data indicated that firefighting training activities were a major source of PFAS groundwater contamination, accounting for 41 % of cases, followed by other fluorinated industrial activities, landfill leachate, and wastewater leakage. Non-point sources, such as atmospheric deposition, contributed to a lesser extent. The concentrations distribution of 25 PFAS showed a chain-length dependency, with short-chain PFAS generally exhibiting higher concentrations than long-chain PFAS. Additionally, the review systematically examined the application of separation methods and destructive methods at both laboratory and pilot/field-scales for PFAS-contaminated groundwater. Resins were favored for ex-situ treatment, whereas colloidal activated carbon (CAC) was more commonly used for in-situ treatment. In-situ direct injection of CAC was considered a highly promising approach for remediating PFAS source zones and plumes, offering advantages such as minimal surface disruption, high adsorption capacity and long-term effectiveness. Finally, the research focus and development trends in categories and treatment methods for PFAS in groundwater were noted. Overall, this review identified research gaps in the occurrence and treatment of PFAS in groundwater, and suggested further optimization of CAC-based methods to address the challenges of PFAS-contaminated groundwater.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Huichao Xu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Bing Qin
- Sinopec Research Institute of Petroleum Processing Co., LTD, Beijing, 100083, China
| | - Yufeng Fu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Yu Yao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Roy JW, Propp VR, Hua T, Brown SJ, Brinovcar C, Smith JE, De Silva AO. Per- and poly-fluoroalkyl substances (PFAS) contamination of surface waters by historic landfills via groundwater plumes: ecosystem exposure and downstream mass loading. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1074-1087. [PMID: 40130317 DOI: 10.1039/d4em00612g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Many historic landfill sites have groundwater plumes that discharge to nearby surface waters. Recent research indicates that leachate of historic landfills can contain elevated concentrations of per- and polyfluoroalkylated substances (PFAS), but there is limited data on resulting PFAS inputs to aquatic ecosystems as might inform on this potential environmental threat. The objective of this study was to evaluate PFAS exposure in three ecological zones and PFAS mass loading downstream, over 1 year, at two historic landfill sites where landfill plumes discharge to nearby surface waters (1 pond with outlet stream, called HB site; 1 urban stream, called DC site). The three zones experienced different magnitudes and patterns of PFAS concentration exposure (i.e., contaminant presence in the zone). The endobenthic zone of the sediments receiving the landfill plumes experienced the highest concentrations (∑PFAS >4000 ng L-1 (HB) and >20 000 ng L-1 (DC)), often year-round and over a substantial area at each site. Dilution of landfill PFAS in surface waters was observed though concentrations were still elevated (∑PFAS: >120 ng L-1 (HB) and >60 ng L-1 (DC)), with evidence of year-round pelagic zone exposure. PFAS concentrations in the epibenthic zones could vary between that of the endobenthic and pelagic zones, sometimes with daily, event-based, and longer-term patterns. Together these findings suggest historic landfill plumes can lead to substantial PFAS exposure to a variety of aquatic life. Downstream PFAS mass loadings during base flows were relatively small individually (15 (HB) and 36 (DC) g per year (∑PFAS)); however, collective loadings from the numerous historic landfills in a watershed could contribute to increasing PFAS concentrations of connected water bodies, with implications for ecological health, drinking water sources, and fisheries.
Collapse
Affiliation(s)
- J W Roy
- Water Science and Technology Directorate, Environment And Climate Change Canada, Canada.
| | - V R Propp
- School of Earth, Environment and Society, McMaster University, Canada
| | - T Hua
- School of Earth, Environment and Society, McMaster University, Canada
| | - S J Brown
- Water Science and Technology Directorate, Environment And Climate Change Canada, Canada.
| | - C Brinovcar
- Water Science and Technology Directorate, Environment And Climate Change Canada, Canada.
| | - J E Smith
- School of Earth, Environment and Society, McMaster University, Canada
| | - A O De Silva
- Water Science and Technology Directorate, Environment And Climate Change Canada, Canada.
| |
Collapse
|
3
|
Cornelissen G, Briels N, Bucheli TD, Estoppey N, Gredelj A, Hagemann N, Lerch S, Lotz S, Rasse D, Schmidt HP, Sørmo E, Arp HPH. A Virtuous Cycle of Phytoremediation, Pyrolysis, and Biochar Applications toward Safe PFAS Levels in Soil, Feed, and Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3283-3285. [PMID: 39879409 PMCID: PMC11826981 DOI: 10.1021/acs.jafc.5c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Indexed: 01/31/2025]
Affiliation(s)
- Gerard Cornelissen
- Norwegian
Geotechnical Institute (NGI), Oslo 0484, Norway
- Norwegian
University of Life Sciences (NMBU), Ås 1432, Norway
| | | | | | | | - Andrea Gredelj
- Norwegian
Geotechnical Institute (NGI), Oslo 0484, Norway
| | - Nikolas Hagemann
- Environmental
Analytics, Agroscope, Zürich 8046, Switzerland
- Ithaka
Institute, Goldbach 63773, Germany
| | - Sylvain Lerch
- Ruminant
Nutrition and Emissions, Agroscope, Posieux 1725, Switzerland
| | - Simon Lotz
- Ithaka
Institute, Arbaz 1974, Switzerland
| | - Daniel Rasse
- Norwegian
Institute for Bioeconomy (NIBIO), Ås 1432, Norway
| | | | - Erlend Sørmo
- Norwegian
Geotechnical Institute (NGI), Oslo 0484, Norway
- Norwegian
University of Life Sciences (NMBU), Ås 1432, Norway
| | - Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), Oslo 0484, Norway
- Norwegian
University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
4
|
Zhao C, Liu H, Cheng D, Wang Y, Hu Z, Wu H, Xie H, Zhang J. Insights into poly-and perfluoroalkyl substances (PFAS) removal in treatment wetlands: Emphasizing the roles of wetland plants and microorganisms. WATER RESEARCH 2025; 268:122702. [PMID: 39476545 DOI: 10.1016/j.watres.2024.122702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are widespread emerging contaminants in aquatic environments, raising serious concerns due to their persistence and potential toxicity to both human health and ecosystems. Treatment wetlands (TWs) provide a sustainable, low-carbon solution for PFAS removal by harnessing the combined actions of substrates, plants, and microorganisms. This review evaluates the effectiveness of TWs in PFAS treatment, emphasizing their role as a post-treatment option for conventional wastewater treatment plants. Mass balance analysis reveals that substrate adsorption was the primary pathway for PFAS removal from TWs, while plant uptake and subsequent harvesting treatments, as well as microbial degradation, contribute substantially to long-term PFAS removal. Comparisons of bioaccumulation factor (BCF) and translocation factors (TF) between wetland and terrestrial plants demonstrate that wetland plants are particularly effective at adsorbing long-chain PFAS and transferring them from roots to aboveground tissues. The diverse environmental conditions within TWs support varied microbial communities, facilitating the evolution of PFAS-degrading microorganisms. Wetland microorganisms demonstrate the capacity to break down PFAS through processes such as head group transformations (e.g., decarboxylation, desulfonation) and defluorination (e.g., elimination, reductive defluorination, hydrolysis, dealkylation). This review emphasizes the crucial role of wetland plants and microorganisms in the sustainable removal of PFAS in TWs, providing insights for the ecological remediation of PFAS-contaminated wastewater.
Collapse
Affiliation(s)
- Changjie Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China; School of Geographical Environment, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
5
|
Guo C, Hu S, Cheng P, Cheng K, Yang Y, Chen G, Wang Q, Wang Y, Liu T. Speciation and biogeochemical behavior of perfluoroalkyl acids in soils and their environmental implications: A review. ECO-ENVIRONMENT & HEALTH 2024; 3:505-515. [PMID: 39605968 PMCID: PMC11599973 DOI: 10.1016/j.eehl.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 11/29/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are emerging organic pollutants that have attracted significant attention in the fields of environmental chemistry and toxicology. Although PFAAs are pervasive in soils and sediments, there is a paucity of research regarding their environmental forms and driving mechanisms. This review provides an overview of the classification and biotoxicity of per- and polyfluoroalkyl substances (PFAS), organic pollutant forms, PFAS extraction and analytical methods, the prediction of PFAS distribution in soils, and current PFAS remediation strategies. Four predominant PFAA forms have been proposed in soils: (i) aqueous-extracted PFAAs, (ii) organic-solvent extracted PFAAs, (iii) embedded or sequestered PFAAs, and (iv) covalently bound PFAAs. Furthermore, it suggests suitable extraction methods and predictive models for different PFAA forms, which are instrumental in the research on PFAA speciation and prediction in soils. Simultaneously, it was proposed that elemental cycling and microbial activity may affect the speciation of PFAS. Additionally, the categorization of PFAA forms facilitated the analysis of pollution remediation. Understanding the interplay between PFAA speciation, element cycling, and bacterial activity during soil remediation is essential for understanding remediation mechanisms and assessing the long-term stability of remediation methods. Future studies should expand the investigation of varying PFAA forms in different media, consider the potential binding forms of PFAAs to minerals, organic matter, and microbes, and evaluate the possible mechanisms of PFAA speciation variation.
Collapse
Affiliation(s)
| | | | - Pengfei Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kuan Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ying Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
Zhang W, Liang Y. Impact of four surfactants on the uptake of per- and polyfluoroalkyl substances (PFAS) by red fescue grass. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:13-22. [PMID: 39180432 DOI: 10.1080/15226514.2024.2394903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose great risks to human health and the ecosystem, necessitating effective remediation strategies such as phytoremediation. Surfactants, due to their ability to increase the bioavailability of hydrophobic contaminants, are considered as potential agents to improve phytoremediation for PFAS. In this research, we explored the impact of four surfactants (sodium dodecyl sulfate (SDS), rhamnolipid, Triton X-100, and Glucopone 600 CS UP) on plant growth and the uptake of PFAS by red fescue over 110 days. The results showed that while surfactants at lower concentrations did not negatively affect plant growth, the highest dose (2,500 mg/kg) significantly reduced the dry weight of plant shoots. Although none of the four surfactants led to an increased overall removal efficiency of ∑PFAS by red fescue over 110 days, SDS did enhance the uptake of PFAS compounds with long carbon chain lengths. With SDS addition at 2,500 mg/kg, the average fold increases of long chain PFAS removal were 1.99 for perfluorooctanoic acid (PFOA), 2.44 for perfluorononanoic acid (PFNA), 2.11 for perfluorodecanoic acid (PFDA), 1.52 for perfluoroundecanoic acid (PFUnA), 1.88 for perfluorohexanesulphonic acid (PFHxS), and 2.97 for perfluorooctanesulfonic acid (PFOS). The research indicated that using surfactants, such as SDS at appropriate doses could improve phytoremediation effectiveness in mitigating long-chain PFAS, which is a known challenge in soil remediation.
Collapse
Affiliation(s)
- Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
7
|
Adeogun AO, Ibor OR, Chukwuka AV, Asimakopoulos AG, Zhang J, Arukwe A. Role of niche and micro-habitat preferences in per- and polyfluoroalkyl substances occurrence in the gills of tropical lake fish species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173245. [PMID: 38754512 DOI: 10.1016/j.scitotenv.2024.173245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
The present study has investigated per- and poly-fluoroalkyl substances (PFAS) in the gill tissues of various fish species inhabiting different trophic levels within Eleyele Lake, a tropical freshwater lake in Nigeria. The mean concentrations of PFAS congeners were determined, and their trends and patterns were analyzed across different trophic species. The results revealed variations in congener abundance and species-specific patterns that was influenced by habitat and niche preferences. Multivariate associations using canonical-correlation analysis (CCA) revealed distinct trends in the relationships between gill concentrations of specific PFAS congeners and different trophic groups. The strongest congener relationships were observed in the pelagic omnivore (Oreochromic niloticus: ON) with positive associations for 4:2 FTS, 9CL-PF3ONS, PFTDA, MeFOSA and PFHxS. The differences in congener profiles for the two herbivorous fish (Sarotherodon melanotheron (SM) and Coptodon galilaeus (CG)) reflect possible divergence in microhabitat and niche preferences. Furthermore, the congener overlaps between the herbivore (CG), and benthic omnivore (Clarias gariepinus: ClG) indicate a possible niche and microhabitat overlap. Our study provides valuable insights into the congener dynamics of PFAS at Eleyele Lake. However, the dissimilarity and overlapping PFAS congener profile in fish gills reflects the interplay of species niche preference and microhabitat associations. The present study highlights the need for further research to assess ecological risks and develop effective PFAS management strategies.
Collapse
Affiliation(s)
- Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Oju R Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Nigeria
| | | | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
8
|
Phung TV, Nguyen TD, Nguyen TN, Truong TK, Pham HV, Duong HA. Removal of perfluoroalkyl acids (PFAAs) from aqueous solution by water hyacinth (Eichhornia crassipes): Uptake, accumulation, and translocation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172029. [PMID: 38552988 DOI: 10.1016/j.scitotenv.2024.172029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Although Eichhornia crassipes, commonly known as water hyacinth, has been widely used in wastewater treatment, further investigations are still needed to explore the removal efficiency of perfluoroalkyl acids (PFAAs) from the aqueous environment using this floating aquatic plant. In this study, a hydroponic experiment was conducted to assess accumulation, bioconcentration factors (BCFs), translocation factors (TFs), and removal rates of eight PFAAs by water hyacinth. The obtained results indicated that all PFAAs, including five perfluoroalkyl carboxylic acids (PFCAs) with chain lengths C4-C8 and three perfluoroalkyl sulfonic acids (PFSAs) with C4, C6, and C8, were readily accumulated in water hyacinth. Throughout the duration of the experiment, there was a noticeable increase in PFAA concentrations and BCF values for different plant parts. For the root, PFAAs with more carbon numbers showed a higher uptake than the shorter homologues, with PFSAs being more readily accumulated compared to PFCAs with the same carbon number in the molecules. In contrast, the levels of long-chain PFAAs were comparatively lower than those of short-chain substances in the stem and leaf. Notably, PFAAs with less carbon numbers, like PFPeA, PFBA, and PFBS, showed a remarkable translocation from the root to the stem and leaf with TFs >1. For the whole plant, no significant correlation was found between BCFs and organic carbon-water partition coefficients (Koc), octanol-water partition coefficients (Kow), membrane-water distribution coefficients (Dmw), or protein-water distribution coefficients (Dpw). The removal rates of PFAAs ranged from 40.3 to 63.5 % throughout the three weeks of the experiment while the removal efficiencies varied from 48.9 % for PFHxS to 82.6 % for PFPeA in the last week.
Collapse
Affiliation(s)
- Thi Vi Phung
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam; Research Centre of Environmental Technology for Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Thanh Dam Nguyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam; Research Centre of Environmental Technology for Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Thuy Ngoc Nguyen
- Research Centre of Environmental Technology for Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Thi Kim Truong
- Research Centre of Environmental Technology for Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Hung Viet Pham
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam; Research Centre of Environmental Technology for Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Hong Anh Duong
- Research Centre of Environmental Technology for Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam.
| |
Collapse
|
9
|
Hu M, Scott C. Toward the development of a molecular toolkit for the microbial remediation of per-and polyfluoroalkyl substances. Appl Environ Microbiol 2024; 90:e0015724. [PMID: 38477530 PMCID: PMC11022551 DOI: 10.1128/aem.00157-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic organic compounds that have been used extensively in various industries owing to their unique properties. The PFAS family encompasses diverse classes, with only a fraction being commercially relevant. These substances are found in the environment, including in water sources, soil, and wildlife, leading to human exposure and fueling concerns about potential human health impacts. Although PFAS degradation is challenging, biodegradation offers a promising, eco-friendly solution. Biodegradation has been effective for a variety of organic contaminants but is yet to be successful for PFAS due to a paucity of identified microbial species capable of transforming these compounds. Recent studies have investigated PFAS biotransformation and fluoride release; however, the number of specific microorganisms and enzymes with demonstrable activity with PFAS remains limited. This review discusses enzymes that could be used in PFAS metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the potential of enzyme and microbial engineering to advance PFAS degradation strategies and provide insights for future research in this field.
Collapse
Affiliation(s)
- Miao Hu
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
10
|
Zhang M, Wang W, Gong T, Wu Y, Chen G. Cutting-edge technologies and relevant reaction mechanism difference in treatment of long- and short-chain per- and polyfluoroalkyl substances: A review. CHEMOSPHERE 2024; 354:141692. [PMID: 38490606 DOI: 10.1016/j.chemosphere.2024.141692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants. Compared with short-chain PFAS, long-chain PFAS are more hazardous. Currently, little attention has been paid to the differences in reaction mechanisms between long-chain and short-chain PFAS. This pressing concern has prompted studies about eliminating PFAS and revealing the mechanism difference. The reaction rate and reaction mechanism of each technology was focused on, including (1) adsorption, (2) ion exchange (IX), (3) membrane filtration, (4) advanced oxidation, (5) biotransformation, (6) novel functional material, and (7) other technologies (e.g. ecological remediation, hydrothermal treatment (HT), mechanochemical (MC) technology, micro/nanobubbles enhanced technology, and integrated technologies). The greatest reaction rate k of photocatalysis for long- and short-chain PFAS high up to 63.0 h-1 and 19.7 h-1, respectively. However, adsorption, membrane filtration, and novel functional material remediation were found less suitable or need higher operation demand for treating short-chain PFAS. Ecological remediation is more suitable for treating natural waterbody for its environmentally friendly and fair reaction rate. The other technologies all showed good application potential for both short- and long-chain PFAS, and it was more excellent for long-chain PFAS. The long-chain PFAS can be cleavaged into short-chain PFAS by C-chain broken, -CF2 elimination, nucleophilic substitution of F-, and HF elimination. Furthermore, the application of each type of technology was novelly designed; and suggestions for the future development of PFAS remediation technologies were proposed.
Collapse
Affiliation(s)
- Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yulin Wu
- Shanghai Geotechnical Investigations and Design Institute Engineering Consulting (Group) Co. Ltd., China
| | - Guangyao Chen
- School of Material Science and Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
11
|
Rodgers TFM, Spraakman S, Wang Y, Johannessen C, Scholes RC, Giang A. Bioretention Design Modifications Increase the Simulated Capture of Hydrophobic and Hydrophilic Trace Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5500-5511. [PMID: 38483320 DOI: 10.1021/acs.est.3c10375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Stormwater rapidly moves trace organic contaminants (TrOCs) from the built environment to the aquatic environment. Bioretention cells reduce loadings of some TrOCs, but they struggle with hydrophilic compounds. Herein, we assessed the potential to enhance TrOC removal via changes in bioretention system design by simulating the fate of seven high-priority stormwater TrOCs (e.g., PFOA, 6PPD-quinone, PAHs) with log KOC values between -1.5 and 6.74 in a bioretention cell. We evaluated eight design and management interventions for three illustrative use cases representing a highway, a residential area, and an airport. We suggest two metrics of performance: mass advected to the sewer network, which poses an acute risk to aquatic ecosystems, and total mass advected from the system, which poses a longer-term risk for persistent compounds. The optimized designs for each use case reduced effluent loadings of all but the most polar compound (PFOA) to <5% of influent mass. Our results suggest that having the largest possible system area allowed bioretention systems to provide benefits during larger events, which improved performance for all compounds. To improve performance for the most hydrophilic TrOCs, an amendment like biochar was necessary; field-scale research is needed to confirm this result. Our results showed that changing the design of bioretention systems can allow them to effectively capture TrOCs with a wide range of physicochemical properties, protecting human health and aquatic species from chemical impacts.
Collapse
Affiliation(s)
- Timothy F M Rodgers
- Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Sylvie Spraakman
- Green Infrastructure Design Team, City of Vancouver Engineering Services, Vancouver, British Columbia V5Z0B4, Canada
| | - Yanru Wang
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Cassandra Johannessen
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B1R6, Canada
| | - Rachel C Scholes
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Amanda Giang
- Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
12
|
Bui TH, Zuverza-Mena N, Dimkpa CO, Nason SL, Thomas S, White JC. PFAS remediation in soil: An evaluation of carbon-based materials for contaminant sequestration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123335. [PMID: 38211874 PMCID: PMC10922530 DOI: 10.1016/j.envpol.2024.123335] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The presence of per- and poly-fluoroalkyl substances (PFAS) in soils is a global concern as these emerging contaminants are highly resistant to degradation and cause adverse effects on human and environmental health at very low concentrations. Sequestering PFAS in soils using carbon-based materials is a low-cost and effective strategy to minimize pollutant bioavailability and exposure, and may offer potential long-term remediation of PFAS in the environment. This paper provides a comprehensive evaluation of current insights on sequestration of PFAS in soil using carbon-based sorbents. Hydrophobic effects originating from fluorinated carbon (C-F) backbone "tail" and electrostatic interactions deriving from functional groups on the molecules' "head" are the two driving forces governing PFAS sorption. Consequently, varying C-F chain lengths and polar functional groups significantly alter PFAS availability and leachability. Furthermore, matrix parameters such as soil organic matter, inorganic minerals, and pH significantly impact PFAS sequestration by sorbent amendments. Materials such as activated carbon, biochar, carbon nanotubes, and their composites are the primary C-based materials used for PFAS adsorption. Importantly, modifying the carbon structural and surface chemistry is essential for increasing the active sorption sites and for strengthening interactions with PFAS. This review evaluates current literature, identifies knowledge gaps in current remediation technologies and addresses future strategies on the sequestration of PFAS in contaminated soil using sustainable novel C-based sorbents.
Collapse
Affiliation(s)
- Trung Huu Bui
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Nubia Zuverza-Mena
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Christian O Dimkpa
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Sara L Nason
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Sara Thomas
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA.
| |
Collapse
|
13
|
Lee H, Sam K, Coulon F, De Gisi S, Notarnicola M, Labianca C. Recent developments and prospects of sustainable remediation treatments for major contaminants in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168769. [PMID: 38008308 DOI: 10.1016/j.scitotenv.2023.168769] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Rapid industrialisation and urbanisation are contributing to the entry of emerging contaminants into the environment, posing a significant threat to soil health and quality. Therefore, several remediation technologies have been investigated and tested at a field scale to address the issue. However, these remediation technologies face challenges related to cost-effectiveness, environmental concerns, secondary pollution due to the generation of by-products, long-term pollution leaching risks, and social acceptance. Overcoming these constraints necessitates the implementation of sustainable remediation methodologies that prioritise approaches with minimal environmental ramifications and the most substantial net social and economic advantages. Hence, this review delves into diverse contaminants that threaten soil health and quality. Moreover, it outlines the research imperatives for advancing innovative remediation techniques and effective management strategies to tackle this concern. The review discusses a remediation treatment train approach that encourages resource recovery, strengthens the circular economy, and employs a Life Cycle Assessment (LCA) framework to assess the environmental impacts of different remediation strategies. Additionally, the study explores mechanisms to integrate sustainability principles into soil remediation practices. It underscores the necessity for a comprehensive and systematic approach that takes into account the economic, social, and environmental consequences of remediation methodologies in the development of sustainable solutions.
Collapse
Affiliation(s)
- H Lee
- College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - K Sam
- School of the Environment, Geography and Geoscience, University of Portsmouth, University House, Winston Churchill Ave, Portsmouth PO1 2UP, UK
| | - F Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - S De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - M Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - C Labianca
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Arup, Level 5, Festival Walk, 80 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
14
|
Nason SL, Thomas S, Stanley C, Silliboy R, Blumenthal M, Zhang W, Liang Y, Jones JP, Zuverza-Mena N, White JC, Haynes CL, Vasiliou V, Timko MP, Berger BW. A comprehensive trial on PFAS remediation: hemp phytoextraction and PFAS degradation in harvested plants. ENVIRONMENTAL SCIENCE. ADVANCES 2024; 3:304-313. [PMID: 38322792 PMCID: PMC10841816 DOI: 10.1039/d3va00340j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of recalcitrant, highly toxic contaminants, with limited remediation options. Phytoremediation - removal of contaminants using plants - is an inexpensive, community-friendly strategy for reducing PFAS concentrations and exposures. This project is a collaboration between the Mi'kmaq Nation, Upland Grassroots, and researchers at several institutions who conducted phytoremediation field trials using hemp to remove PFAS from soil at the former Loring Air Force base, which has now been returned to the Mi'kmaq Nation. PFAS were analyzed in paired hemp and soil samples using targeted and non-targeted analytical approaches. Additionally, we used hydrothermal liquefaction (HTL) to degrade PFAS in the harvested hemp tissue. We identified 28 PFAS in soil and found hemp uptake of 10 of these PFAS. Consistent with previous studies, hemp exhibited greater bioconcentration for carboxylic acids compared to sulfonic acids, and for shorter-chain compounds compared to longer-chain. In total, approximately 1.4 mg of PFAS was removed from the soil via uptake into hemp stems and leaves, with an approximate maximum of 2% PFAS removed from soil in the most successful area. Degradation of PFAS by HTL was nearly 100% for carboxylic acids, but a portion of sulfonic acids remained. HTL also decreased precursor PFAS and extractable organic fluorine. In conclusion, while hemp phytoremediation does not currently offer a comprehensive solution for PFAS-contaminated soil, this project has effectively reduced PFAS levels at the Loring site and underscores the importance of involving community members in research aimed at remediating their lands.
Collapse
Affiliation(s)
- Sara L Nason
- The Connecticut Agricultural Experiment Station New Haven CT 06511 USA
| | - Sara Thomas
- The Connecticut Agricultural Experiment Station New Haven CT 06511 USA
| | | | - Richard Silliboy
- Upland Grassroots Limestone ME 04750 USA
- Mi'kmaq Nation Presque Isle ME 04679 USA
| | | | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York Albany NY 12222 USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York Albany NY 12222 USA
| | - Jasmine P Jones
- The Connecticut Agricultural Experiment Station New Haven CT 06511 USA
| | | | - Jason C White
- The Connecticut Agricultural Experiment Station New Haven CT 06511 USA
| | | | - Vasilis Vasiliou
- Yale School of Public Health, Department of Environmental Health Sciences New Haven CT 06510 USA
| | - Michael P Timko
- University of Virginia, Department of Biology Charlottesville VA 22903 USA
| | - Bryan W Berger
- University of Virginia, Department of Chemical Engineering Charlottesville VA 22903 USA
| |
Collapse
|
15
|
Greger M, Landberg T. Removal of PFAS from water by aquatic plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119895. [PMID: 38159312 DOI: 10.1016/j.jenvman.2023.119895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
We have found that aquatic plants can reduce the content of perfluorinated alkyl substances (PFAS) within a short period of time. The aim of this study was to determine the variation in the uptake of PFAS from contaminated water by various wetland plant species, investigate the effect of biomass on PFAS removal, and determine whether laccases and peroxidases are involved in the removal and degradation of PFAS. Seventeen emergent and one submerged wetland plant species were screened for PFAS uptake from highly contaminated lake water. The screening showed that Eriophorum angustifolium, Carex rostrata, and Elodea canadensis accumulated the highest levels of all PFAS. These species were thereafter used to investigate the effect of biomass on PFAS removal from water and for the enzyme studies. The results showed that the greater the biomass per volume, the greater the PFAS removal effect. The plant-based removal of PFAS from water is mainly due to plant absorption, although degradation also occurs. In the beginning, most of the PFAS accumulated in the roots; over time, more was translocated to the shoots, resulting in a higher concentration in the shoots than in the roots. Most PFAS degradation occurred in the water; the metabolites were thereafter taken up by the plants and were accumulated in the roots and shoots. Both peroxidases and laccases were able to degrade PFAS. We conclude that wetland plants can be used for the purification of PFAS-contaminated water. For effective purification, a high biomass per volume of water is required.
Collapse
Affiliation(s)
- Maria Greger
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.
| | - Tommy Landberg
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
16
|
Uwayezu JN, Ren Z, Sonnenschein S, Leiviskä T, Lejon T, van Hees P, Karlsson P, Kumpiene J, Carabante I. Combination of separation and degradation methods after PFAS soil washing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168137. [PMID: 37890625 DOI: 10.1016/j.scitotenv.2023.168137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The current study evaluated a three-stage treatment to remediate PFAS-contaminated soil. The treatment consisted of soil washing, foam fractionation (FF), and electrochemical oxidation (EO). The possibility of replacing the third stage, i.e., EO, with an adsorption process was also assessed. The contamination in the studied soils was dominated by perfluorooctane sulfonate (PFOS), with a concentration of 760 and 19 μg kg-1 in soil I and in soil II, accounting for 97 % and 70 % of all detected per-and polyfluoroalkyl substances (PFAS). Before applying a pilot treatment of soil, soil washing was performed on a laboratory scale, to evaluate the effect of soil particle size, initial pH and a liquid-to-soil ratio (L/S) on the leachability of PFAS. A pilot washing system generated soil leachate that was subsequently treated using FF and EO (or adsorption) and then reused for soil washing. The results indicated that the leaching of PFAS occurred easier in 0.063-1 mm particles than in the soil particles having a size below 0.063 mm. Both alkaline conditions and a continual replacement of the leaching solution increased the leachability of PFAS. The analysis using one-way ANOVA showed no statistical difference in means of PFOS washed out in laboratory and pilot scales. This allowed estimating twenty washing cycles using 120 L water to reach 95 % PFOS removal in 60 kg soil. The aeration process removed 95-99 % PFOS in every washing cycle. The EO and adsorption processes achieved similar results removing up to 97 % PFOS in concentrated soil leachate. The current study demonstrated a multi-stage treatment as an effective and cost-efficient method to permanently clean up PFAS-contaminated soil.
Collapse
Affiliation(s)
- Jean Noel Uwayezu
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
| | - Zhongfei Ren
- Chemical Process Engineering, University of Oulu, Oulu, Finland
| | - Sarah Sonnenschein
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| | - Tiina Leiviskä
- Chemical Process Engineering, University of Oulu, Oulu, Finland
| | - Tore Lejon
- Department of Chemistry, UiT-The Arctic University of Norway, Norway
| | | | | | - Jurate Kumpiene
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| | - Ivan Carabante
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
17
|
Khan Q, Sayed M, Khan JA, Rehman F, Noreen S, Sohni S, Gul I. Advanced oxidation/reduction processes (AO/RPs) for wastewater treatment, current challenges, and future perspectives: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1863-1889. [PMID: 38063964 DOI: 10.1007/s11356-023-31181-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Advanced oxidation/reduction processes (AO/RPs) are considered as effective water treatment technologies and thus could be used to solve the problem of water pollution. These technologies of wastewater treatment involve the production of highly reactive species such as •OH, H•, e-aq, SO4•-, and SO3•-. These radicals can attack the targeted contaminants present in aqueous media and result in their destruction. The efficiency of AO/RPs is highly affected by various operational parameters such as initial concentration of contaminant, solution pH, catalyst amount, intensity of light source, nature of oxidant and reductant used, and the presence of various ionic species in aquatic media. Among AO/RPs, the solar light-based AO/RPs are most widely used nowadays for contaminant removal from aqueous media because of their high environmental friendliness and cost effectiveness. By using these techniques, almost all types of pollutants can be easily removed from aquatic media within short intervals of time, and hence, the problem of water pollution can be solved effectively. This review focuses on various AO/RPs used for wastewater treatment. The effects of different operational parameters that affect the efficiency of these processes toward contaminant removal have been discussed. Besides, challenges and future recommendations are also briefly provided for the researchers in order to improve the efficiency of these processes.
Collapse
Affiliation(s)
- Qaiser Khan
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Murtaza Sayed
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan.
| | - Javed Ali Khan
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Faiza Rehman
- Department of Chemistry, University of Poonch, Rawalakot, Azad Kashmir, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Saima Sohni
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Ikhtiar Gul
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
18
|
Kumar M, Mazumder P, Silori R, Manna S, Panday DP, Das N, Sethy SK, Kuroda K, Mahapatra DM, Mahlknecht J, Tyagi VK, Singh R, Zang J, Barceló D. Prevalence of pharmaceuticals and personal care products, microplastics and co-infecting microbes in the post-COVID-19 era and its implications on antimicrobial resistance and potential endocrine disruptive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166419. [PMID: 37625721 DOI: 10.1016/j.scitotenv.2023.166419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally. Albeit receding threats in the magnitude of COVID-19 infections, both these pollutants have still posed serious consequences to aquatic ecosystems and the very health and hygiene of the population in the vicinity. The surge in the contaminants post-COVID also renders them to be potent vectors to harbor and amplify AMR. Pertinently, the present work attempts to critically review such instances to understand the underlying mechanism, interactions swaying the current health of our environment during this post-COVID-19 era. During this juncture, although prevention of diseases, patient care, and self-hygiene have taken precedence, nevertheless antimicrobial stewardship (AMS) efforts have been overlooked. Unnecessary usage of PPCPs and plastics during the pandemic has resulted in increased emerging contaminants (i.e., active pharmaceutical ingredients and MPs) in various environmental matrices. It was also noticed that among COVID-19 patients, while the bacterial co-infection prevalence was 0.2-51%, the fungi, viral, protozoan and helminth were 0.3-49, 1-22, 2-15, 0.4-15% respectively, rendering them resistant to residual PPCPs. There are inevitable chances of ED effects from PPCPs and MPs applied previously, that could pose far-reaching health concerns. Furthermore, clinical and other experimental evidence for many newer compounds is very scarce and demands further research. Pro-active measures targeting effective waste management, evolved environmental policies aiding strict regulatory measures, and scientific research would be crucial in minimizing the impact and creating better preparedness towards such events among the masses fostering sustainability.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Payal Mazumder
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rahul Silori
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nilotpal Das
- ENCORE Insoltech Pvt. Ltd, Randesan, Gandhinagar, Gujarat 382421, India
| | - Susanta Kumar Sethy
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu 939 0398, Japan
| | - Durga Madhab Mahapatra
- Department of Chemical and Petroleum Engineering, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Vinay Kumar Tyagi
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Rajesh Singh
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Jian Zang
- Department of Civil Engineering, Chongqing University, China
| | - Damià Barceló
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| |
Collapse
|
19
|
Zhang H, Shen N, Li Y, Hu C, Yuan P. Source, transport, and toxicity of emerging contaminants in aquatic environments: A review on recent studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121420-121437. [PMID: 37999842 DOI: 10.1007/s11356-023-30869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Emerging contaminants (ECs) are gaining global attention owing to their widespread presence and adverse effects on human health. ECs comprise numerous composite types and pose a potential threat to the growth and functional traits of species and ecosystems. Although the occurrence and fate of ECs has been extensively studied, little is known about their long-term biological effects. This review attempts to gain insights into the unhindered connections and overlaps in aquatic ecosystems. Microplastics (MPs), one of the most representative ECs, are carriers of other pollutants because of their strong adsorption capacity. They form a complex of pollutants that can be transmitted to aquatic organisms and humans through the extended food chain, increasing the concentration of pollutants by tens of thousands of times. Adsorption, interaction and transport effects of emerging contaminants in the aquatic environment are also discussed. Furthermore, the current state of knowledge on the ecotoxicity of single- and two-pollutant models is presented. Herein, we discuss how aquatic organisms within complex food networks may be particularly vulnerable to harm from ECs in the presence of perturbations. This review provides an advanced understanding of the interactions and potential toxic effects of ECs on aquatic organisms.
Collapse
Affiliation(s)
- Heran Zhang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Nan Shen
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Beijing, 100012, China
| | - Yafeng Li
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Cheng Hu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Peng Yuan
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Beijing, 100012, China.
| |
Collapse
|
20
|
Krebs R, Farrington KE, Johnson GR, Luckarift HR, Diltz RA, Owens JR. Biotechnology to reduce logistics burden and promote environmental stewardship for Air Force civil engineering requirements. Biotechnol Adv 2023; 69:108269. [PMID: 37797730 DOI: 10.1016/j.biotechadv.2023.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
This review provides discussion of advances in biotechnology with specific application to civil engineering requirements for airfield and airbase operations. The broad objectives are soil stabilization, waste management, and environmental protection. The biotechnology focal areas address (1) treatment of soil and sand by biomineralization and biopolymer addition, (2) reduction of solid organic waste by anaerobic digestion, (3) application of microbes and higher plants for biological processing of contaminated wastewater, and (4) use of indigenous materials for airbase construction and repair. The consideration of these methods in military operating scenarios, including austere environments, involves comparison with conventional techniques. All four focal areas potentially reduce logistics burden, increase environmental sustainability, and may provide energy source, or energy-neutral practices that benefit military operations.
Collapse
Affiliation(s)
- Rachel Krebs
- Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA.
| | - Karen E Farrington
- ARCTOS, LLC, 2601 Mission Point Blvd., Ste. 300, Beavercreek, OH 45431, USA; Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| | - Glenn R Johnson
- Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA; Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| | - Heather R Luckarift
- Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA; Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| | - Robert A Diltz
- Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| | - Jeffery R Owens
- Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| |
Collapse
|
21
|
Kang P, Zhao Y, Zuo C, Cai Y, Shen C, Ji B, Wei T. The unheeded inherent connections and overlap between microplastics and poly- and perfluoroalkyl substances: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163028. [PMID: 36963676 DOI: 10.1016/j.scitotenv.2023.163028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
Microplastics (MPs) and poly- and perfluoroalkyl substances (PFASs) are receiving global attention due to their widespread presences and considerable level in the environment. Although the occurrence and fate of MPs and PFASs alone have been extensively studied, little was known about their unheeded connection and overlap between the two. Therefore, this review attempts to reveal it for the purpose of providing a new view from joint consideration of the two in the future studies. Initially, the critically examined data on the co-sources and existence of MPs and PFASs are summarized. Surprisingly, some products could be co-source of MPs and PFASs which are general in daily life while the distribution of the two is primary influenced by the human activity. Then, their interactions are reviewed based on the fact that PFASs can be sorbed onto MPs which are regarded as a vector of contaminations. The electrostatic interaction and hydrophobic contact are the predominant sorption mechanisms and could be influenced by environmental factors and properties of MPs and PFASs. The effects of MPs on the transport of PFASs in the environments, especially in aquatic environments are then discussed. Additionally, the current state of knowledge on the combined toxicity of MPs and PFASs are presented. Finally, the existing problems and future perspectives are outlined at the end of the review. This review provides an advanced understanding of the overlap, interaction and toxic effects of MPs and PFASs co-existing in the environment.
Collapse
Affiliation(s)
- Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Chenxin Zuo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, PR China
| | - Bin Ji
- School of Civil Engineering, Yantai University, Yantai 264005, PR China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| |
Collapse
|
22
|
Padhye LP, Srivastava P, Jasemizad T, Bolan S, Hou D, Shaheen SM, Rinklebe J, O'Connor D, Lamb D, Wang H, Siddique KHM, Bolan N. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131575. [PMID: 37172380 DOI: 10.1016/j.jhazmat.2023.131575] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/14/2023]
Abstract
Contaminant containment measures are often necessary to prevent or minimize offsite movement of contaminated materials for disposal or other purposes when they can be buried or left in place due to extensive subsurface contamination. These measures can include physical, chemical, and biological technologies such as impermeable and permeable barriers, stabilization and solidification, and phytostabilization. Contaminant containment is advantageous because it can stop contaminant plumes from migrating further and allow for pollutant reduction at sites where the source is inaccessible or cannot be removed. Moreover, unlike other options, contaminant containment measures do not require the excavation of contaminated substrates. However, contaminant containment measures require regular inspections to monitor for contaminant mobilization and migration. This review critically evaluates the sources of persistent contaminants, the different approaches to contaminant remediation, and the various physical-chemical-biological processes of contaminant containment. Additionally, the review provides case studies of contaminant containment operations under real or simulated field conditions. In summary, contaminant containment measures are essential for preventing further contamination and reducing risks to public health and the environment. While periodic monitoring is necessary, the benefits of contaminant containment make it a valuable remediation option when other methods are not feasible.
Collapse
Affiliation(s)
- Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Prashant Srivastava
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation, Environment Business Unit, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - David O'Connor
- School of Real Estate and Land Management, Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS, United Kingdom
| | - Dane Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
23
|
Kumari A, Rajput VD, Mandzhieva S, Minkina T, Kaur R. Morpho-biochemical Responses and Disturbed Redox Homeostasis in Barley Under Benzyl-butyl Phthalate Stress. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:47. [PMID: 36692586 DOI: 10.1007/s00128-022-03664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The present study is aimed to address the morphometric consequences, yield attributes, and biochemical responses of barley plants under the stress of an endocrine disruptor i.e., benzyl-butyl phthalate (BBP). The morphometric analyses (plant length, dry weight, and net primary productivity) revealed that the inhibition induced by BBP was concentration- and time-dependent. The seed weight and the number of seeds per spike have also significantly declined with an increase in BBP doses. Similarly, BBP exhibited significant alterations over the control in the biochemical indices viz., pigments, sugars, proteins, proline, malonaldehyde, and hydrogen peroxide contents of barley plants. Furthermore, BBP stress negatively influenced the activities of antioxidative enzymes viz., SOD, POD, CAT, APX, and GR of barley with an increase in doses and exposure durations due to the over-produced reactive oxygen species. The uptake and transport of BBP were determined and observed as a responsible cue for these toxicological implications in barley plants under BBP exposure. The correlation of barley plants' morpho-biochemical responses with BBP uptake and transport was also established using Pearson's correlation. Thus, this study indicated the toxicological behavior of meagerly explored phthalate (i.e., BBP) in the crop plant and these observations can be utilized for the generation of tolerant cultivars.
Collapse
Affiliation(s)
- Arpna Kumari
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India.
| |
Collapse
|
24
|
Kavusi E, Shahi Khalaf Ansar B, Ebrahimi S, Sharma R, Ghoreishi SS, Nobaharan K, Abdoli S, Dehghanian Z, Asgari Lajayer B, Senapathi V, Price GW, Astatkie T. Critical review on phytoremediation of polyfluoroalkyl substances from environmental matrices: Need for global concern. ENVIRONMENTAL RESEARCH 2023; 217:114844. [PMID: 36403653 DOI: 10.1016/j.envres.2022.114844] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a class of emerging organic contaminants that are impervious to standard physicochemical treatments. The widespread use of PFAS poses serious environmental issues. PFAS pollution of soils and water has become a significant issue due to the harmful effects of these chemicals both on the environment and public health. Owing to their complex chemical structures and interaction with soil and water, PFAS are difficult to remove from the environment. Traditional soil remediation procedures have not been successful in reducing or removing them from the environment. Therefore, this review focuses on new phytoremediation techniques for PFAS contamination of soils and water. The bioaccumulation and dispersion of PFAS inside plant compartments has shown great potential for phytoremediation, which is a promising and unique technology that is realistic, cost-effective, and may be employed as a wide scale in situ remediation strategy.
Collapse
Affiliation(s)
- Elaheh Kavusi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Behnaz Shahi Khalaf Ansar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Samira Ebrahimi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ritika Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, India
| | - Seyede Shideh Ghoreishi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Sima Abdoli
- Department of Soil Science and Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | | | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
25
|
Saawarn B, Mahanty B, Hait S, Hussain S. Sources, occurrence, and treatment techniques of per- and polyfluoroalkyl substances in aqueous matrices: A comprehensive review. ENVIRONMENTAL RESEARCH 2022; 214:114004. [PMID: 35970375 DOI: 10.1016/j.envres.2022.114004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), a class of synthetic organic pollutants, have prompted concerns about their global prevalence and possible health effects. This review consolidates the most recent data on different aspects of PFAS, such as their occurrence, and prominent sources. The current literature analysis of PFAS occurrence suggests significant variation in their concentration ranging from 0.025 to 1.2 × 108 ng/L in wastewater, 0.01 to 8.9 × 105 ng/L in surface water, and <0.01 to 1.3 × 104 ng/L in groundwater globally. Since conventional treatment techniques are inadequate in remediating PFAS, innovative treatment approaches based on their removal or mineralization mechanism have been comprehensively reviewed. Advanced treatment technologies have shown degradation or removal of PFAS to be around 6 and > 99.9% in different aqueous matrices. However, due to significant drawbacks in their applicability in wastewater treatment plants (WWTPs), a novel treatment train approach has emerged as an effective alternative. This approach synergistically integrates multiple remediation techniques while addressing the impediments of individual treatments. Furthermore, nanofiltration (NF270) combined with electrochemical degradation has been demonstrated to be the most efficient (>98%) treatment train approach in PFAS remediation. If implemented in WWTPs, nanofiltration followed by adsorption using activated carbon is also a viable method for PFAS removal.
Collapse
Affiliation(s)
- Bhavini Saawarn
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Byomkesh Mahanty
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India.
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801 106, India
| |
Collapse
|