1
|
Saha U, Ghosh A, Sinha A, Nandi A, Lenka SS, Gupta A, Kumari S, Yadav A, Suar M, Kaushik NK, Raina V, Verma SK. Intrinsic interaction inferred oxidative stress and apoptosis by Biosurfactant-microplastic hybrid reduces coordinated in vivo biotoxicity in zebrafish ( Danio rerio). Mater Today Bio 2025; 31:101466. [PMID: 40182661 PMCID: PMC11966731 DOI: 10.1016/j.mtbio.2025.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 04/05/2025] Open
Abstract
The proliferation of microplastics (μP) in aquatic environments poses a significant threat to ecosystem health, with repercussions extending to aquatic organisms and potentially to human health. In this study, we investigated the efficacy of a novel biosurfactant-microplastic (BSμP) hybrid in reducing in vivo green bio-toxicity of microplastics (μP) induced by oxidative stress and apoptosis in zebrafish (Danio rerio). Microplastics, ubiquitous in aquatic environments, were hybridised with Biosurfactant to evaluate their potential mitigating effects. A stable BSμP was formed with zeta potential of -10.3 ± 1.5 mV. Exposure of zebrafish embryos to μP resulted in increased oxidative stress markers, including elevated levels of reactive oxygen species and induced apoptosis, as evidenced by increased expression of apoptotic markers and morphological changes in embryonic zebrafish. However, the BSμP hybrid significantly ameliorated the observed toxic effects with reduced levels of oxidative stress markers and apoptotic activity. This effect was deduced as the intrinsic effects of hybridisation, which likely mitigated the bioavailability and toxicity of μP by reducing their molecular interaction with metabolic proteins like Sod1 and p53 through less accumulation and internalisation. Overall, our findings highlight the potential of BSμP as a promising approach for mitigating the ecological impacts of microplastic pollution.
Collapse
Affiliation(s)
- Utsa Saha
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Aishee Ghosh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | - Abha Gupta
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Shalini Kumari
- Markham College of Commerce, Vinoba Bhave University, Hazaribagh, Jharkhand 825001, India
| | - Anu Yadav
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Vishakha Raina
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Suresh K. Verma
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
2
|
Choudhury A, Lenka SS, Gupta A, Mandal D, Sinha A, Saha U, Naser SS, Singh D, Simnani FZ, Ghosh A, Kumari S, Kirti A, Parija T, Chauhan RS, Kaushik NK, Suar M, Verma SK. Controlled in vivo intrinsic detrimental effect of d-Limonene channelized by influential proximal interaction through apoptosis and steatosis in embryonic zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175243. [PMID: 39098420 DOI: 10.1016/j.scitotenv.2024.175243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Bioaccumulation of d-Limonene in environment due to the aggrandised usage of their natural sources like citrus food wastes and industrial day to day life products has raised concern to their biotoxicity to environment biotic health. Moreover, their after-usage discharge to aquatic system has enhanced the distress of posing threat and needs attention. This study entails mechanistic and molecular evaluation of in-vivo biotoxicity of d-Limonene in zebrafish embryo models. Experimental analysis excavated the controlled concentration-dependent morphological, physiological and cellular in-vivo impact of d-Limonene in zebrafish embryos through significant changes in oxidative stress, steatosis and apoptosis regulated via 6-fold and 5-fold mRNA expression change in p53 and Sod1 genes. Computational evaluation deduced the cellular mechanism of d-limonene biotoxicity as irregularities in oxidative stress, apoptosis and steatosis due of their intrinsic interaction with metabolic proteins like Zhe1a (-4.8 Kcal/mol), Sod1(-5.3 Kcal/mol), p53, caspase3 and apoa1 leading to influential change in structural and functional integrity of the metabolic proteins. The study unravelled the measured in-vivo biotoxicity of d-Limonene at cellular and molecular level to advocate the controlled usage of d-Limonene related natural and industrial product for a sustainable environmental health.
Collapse
Affiliation(s)
- Anmol Choudhury
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Sudakshya S Lenka
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Abha Gupta
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Deepa Mandal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Utsa Saha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | - Dibyangshee Singh
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | - Aishee Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Shalini Kumari
- Markham College of Commerce, Vinoba Bhave University, Hazaribagh, Jharkhand 825001, India
| | - Apoorv Kirti
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Tithi Parija
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Raghuraj Singh Chauhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.
| |
Collapse
|
3
|
Grieco M, Giorgi A, Giacovazzo G, Maggiore A, Ficchì S, d'Erme M, Mosca L, Mignogna G, Maras B, Coccurello R. β-Hexachlorocyclohexane triggers neuroinflammatory activity, epigenetic histone post-translational modifications and cognitive dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116487. [PMID: 38810285 DOI: 10.1016/j.ecoenv.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Persistent organic pollutants (POPs), which encompass pesticides and industrial chemicals widely utilized across the globe, pose a covert threat to human health. β-hexachlorocyclohexane (β-HCH) is an organochlorine pesticide with striking stability, still illegally dumped in many countries, and recognized as responsible for several pathogenetic mechanisms. This study represents a pioneering exploration into the neurotoxic effects induced by the exposure to β-HCH specifically targeting neuronal cells (N2a), microglia (BV-2), and C57BL/6 mice. As shown by western blot and qPCR analyses, the administration of β-HCH triggered a modulation of NF-κB, a key factor influencing both inflammation and pro-inflammatory cytokines expression. We demonstrated by proteomic and western blot techniques epigenetic modifications in H3 histone induced by β-HCH. Histone acetylation of H3K9 and H3K27 increased in N2a, and in the prefrontal cortex of C57BL/6 mice administered with β-HCH, whereas it decreased in BV-2 cells and in the hippocampus. We also observed a severe detrimental effect on recognition memory and spatial navigation by the Novel Object Recognition Test (NORT) and the Object Place Recognition Task (OPRT) behavioural tests. Cognitive impairment was linked to decreased expression of the genes BDNF and SNAP-25, which are mediators involved in synaptic function and activity. The obtained results expand our understanding of the harmful impact produced by β-HCH exposure by highlighting its implication in the pathogenesis of neurological diseases. These findings will support intervention programs to limit the risk induced by exposure to POPs. Regulatory agencies should block further illicit use, causing environmental hazards and endangering human and animal health.
Collapse
Affiliation(s)
- Maddalena Grieco
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Giacomo Giacovazzo
- European Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, Rome, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Serena Ficchì
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Maria d'Erme
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | | | - Bruno Maras
- Department of Biochemical Sciences, Sapienza University, Rome, Italy.
| | - Roberto Coccurello
- European Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy; Institute for Complex Systems, National Research Council (CNR), Roma, Italy
| |
Collapse
|
4
|
Sharma M, Singh DN, Uttam G, Sharma P, Meena SA, Verma AK, Negi RK. Adaptive evolution of Sphingopyxis sp. MC4 conferred degradation potential for persistent β- and δ-Hexachlorocyclohexane (HCH) isomers. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132545. [PMID: 37757562 DOI: 10.1016/j.jhazmat.2023.132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Hexachlorocyclohexane (HCH), an organochlorine pesticide imposes several harmful impacts on the ecosystem. β- and δ-isomers of HCH are highly toxic, persistent, and recalcitrant to biodegradation, slow and incomplete degradation of β- and δ- isomers have been reported in a few strains. We have isolated a strain designated as Sphingopyxis strain MC4 that can tolerate and degrade high concentrations of α-, β-, γ- and δ-HCH isomers. To date, no other Sphingopyxis strain has been reported to degrade β- and δ-isomers. To understand the underlying genetic makeup contributing to adaptations, the whole genome of strain MC4 was sequenced. Comparative genome analysis showed that strain MC4 harbors the complete pathway (lin genes) required for HCH degradation. Genetic footprints such as presence of lin genes on genomic islands, IS6100 elements in close proximity of lin genes, and synteny in lin flanking regions with other strains reflects the horizontal gene transfer in strain MC4. Positive selection and HGT drive the adaptive evolution of strain MC4 under the pressure of HCH contamination that it experienced in its surrounding niche. In silico analyses showed efficient binding of β- and δ-isomers with enzymes leading to rapid degradation that need further validation by cloning and biochemical experiments.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Durgesh Narain Singh
- Department of Zoology, University of Delhi, Delhi 110007, India; BioNEST-BHU, InnoResTech Foundation, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gunjan Uttam
- Zoology section, MMV, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Shivam A Meena
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ram Krishan Negi
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
5
|
Liu Y, Wang F, Wang Z, Xiang L, Fu Y, Zhao Z, Kengara FO, Mei Z, He C, Bian Y, Naidu R, Jiang X. Soil properties and organochlorine compounds co-shape the microbial community structure: A case study of an obsolete site. ENVIRONMENTAL RESEARCH 2024; 240:117589. [PMID: 37926227 DOI: 10.1016/j.envres.2023.117589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Organochlorine compounds (OCs) such as chlorobenzenes (CB) are persistent organic pollutants that are ubiquitous in soils at organochlorine pesticides (OCP) production sites. Long-term contamination with OCs might alter the soil microbial structure and further affect soil functions. However, the effects of OCs regarding the shaping of microbial community structures in the soils of OCs-contaminated sites remain obscure, especially in the vertical soil profile where pollutants are highly concealed. Hence this paper explored the status and causes of OCs pollution (CB, hexachlorocyclohexane (HCH), and dichlorodiphenyltrichloroethane (DDT)) in an obsolete site, and its combined effects with soil properties (pH, available phosphorus (AP), dissolved organic carbon (DOC), etc) on microbial community structure. The mean total concentration of OCs in the subsoils was up to 996 times higher than that in the topsoils, with CB constituting over 90% of OCs in the subsoil. Historical causes, anthropogenic effects, soil texture, and the nature of OCs contributed to the differences in the spatial distribution of OCs. Redundancy analysis revealed that both the soil properties and OCs were important factors in shaping microbial composition and diversity. Variation partitioning analysis further indicated that soil properties had a greater impact on microbial community structure than OCs. Significant differences in microbial composition between topsoils and subsoils were observed through linear discriminant analysis effect size (LEfSe) analysis, primarily driven by different pollutant conditions. Additionally, co-occurrence network analysis indicated that heavily contaminated subsoils exhibited closer and more intricate bacterial community interactions compared to lightly contaminated topsoils. This work reveals the impact of environmental factors in co-shaping the structure of soil microbial communities. These findings advance our understanding of the intricate interplay among organochlorine pollutants, soil properties, and microbial communities, and provides valuable insights into devising effective management strategies in OCs-contaminated soils.
Collapse
Affiliation(s)
- Yu Liu
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ziquan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Leilei Xiang
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Fu
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiliang Zhao
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Zhi Mei
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yongrong Bian
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Xin Jiang
- Chinese Academy of Science State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kumari K, Nandi A, Sinha A, Ghosh A, Sengupta S, Saha U, Singh PK, Panda PK, Raina V, Verma SK. The paradigm of prophylactic viral outbreaks measures by microbial biosurfactants. J Infect Public Health 2023; 16:575-587. [PMID: 36840992 PMCID: PMC9940476 DOI: 10.1016/j.jiph.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The recent emergence and outbreak of the COVID-19 pandemic confirmed the incompetence of countries across the world to deal with a global public health emergency. Although the recent advent of vaccines is an important prophylactic measure, effective clinical therapy for SARS-Cov-2 is yet to be discovered. With the increasing mortality rate, research has been focused on understanding the pathogenic mechanism and clinical parameters to comprehend COVID-19 infection and propose new avenues for naturally occurring molecules with novel therapeutic properties to alleviate the current situation. In accordance with recent clinical studies and SARS-CoV-2 infection markers, cytokine storm and oxidative stress are entwined pathogenic processes in COVID-19 progression. Lately, Biosurfactants (BSs) have been studied as one of the most advanced biomolecules of microbial origin with anti-inflammatory, antioxidant, antiviral properties, antiadhesive, and antimicrobial properties. Therefore, this review inspects available literature and proposes biosurfactants with these properties to be encouraged for their extensive study in dealing with the current pandemic as new pharmaceutics in the prevention and control of viral spread, treating the symptoms developed after the incubation period through different therapeutic approaches and playing a potential drug delivery model.
Collapse
Affiliation(s)
- Khushbu Kumari
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Adrija Sinha
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Aishee Ghosh
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Srabasti Sengupta
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Utsa Saha
- School of Biotechnology, KIIT Deemed to be University, 751024, India
| | - Pawan K Singh
- BVG Life Sciences Limited, Sagar Complex, Near Nashikphata, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Vishakha Raina
- School of Biotechnology, KIIT Deemed to be University, 751024, India.
| | - Suresh K Verma
- School of Biotechnology, KIIT Deemed to be University, 751024, India.
| |
Collapse
|
7
|
Hasan GMMA, Shaikh MAA, Satter MA, Hossain MS. Detection of indicator polychlorinated biphenyls (I-PCBs) and polycyclic aromatic hydrocarbons (PAHs) in cow milk from selected areas of Dhaka, Bangladesh and potential human health risks assessment. Toxicol Rep 2022; 9:1514-1522. [DOI: 10.1016/j.toxrep.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 12/01/2022] Open
|