1
|
Huang Kong ED, Lai CW, Juan JC, Pang YL, Khe CS, Badruddin IA, Gapsari F, Anam K. Recent advances in titanium dioxide bio-derived carbon photocatalysts for organic pollutant degradation in wastewater. iScience 2025; 28:112368. [PMID: 40352735 PMCID: PMC12063124 DOI: 10.1016/j.isci.2025.112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Water pollution from organic pollutants such as dyes and pharmaceuticals poses severe threats to ecosystems and human health, demanding effective remediation strategies. Conventional water treatment methods fall short in eliminating these contaminants, prompting interest in photocatalysis, which uses light energy to degrade pollutants into harmless substances such as carbon dioxide and water. This sustainable approach offers efficient pollutant removal with recyclable photocatalysts but faces challenges such as rapid charge recombination and limited electron-hole migration. Research aims to enhance photocatalytic efficiency under UV, visible, and solar light through metal doping and binary oxide systems, particularly titanium dioxide, which improves charge carrier migration and delays recombination. Coupling titanium dioxide with bio-derived carbon shows promise in enhancing electron-hole separation and visible light absorption. This review explores advances in photocatalyst synthesis, degradation mechanisms, adsorption reactions, and economic value of bioderived photocatalysts, emphasizing the potential of photocatalysis for efficient wastewater treatment.
Collapse
Affiliation(s)
- Ethan Dern Huang Kong
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical Engineering, Faculty of Engineering, Brawijaya University, MT Haryono 167, Malang 65145, Indonesia
| | - Joon Ching Juan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor 43000, Malaysia
| | - Cheng Seong Khe
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Femiana Gapsari
- Department of Mechanical Engineering, Faculty of Engineering, Brawijaya University, MT Haryono 167, Malang 65145, Indonesia
| | - Khairul Anam
- Department of Mechanical Engineering, Faculty of Engineering, Brawijaya University, MT Haryono 167, Malang 65145, Indonesia
| |
Collapse
|
2
|
Zhang Y, Bo X, Zhu T, Zhao W, Cui Y, Chang J. Synthesis of TiO 2-ZnO n-n Heterojunction with Excellent Visible Light-Driven Photodegradation of Tetracycline. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1802. [PMID: 39591043 PMCID: PMC11597633 DOI: 10.3390/nano14221802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Zinc oxide-based photocatalysts with non-toxicity and low cost are promising candidates for the degradation of tetracycline. Despite the great success achieved in constructing n-n-type ZnO-based heterojunctions for the degradation of tetracycline under full-spectrum conditions, it is still challenging to realize rapid and efficient degradation of tetracycline under visible light using n-n-type ZnO-based heterojunctions, as they are constrained by the quick recombination of electron-hole pairs in ZnO. Here, we report highly efficient and stable n-n-type ZnO-TiO2 heterojunctions under visible light conditions, with a degradation efficiency reaching 97% at 1 h under visible light, which is 1.2 times higher than that of pure zinc oxide, enabled by constructing an n-n-type heterojunction between ZnO and TiO2 to form a built-in electric field. The photocatalytic degradation mechanism of n-n TiO2-ZnO to tetracycline is also proposed in detail. The demonstration of efficient and stable heterojunction-type ZnO photocatalysts under visible light is an important step toward commercialization and opens up new opportunities beyond conventional ZnO technologies, such as composite ZnO catalysts.
Collapse
Affiliation(s)
- Ying Zhang
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, School of Chemistry and Material Engineering, Fuyang Normal University, Fuyang 236037, China; (X.B.); (T.Z.); (W.Z.); (Y.C.)
| | | | | | | | | | - Jianguo Chang
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, School of Chemistry and Material Engineering, Fuyang Normal University, Fuyang 236037, China; (X.B.); (T.Z.); (W.Z.); (Y.C.)
| |
Collapse
|
3
|
Rahman NAAA, Khasri A, Salleh NHM, Jamir MRM. Enhanced adsorption-photodegradation of tetracycline using Ce-N-co-doped AC/TiO 2 photocatalyst: isotherms, kinetics, mechanism, and thermodynamic insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59398-59415. [PMID: 39354260 DOI: 10.1007/s11356-024-34948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Excessive use of tetracycline (TC) is alarming owing to its increased detection in water systems. In this study, a photocatalyst was developed to degrade TC using a Ce-N-co-doped AC/TiO2 photocatalyst, denoted as Ce/N-AC/TiO2, prepared using the sol-gel method assisted by microwave radiation, speeding up the synthesis process. Ce/N-AC/TiO2 achieved maximum TC degradation of 93.1% under UV light with optimum sorption system conditions of an initial concentration of 10 mg L-1, pH 7, and 30 ℃, under 120 min. Scavenger experiments revealed that holes and superoxide radicals were the active species influencing the photodegradation process. The TC degradation was appropriately fitted with Langmuir isotherms and a pseudo-second-order (PSO) kinetic model. The change in enthalpy (ΔH) (2.43 kJ mol-1), entropy (ΔS) (0.024 kJ mol-1), and Gibbs free energy (ΔG) (- 4.941 to - 5.802 kJ mol-1) suggested that the adsorption process was spontaneous, favourable, and endothermic. Electrostatic interaction, hydrogen bonding, pore-filling, cationic-π, n-π, and π-π interaction were among the interactions involved between TC and Ce/N-AC/TiO2. Furthermore, Ce/N-AC/TiO2 stability was confirmed through 80% removal efficiency even after the fifth reuse cycle. Notably, this work provides new insight into the production of efficient, reusable, and enhanced photocatalysts using a rapid and cost-effective microwave-assisted synthesis process for pollutant remediation.
Collapse
Affiliation(s)
| | - Azduwin Khasri
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| | - Noor Hasyierah Mohd Salleh
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Mohd Ridzuan Mohd Jamir
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau , Perlis, Malaysia
| |
Collapse
|
4
|
Zhang X, Xiong S, Sathiyaseelan A, Zhang L, Lu Y, Chen Y, Jin T, Wang MH. Recent advances in photocatalytic nanomaterials for environmental remediation: Strategies, mechanisms, and future directions. CHEMOSPHERE 2024; 364:143142. [PMID: 39168377 DOI: 10.1016/j.chemosphere.2024.143142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Innovative and efficient strategies are urgently needed for wastewater treatment and environmental remediation. The photocatalytic degradation properties of photo-responsive nanomaterials (NMs) have become a prime candidate due to their low negative impact and photo-adjustability. Photocatalytic NMs vary in their degradation of different pollutants depending on the type of synthetic material, excitation light source, and physicochemical properties. Essentially, photocatalytic NMs excited by light produce reactive oxygen species (ROS) or metal ions that can degrade complex structure pollutants. Therefore, this review summarises the recent advances of photocatalytic NMs in the environmental application within the last 3 years, focusing on the development schemes, structural analyses, photocatalytic mechanisms, and the degradation effects of dyes, antibiotics, pesticides, phenolic compounds, metals, hormones, and other contaminants. The limitations and future directions are also explained. This review hopes to provide a possible pathway for the subsequent development of novel and efficient photocatalytic NMs to cope with complex and variable polluted environments.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Sirui Xiong
- College of Food Science and Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Lina Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Chen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Tieyan Jin
- College of Food Science and Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Liu Y, Wu J, Wu R, Li J, Zhang Q, Sheng G. Nitrogen-doped activated carbon-based steel slag composite material as an accelerant for enhancing the resilience of flexible biogas production process against shock loads: Performance, mechanism and modified ADM1 modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121874. [PMID: 39025014 DOI: 10.1016/j.jenvman.2024.121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Anaerobic digestion for flexible biogas production can lead to digestion inhibition under high shock loads. While steel slag addition has shown promise in enhancing system buffering, its limitations necessitate innovation. This study synthesized the nitrogen-doped activated carbon composite from steel slag to mitigate intermediate product accumulation during flexible biogas production. Material characterization preceded experiments introducing the composite into anaerobic digestion systems, evaluating its impact on methane production efficiency under hydraulic and concentration sudden shocks. Mechanistic insights were derived from microbial community and metagenomic analyses, facilitating the construction of the modified Anaerobic Digestion Model No. 1 (ADM1) to quantitatively assess the material's effects. Results indicate superior resistance to concentration shocks with substantial increment of methane production rate up to 33.45% compared with control group, which is mediated by direct interspecies electron transfer, though diminishing with increasing shock intensity. This study contributes theoretical foundations for stable flexible biogas production and offers an effective predictive tool for conductor material reinforcement processes.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, 243002, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology Ministry of Education, Maanshan, 243002, 243002, China
| | - Jun Wu
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, 243002, China
| | - Rongqi Wu
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, 243002, China
| | - Jianjun Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, 243002, China
| | - Qin Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, 243002, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology Ministry of Education, Maanshan, 243002, 243002, China
| | - Guanghong Sheng
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, 243002, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology Ministry of Education, Maanshan, 243002, 243002, China.
| |
Collapse
|
6
|
García Y, Aguilar J, Polania L, Duarte Y, Sellergren B, Jiménez VA. Rational Design and Evaluation of Photoactive Molecularly Imprinted Nanoparticles for Tetracycline Degradation Under Visible Light. ACS OMEGA 2024; 9:33140-33152. [PMID: 39100280 PMCID: PMC11292816 DOI: 10.1021/acsomega.4c04550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
This work presents the use of photoactive molecularly imprinted nanoparticles (MINs) to promote antibiotic degradation under visible light irradiation. Prototype MINs for the model antibiotic tetracycline (TC) were developed using molecular dynamics simulations to predict the TC-binding capacity of seven pre-polymerization mixtures. The studied formulations contained varying proportions of functional monomers with diverse physicochemical profiles, namely N-isopropylacrylamide (NIPAM), N-tert-butylacrylamide (TBAM), acrylic acid (AA), and (N-(3-aminopropyl)methacrylamide hydrochloride) (APMA) and a constant ratio of the cross-linker N,N'-methylene-bis-acrylamide (BIS). Two monomer formulations showed markedly higher TC-binding capacities based on template-monomer interaction energies. These mixtures were used to synthesize photoactive MINs by high-dilution radical polymerization, followed by the EDC/NHS conjugation with the organic photosensitizer toluidine blue. MINs showed higher TC-binding capacities than non-imprinted nanoparticles (nINs) of identical composition. MINs and nINs exhibited photodynamic activity under visible light irradiation, as confirmed by singlet oxygen generation experiments. TC degradation was evaluated in 50 μmol L-1 solutions placed in microplate wells containing immobilized nanoparticles and irradiated with white LED light (150 W m-2) for 1 h at room temperature. Degradation followed pseudo-zero-order kinetics with accelerated profiles in MIN-containing wells. Our findings suggest a key role of molecularly imprinted cavities in bringing TC closer to the photosensitizing moieties, minimizing the loss of oxidative potential due to reactive oxygen species diffusion. This degradation strategy can potentially extend to any organic pollutants for which MINs can be synthesized and opens valuable opportunities for exploring novel applications for molecularly imprinted materials.
Collapse
Affiliation(s)
- Yadiris García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, Talcahuano 7100, Chile
| | - Joao Aguilar
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, Talcahuano 7100, Chile
| | - Laura Polania
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, Talcahuano 7100, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, República, 239, Santiago 8370146, Chile
| | - Börje Sellergren
- Surecapture Technologies AB, Per Albin Hanssons väg 35, Malmö 214 32, Sweden
- Biofilms Research Center for Biointerfaces, Malmö University, Per Albin Hanssons väg 35, Malmö 214 32, Sweden
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, Talcahuano 7100, Chile
| |
Collapse
|
7
|
Le PH, Vy TTT, Thanh VV, Hieu DH, Tran QT, Nguyen NVT, Uyen NN, Tram NTT, Toan NC, Xuan LT, Tuyen LTC, Kien NT, Hu YM, Jian SR. Facile Preparation Method of TiO 2/Activated Carbon for Photocatalytic Degradation of Methylene Blue. MICROMACHINES 2024; 15:714. [PMID: 38930684 PMCID: PMC11205648 DOI: 10.3390/mi15060714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
The development of nanocomposite photocatalysts with high photocatalytic activity, cost-effectiveness, a simple preparation process, and scalability for practical applications is of great interest. In this study, nanocomposites of TiO2 Degussa P25 nanoparticles/activated carbon (TiO2/AC) were prepared at various mass ratios of (4:1), (3:2), (2:3), and (1:4) by a facile process involving manual mechanical pounding, ultrasonic-assisted mixing in an ethanol solution, paper filtration, and mild thermal annealing. The characterization methods included XRD, SEM-EDS, Raman, FTIR, XPS, and UV-Vis spectroscopies. The effects of TiO2/AC mass ratios on the structural, morphological, and photocatalytic properties were systematically studied in comparison with bare TiO2 and bare AC. TiO2 nanoparticles exhibited dominant anatase and minor rutile phases and a crystallite size of approximately 21 nm, while AC had XRD peaks of graphite and carbon and a crystallite size of 49 nm. The composites exhibited tight decoration of TiO2 nanoparticles on micron-/submicron AC particles, and uniform TiO2/AC composites were obtained, as evidenced by the uniform distribution of Ti, O, and C in an EDS mapping. Moreover, Raman spectra show the typical vibration modes of anatase TiO2 (e.g., E1g(1), B1g(1), Eg(3)) and carbon materials with D and G bands. The TiO2/AC with (4:1), (3:2), and (2:3) possessed higher reaction rate constants (k) in photocatalytic degradation of methylene blue (MB) than that of either TiO2 or AC. Among the investigated materials, TiO2/AC = 4:1 achieved the highest photocatalytic activity with a high k of 55.2 × 10-3 min-1 and an MB removal efficiency of 96.6% after 30 min of treatment under UV-Vis irradiation (120 mW/cm2). The enhanced photocatalytic activity for TiO2/AC is due to the synergistic effect of the high adsorption capability of AC and the high photocatalytic activity of TiO2. Furthermore, TiO2/AC promotes the separation of photoexcited electron/hole (e-/h+) pairs to reduce their recombination rate and thus enhance photocatalytic activity. The optimal TiO2/AC composite with a mass ratio of 4/1 is suggested for treating industrial or household wastewater with organic pollutants.
Collapse
Affiliation(s)
- Phuoc Huu Le
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- International Ph.D. Program in Plasma and Thin Film Technology, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 900000, Vietnam; (N.N.U.); (N.T.T.T.)
| | - Tran Thi Thuy Vy
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 900000, Vietnam; (T.T.T.V.); (V.V.T.); (D.H.H.); (Q.-T.T.); (N.-V.T.N.)
| | - Vo Van Thanh
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 900000, Vietnam; (T.T.T.V.); (V.V.T.); (D.H.H.); (Q.-T.T.); (N.-V.T.N.)
| | - Duong Hoang Hieu
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 900000, Vietnam; (T.T.T.V.); (V.V.T.); (D.H.H.); (Q.-T.T.); (N.-V.T.N.)
| | - Quang-Thinh Tran
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 900000, Vietnam; (T.T.T.V.); (V.V.T.); (D.H.H.); (Q.-T.T.); (N.-V.T.N.)
| | - Ngoc-Van Thi Nguyen
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 900000, Vietnam; (T.T.T.V.); (V.V.T.); (D.H.H.); (Q.-T.T.); (N.-V.T.N.)
| | - Ngo Ngoc Uyen
- Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 900000, Vietnam; (N.N.U.); (N.T.T.T.)
| | - Nguyen Thi Thu Tram
- Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 900000, Vietnam; (N.N.U.); (N.T.T.T.)
| | - Nguyen Chi Toan
- Faculty of Pharmacy and Nursing, Tay Do University, 68 Tran Chien Street, Can Tho City 900000, Vietnam;
| | - Ly Tho Xuan
- Department of Materials Science and Engineering, National Taiwan University Science and Technology, Taipei City 106335, Taiwan;
| | - Le Thi Cam Tuyen
- Faculty of Chemical Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho City 900000, Vietnam;
| | - Nguyen Trung Kien
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 900000, Vietnam;
| | - Yu-Min Hu
- Department of Applied Physics, National University of Kaohsiung, Kaohsiung 81148, Taiwan;
| | - Sheng-Rui Jian
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| |
Collapse
|
8
|
Lian P, Qin A, Liu Z, Ma H, Liao L, Zhang K, Li N. Facile Synthesis to Porous TiO 2 Nanostructures at Low Temperature for Efficient Visible-Light Degradation of Tetracycline. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:943. [PMID: 38869568 PMCID: PMC11173820 DOI: 10.3390/nano14110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
In this study, nanoporous TiO2 with hierarchical micro/nanostructures was synthesized on a large scale by a facile one-step solvothermal method at a low temperature. A series of characterizations was performed and carried out on the as-prepared photocatalysts, which were applied to the degradation of the antibiotic tetracycline (TC). The results demonstrated that nanoporous TiO2 obtained at a solvothermal temperature of 100 °C had a spherical morphology with high crystallinity and a relatively large specific surface area, composed of a large number of nanospheres. The nanoporous TiO2 with hierarchical micro/nanostructures exhibited excellent photocatalytic degradation activity for TC under simulated sunlight. The degradation rate was close to 100% after 30 min of UV light irradiation, and reached 79% only after 60 min of visible light irradiation, which was much better than the photodegradation performance of commercial TiO2 (only 29%). Moreover, the possible intermediates formed during the photocatalytic degradation of TC were explored by the density functional theory calculations and HPLC-MS spectra. Furthermore, two possible degradation routes were proposed, which provided experimental and theoretical support for the photocatalytic degradation of TC. In this study, we provide a new approach for the hierarchical micro/nanostructure of nanoporous TiO2, which can be applied in industrial manufacturing fields.
Collapse
Affiliation(s)
- Peng Lian
- Key Laboratory of New Processing Technology for Nonferrous Metals & Materials, Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Materials Science & Engineering, Guilin University of Technology, Guilin 541004, China; (P.L.); (L.L.); (K.Z.)
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.L.); (H.M.)
| | - Aimiao Qin
- Key Laboratory of New Processing Technology for Nonferrous Metals & Materials, Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Materials Science & Engineering, Guilin University of Technology, Guilin 541004, China; (P.L.); (L.L.); (K.Z.)
| | - Zhisen Liu
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.L.); (H.M.)
| | - Hao Ma
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.L.); (H.M.)
| | - Lei Liao
- Key Laboratory of New Processing Technology for Nonferrous Metals & Materials, Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Materials Science & Engineering, Guilin University of Technology, Guilin 541004, China; (P.L.); (L.L.); (K.Z.)
| | - Kaiyou Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metals & Materials, Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Materials Science & Engineering, Guilin University of Technology, Guilin 541004, China; (P.L.); (L.L.); (K.Z.)
| | - Ning Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Z.L.); (H.M.)
| |
Collapse
|
9
|
Thamer AA, Mustafa A, Bashar HQ, Van B, Le PC, Jakab M, Rashed TR, Kułacz K, Hathal M, Somogyi V, Nguyen DD. Activated carbon and their nanocomposites derived from vegetable and fruit residues for water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121058. [PMID: 38714036 DOI: 10.1016/j.jenvman.2024.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Water pollution remains a pressing environmental issue, with diverse pollutants such as heavy metals, pharmaceuticals, dyes, and aromatic hydrocarbon compounds posing a significant threat to clean water access. Historically, biomass-derived activated carbons (ACs) have served as effective adsorbents for water treatment, owing to their inherent porosity and expansive surface area. Nanocomposites have emerged as a means to enhance the absorption properties of ACs, surpassing conventional AC performance. Biomass-based activated carbon nanocomposites (ACNCs) hold promise due to their high surface area and cost-effectiveness. This review explores recent advancements in biomass-based ACNCs, emphasizing their remarkable adsorption efficiencies and paving the way for future research in developing efficient and affordable ACNCs. Leveraging real-time communication for ACNC applications presents a viable approach to addressing cost concerns.
Collapse
Affiliation(s)
- A A Thamer
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq
| | - A Mustafa
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq
| | - H Q Bashar
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq
| | - Bao Van
- Institute of Research and Development, Duy Tan University, 550000, Danang, Viet Nam; School of Engineering & Technology, Duy Tan University, 550000, Danang, Viet Nam.
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Lien Chieu Dist., Danang, 550000, Viet Nam
| | - Miklós Jakab
- College of Technical Engineering, Al-Farahidi University, 47024, Baghdad, Iraq
| | - T R Rashed
- Chemistry Branch, Applied Sciences Department, University of Technology, Baghdad P.O. Box 19006, Iraq
| | - Karol Kułacz
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - MustafaM Hathal
- The Industrial Development and Regulatory Directorate, The Ministry of Industry and Minerals, Baghdad, Iraq; Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Hungary
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, 442-760, Republic of Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
10
|
Mohtaram MS, Sabbaghi S, Rasouli J, Rasouli K. Photocatalytic degradation of tetracycline using a novel WO3-ZnO/AC under visible light irradiation: Optimization of effective factors by RSM-CCD. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123746. [PMID: 38460585 DOI: 10.1016/j.envpol.2024.123746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/10/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Mitigating pharmaceutical pollution in the global environment is imperative, and tetracycline (TC) is a commonly utilized antibiotic in human and veterinary medicine. The persistent existence of TC highlights the necessity of establishing efficient measures to protect water systems and the environment from detrimental contaminants. Herein, a novel rhubarb seed waste-derived activated carbon-supported photocatalyst (WO3-ZnO/RUAC) was synthesized by combining wet impregnation and ultrasonic methods. The activated carbon (AC) was obtained from rhubarb seed waste for the first time via chemical activation. The function of AC as an electron acceptor and in separating electron-hole pairs was illuminated by characterization analyses that included XRD, FTIR, XPS, SEM, TEM, PL, EIS, TPC, and UV-DRS. Using the response surface methodology-central composite design (RSM-CCD) technique, the synthesis parameters of the composite were systematically optimized. Under ideal conditions, with a TC concentration of 33 mg. L-1, pH of 4.57, irradiation time of 108 min, and catalyst dose of 0.85 g. L-1, the highest degradation efficiency of TC by this composite, achieved 96.5%, and it was reusable for five cycles. Subsequently, trapping tests and electron spin resonance (ESR) analysis were conducted, elucidating that •OH and •O2- radicals played pivotal roles in the photocatalytic degradation of TC. This research offers valuable insights into utilizing the AC-based photocatalyst to degrade pharmaceutical micropollutants effectively.
Collapse
Affiliation(s)
- Mohammad Sina Mohtaram
- Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran
| | - Samad Sabbaghi
- Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran; Drilling Nanofluid Lab, Shiraz University, Shiraz, Iran; Nanotechnology Research Institute, Shiraz University, Shiraz, Iran.
| | - Jamal Rasouli
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Kamal Rasouli
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
11
|
Ye H, Luo Y, Yu S, Shi G, Zheng A, Huang Y, Xue M, Yin Z, Hong Z, Li X, Xie X, Gao B. 2D/2D Bi 2MoO 6/CoAl LDH S-scheme heterojunction for enhanced removal of tetracycline: Performance, toxicity, and mechanism. CHEMOSPHERE 2024; 349:140932. [PMID: 38096991 DOI: 10.1016/j.chemosphere.2023.140932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
In this paper, the two-dimensional (2D) layered CoAl LDH (CoAl) was coupled with Bi2MoO6 (BMO) nanoplate and used for tetracycline (TC) degradation. Based on the results of UV-visible diffuse reflectance spectrum (UV-vis DRS), Motty-Schottky curves, and in situ X-ray photoelectron spectroscopy (XPS), a novel 2D/2D Bi2MoO6/CoAl LDH S-scheme heterojunction photocatalyst was built. The photodegradation rate constant of TC by the optimized sample BMO/CoAl30 was 3.637 × 10-2 min-1, which was 1.26 times and 4.01 times higher than that of Bi2MoO6 and CoAl LDH, respectively. The favorable photocatalytic performance of the heterojunction was attributed to the increased interfacial contact area of the 2D/2D structure. Besides, the transfer of photogenerated electrons from Bi2MoO6 to CoAl LDH under the effect of the built-in electric field (BIEF) reduced the recombination of photogenerated carriers and further improved the photocatalytic performance. The reactive species of h+, ·O2-, and 1O2 exhibited critical roles to degrade TC molecules by reactive radicals capture experiments and electron spin resonance (ESR) tests. The intermediate products of TC degradation and toxicity of intermediates were analyzed by liquid chromatography-mass spectrometer (LC-MS) and Toxicity Estimation Software Tool (T.E.S.T). Additionally, the BMO/CoAl composite photocatalysts showed high stability and environmental tolerance during the testing of cycles and environmental impacts with various water sources, organic contaminants, initial pH, and inorganic ions. This work provides a new protocol for designing and constructing novel 2D/2D S-scheme heterojunction photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
- Huiyin Ye
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yidan Luo
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
| | - Shuohan Yu
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Guangying Shi
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Aofeng Zheng
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yong Huang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Mingshan Xue
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Zuozhu Yin
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Zhen Hong
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xibao Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
12
|
Wu H, Ueno T, Nozaki K, Xu H, Nakano Y, Chen P, Wakabayashi N. Lithium-Modified TiO 2 Surface by Anodization for Enhanced Protein Adsorption and Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55232-55243. [PMID: 38014813 DOI: 10.1021/acsami.3c06749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Promoting osseointegration is an essential step in improving implant success rates. Lithium has gradually gained popularity for promoting alkaline phosphatase activity and osteogenic gene expression in osteoblasts. The incorporation of lithium into a titanium surface has been reported to change its surface charge, thereby enhancing its biocompatibility. In this study, we applied anodization as a novel approach to immobilizing Li on a titanium surface and evaluated the changes in its surface characteristics. The objective of this study was to determine the effect of Li treatment of titanium on typical proteins, such as albumin, laminin, and fibronectin, in terms of their adsorption level as well as on the attachment of osteoblast cells. Titanium disks were acid-etched by 66 wt % H2SO4 at 120 °C for 90 s and set as the control group. The etched samples were placed in contact with an anode, while a platinum bar served as the counter electrode. Both electrodes were mounted on a custom electrochemical cell filled with 1 M LiCl. The samples were anodized at constant voltages of 1, 3, and 9 V. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) results showed no significant differences in the topography. However, the ζ potentials of the 3 V group were higher than those of the control group at a physiological pH of 7.4. Interestingly, the adsorption level of the extracellular matrix protein was mostly enhanced on the 3 V-anodized surface. The number of attached cells on the Li-anodized surfaces increased. The localization of vinculin at the tips of the stretching cytoplasmic projections was observed more frequently in the osteoblasts on the 3 V-anodized surface. Although the optimal concentration or voltage for Li application should be investigated further, this study suggests that anodization could be an effective method to immobilize lithium ions on a titanium surface and that modifying the surface charge characteristics enables a direct protein-to-material interaction with enhanced biological adhesion.
Collapse
Affiliation(s)
- Huaze Wu
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Takeshi Ueno
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Kosuke Nozaki
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Huichuan Xu
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Yuki Nakano
- Anton Paar Japan K.K, Riverside Sumida Central Tower Palace, 1-19-9 Tsutsumidori, Sumida City 131-0034, Tokyo, Japan
| | - Peng Chen
- Division of Interdisciplinary Co-Creation (ICC-Division), Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku 980-8575, Sendai, Japan
| | - Noriyuki Wakabayashi
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| |
Collapse
|
13
|
Zhu J, Zhu Y, Zhou Y, Wu C, Chen Z, Chen G. Synergistic Promotion of Photocatalytic Degradation of Methyl Orange by Fluorine- and Silicon-Doped TiO 2/AC Composite Material. Molecules 2023; 28:5170. [PMID: 37446833 PMCID: PMC10343765 DOI: 10.3390/molecules28135170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The direct or indirect discharge of organic pollutants causes serious environmental problems and endangers human health. The high electron-hole recombination rate greatly limits the catalytic efficiency of traditional TiO2-based catalysts. Therefore, starting from low-cost activated carbon (AC), a photocatalyst (F-Si-TiO2/AC) comprising fluorine (F)- and silicon (Si)-doped TiO2 loaded on AC has been developed. F-Si-TiO2/AC has a porous structure. TiO2 nanoparticles were uniformly fixed on the surface or pores of AC, producing many catalytic sites. The band gap of F-Si-TiO2/AC is only 2.7 eV. In addition, F-Si-TiO2/AC exhibits an excellent adsorption capacity toward methyl orange (MO) (57%) in the dark after 60 min. Under the optimal preparation conditions, F-Si-TiO2/AC showed a significant photodegradation performance toward MO, reaching 97.7% after irradiation with visible light for 70 min. Even under the action of different anions and cations, its degradation efficiency is the lowest, at 64.0%, which has good prospects for practical application. At the same time, F-Si-TiO2/AC has long-term, stable, practical application potential and can be easily recovered from the solution. Therefore, this work provides new insights for the fabrication of low-cost, porous, activated, carbon-based photocatalysts, which can be used as high-performance photocatalysts for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Jinyuan Zhu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China; (J.Z.); (Y.Z.); (Z.C.); (G.C.)
| | - Yingying Zhu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China; (J.Z.); (Y.Z.); (Z.C.); (G.C.)
| | - Yifan Zhou
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China; (J.Z.); (Y.Z.); (Z.C.); (G.C.)
| | - Chen Wu
- Ningbo Energy Group Co., Ltd., Ningbo 315000, China;
| | - Zhen Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China; (J.Z.); (Y.Z.); (Z.C.); (G.C.)
| | - Geng Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China; (J.Z.); (Y.Z.); (Z.C.); (G.C.)
| |
Collapse
|
14
|
He J, Chen J, Liu S, Lin L, Zhang Y, Xiao S, Cao S. Activated carbon modified titanium dioxide/bismuth trioxide adsorbent: One-pot synthesis, high removal efficiency of organic pollutants, and good recyclability. J Colloid Interface Sci 2023; 648:1034-1043. [PMID: 37364308 DOI: 10.1016/j.jcis.2023.05.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Considerable endeavors have focused on tightly combining adsorption with photocatalysis in designing composite materials for environmental pollution treatment. Recent advances in coupling titanium dioxide/bismuth trioxide (TiO2/Bi2O3) with activated carbon (AC) show significantly enhanced photocatalytic performance but face critical limitations including low adsorption capacity and multi-step synthesis. In this work, we introduce a one-pot synthesis of activated carbon modified TiO2/Bi2O3 composite materials (TiO2/Bi2O3/AC). Thanks to the integrated adsorbent/photocatalyst system, TiO2/Bi2O3/AC shows a drastically enhanced removal efficiency for sulfamethazine (>81%), far beyond the corresponding value of the reported AC/TiO2/Bi2O3 adsorbent (<40%). Notably, the removal rates of other typical pollutants including tetracyclines, methyl orange, and rhodamine B are as high as >98%. Furthermore, TiO2/Bi2O3/AC obtains >80% of its adsorption rate for the fifth cycle after simple photo-regeneration without any other post-treatments. Kinetic analysis and photoelectric characterization are carried out to provide insight into adsorption mechanism. Therefore, this work demonstrates a considerable potential to design and construct other multifunctional adsorbents with advanced performance.
Collapse
Affiliation(s)
- Jie He
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juanrong Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shunan Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liyuan Lin
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhang
- Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, China
| | - Sisi Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shunsheng Cao
- Research School of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang 236037, China.
| |
Collapse
|
15
|
Hoai PTT, Huong NTM. Latest avenues on titanium oxide-based nanomaterials to mitigate the pollutants and antibacterial: Recent insights, challenges, and future perspectives. CHEMOSPHERE 2023; 324:138372. [PMID: 36905998 DOI: 10.1016/j.chemosphere.2023.138372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Titanium oxide-based nanomaterials (TiOBNs) have been widely utilized as potential photocatalysts for various applications such as water remediation, oxidation, carbon dioxide reduction, antibacterial, food packing, etc. The benefits from TiOBNs for each application above have been determined as producing the quality of treated water, hydrogen gas as green energy, and valuable fuels. It also acts as potential material protecting foods (inactivation of bacteria and removal of ethylene) and increases shelf life for food storage. This review focuses on recent applications, challenges and future perspectives of TiOBNs to inhibit pollutants and bacteria. Firstly, the application of TiOBNs to treat emerging organic contaminants in wastewater was investigated. In particular, the photodegradation of antibiotics pollutants and ethylene using TiOBNs are described. Secondly, applying TiOBNs for antibacterial to reduce disease, disinfection, and food spoiling has been discussed. Thirdly, the photocatalytic mechanisms of TiOBNs to mitigate organic pollutants and antibacterial were determined. Finally, the challenges for different applications and future perspectives have been outlined.
Collapse
Affiliation(s)
- Pham Thi Thu Hoai
- Faculty of Food Technology, University of Economics-Technology for Industries (UNETI), Hanoi, 11622, Viet Nam.
| | - Nguyen Thi Mai Huong
- Faculty of Food Technology, University of Economics-Technology for Industries (UNETI), Hanoi, 11622, Viet Nam
| |
Collapse
|
16
|
Zhang X, Chen H, Liu S, Zhang B, Zhu H, Chen H, Wen B, Chen L. Preparation of TiO2-graphitized carbon composite photocatalyst and their degradation properties for tetracycline antibiotics. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Qian X, Ao W, Ding H, Wang X, Sun S. A Review on Resource Utilization of Spent V-W-Ti Based Selective Catalytic Reduction Catalysts. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7984. [PMID: 36431471 PMCID: PMC9692313 DOI: 10.3390/ma15227984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
To address the environmental pollution caused by nitrogen oxides, V2O5-WO3/TiO2 is widely used as a catalyst based on selective catalytic reduction (SCR) technology. However, spent SCR catalysts pose a potential hazard to the environment due to the presence of heavy metals. This problem continues to plague countries with predominantly thermal power generation, and landfills as the dominant disposal method wastes significant metal resources. Previous research into the recovery of these metal resources has received considerable attention. Here, we summarise the methods of recovery and find that research trends are beginning to move towards improving the added value of recovered products. One very promising application is photocatalysts; however, the atomic efficiency of current methods is not satisfactory. Therefore, this review first focuses on the regeneration of spent SCR catalysts and the processes used for elemental extraction to clarify what forms of V, W and Ti can be obtained from existing processes. This is followed by providing directions for the conversion of spent SCR catalysts into photocatalysts with improvements based on such processes. From a different perspective, this also provides a new resource for photocatalysts and is expected to significantly reduce the cost of photocatalyst production.
Collapse
|
18
|
Liu M, Lu M, Xie H, Fu X, Wang Y, Zhang W, Xie Y, Qi Y. One-pot synthesis of flower-like Bi2WO6/BiOCOOH microspheres with enhanced visible light photocatalytic activity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|