1
|
Meng Q, Wang Z, Sun K, Wen Z, Xue H. Screening and risk assessment of priority organic micropollutants for control in reclaimed water in China. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137883. [PMID: 40101638 DOI: 10.1016/j.jhazmat.2025.137883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Organic micropollutants (OMPs) in reclaimed water have been frequently detected over the past decades, posing significant risks to ecosystems and human health. Given the complexity of these pollutants and the differences in their risk and toxicity, current assessments remain incomplete. This study conducted a large-scale investigation of OMPs in reclaimed water across China and developed a comprehensive multi-criteria integrated scoring method based on OMP toxicity and exposure potential. This method aims to protect aquatic organisms and human health by screening and prioritizing OMPs in reclaimed water, classifying their priority levels, and creating a prioritized control list. The study quantified OMP exposure potential, environmental persistence, bioaccumulation, and impacts on ecology and human health. The survey detected 369 OMPs from 11 chemical classes, with 325 compounds passing pre-selection. According to the prioritization scheme, 29 OMPs were identified as high priority, 171 as medium priority, and 125 as low priority. The BPs and Other Industrial Chemicals categories had the highest average maximum concentrations, followed by HPCCs and PAEs. High-priority pollutants were dominated by PAHs and PCBs, each comprising 31.03 %. Medium- and low-priority groups were mainly composed of Pesticides. PAHs and PCBs showed higher risk quotients, indicating significant ecological risks, while PCB 126, BaP, and PFOA exhibited high toxicity and potential health risks. This study provides valuable information for controlling priority pollutants in Chinese reclaimed water and establishes a foundation for OMP risk management. Future research should intensify monitoring to ensure the safe and sustainable use of water resources.
Collapse
Affiliation(s)
- Qingling Meng
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China.
| | - Zijian Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Kaicheng Sun
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Zhao Wen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
2
|
Tang J, Zhao Y, Wang L, Tang Z, Mao X, Guo Y, Hu B, Li G, Gao H, Huang T, Ma J. Multimedia distribution and exchange characteristics of organophosphorus flame retardants in a typical semi-arid city in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125809. [PMID: 39914563 DOI: 10.1016/j.envpol.2025.125809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
After the ban on polybrominated diphenyl ethers (PBDEs), the replacement of these compounds with organophosphorus flame retardants (OPFRs) has drawn widespread attention worldwide. In arid/semi-arid regions, characteristics such as low precipitation, frequent strong winds, and low soil organic carbon content potentially influence the environmental fate of OPFRs. In this study, we investigated the concentrations of nine OPFRs in water, sediment, soil, air, and dry deposition in Lanzhou, an arid/semi-arid region in China. The total concentration of OPFRs (Σ9OPFRs) were 54.8-334 ng/L in water, 37.3-484 ng/g (dry weight, dw) in sediment, 134-510 ng/g (dw) in urban soil, 1.53-6.22 ng/m3 in urban air, and measured dry deposition fluxes were 119-681 ng/(m2·d). TPrP, TDCPP and TCPP were the primary OPFR individuals in water and sediment, while TPrP, TDCPP and TPPO predominated in urban soil and air. The fugacity approach revealed the environmental fate of OPFRs were mainly: soil-to-air, air-to-water and sediment-to-water. Ulteriorly, intermediate exchange fluxes were calculated. This study reveals that in this climatic region, urban soil acts both as a "sink" for emissions and a "source" for re-emissions into the atmosphere, further emphasizing the significance of atmospheric transport as a critical pathway in this area.
Collapse
Affiliation(s)
- Junwen Tang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Li Wang
- Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, 730000, China
| | - Zhiyuan Tang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoxuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuxuan Guo
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Baicheng Hu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guolong Li
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Wang G, Li M, Ji Y, Hao Z, Wang Y, Xue H, Wang H, Liu Y. Insight into natural attenuation of tributyl phosphate by indigenous anaerobic microbes in soils: Implication by stable carbon isotope fractionation and microbial community structures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125482. [PMID: 39644960 DOI: 10.1016/j.envpol.2024.125482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Organophosphate esters (OPEs) are widespread in the environment, with high persistence and toxicity. However, the underlying mechanisms of anaerobic microbial degradation of OPEs remain elusive in the field environment. In this study, the natural attenuation mechanisms of tributyl phosphate (TnBP) by indigenous anaerobic microorganisms in soils were investigated by using compound-specific stable isotope analysis (CSIA) and characterization of microbial communities. The results indicated that dibutyl phosphate (DnBP) was the major degradation product of TnBP. Significant carbon isotope fractionation was observed for TnBP during the anaerobic microbial degradation, and the carbon isotope enrichment factor (εC) was determined to be -2.71 ± 0.13‰. Unlike aerobic degradation with P-O bond cleavage, C-O bond cleavage was verified as the mode to removal a butyl side chain for TnBP to generate DnBP during the anaerobic microbial degradation. Microbial community analysis indicated that Sphingomonans, Nocardioides and Streptomyces were the important contributors to microbial degradation of TnBP in anoxic soils. TnBP altered microbial metabolic functions in anoxic soils, mainly enhancing the biosynthesis of ansamycins, ketone bodies and amino acids, and flagellar assembly, which promoted microbial degradation of TnBP. This study provided a better method to characterize the chemical bond cleavage mode and effect of OPEs on microbial communities, which was a prerequisite for the bioremediation of OPE pollution in soils.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China.
| | - Maojiao Li
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Yinli Ji
- The Yellow River Delta Sustainable Development Institute of Shandong Province, No.337 Nanyi Road, Dongying, 257000, PR China
| | - Zixuan Hao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Yana Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Hongyi Xue
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No.1 Linghai Road, Dalian, 116026, PR China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| |
Collapse
|
4
|
Zhou X, Wang C, Huang M, Zhang J, Cheng B, Zheng Y, Chen S, Xiang M, Li Y, Bedia J, Belver C, Li H. A review of the present methods used to remediate soil and water contaminated with organophosphate esters and developmental directions. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134834. [PMID: 38889460 DOI: 10.1016/j.jhazmat.2024.134834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Organophosphate esters (OPEs) are widely used commercial additives, but their environmental persistence and toxicity raise serious concerns necessitating associated remediation strategies. Although there are various existing technologies for OPE removal, comprehensive screening for them is urgently needed to guide further research. This review provides a comprehensive overview of the techniques used to remove OPEs from soil and water, including their related influencing factors, removal mechanisms/degradation pathways, and practical applications. Based on an analysis of the latest literature, we concluded that (1) methods used to decontaminate OPEs include adsorption, hydrolysis, photolysis, advanced oxidation processes (AOPs), activated sludge processes, and microbial degradation; (2) factors such as the quantity/characteristics of the catalysts/additives, pH value, inorganic ion concentration, and natural organic matter (NOM) affect OPE removal; (3) primary degradation mechanisms involve oxidation induced by reactive oxygen species (ROS) (including •OH and SO4•-) and degradation pathways include hydrolysis, hydroxylation, oxidation, dechlorination, and dealkylation; (5) interference from the pH value, inorganic ion and the presence of NOM may limit complete mineralization during the treatment, impacting practical application of OPE removal techniques. This review provides guidance on existing and potential OPE removal methods, providing a theoretical basis and innovative ideas for developing more efficient and environmentally friendly techniques to treat OPEs in soil and water.
Collapse
Affiliation(s)
- Xuan Zhou
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Mengyan Huang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jin Zhang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Biao Cheng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yang Zheng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shuai Chen
- School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Minghui Xiang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Li
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jorge Bedia
- Chemical Engineering Department, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, Madrid E-28049, Spain
| | - Carolina Belver
- Chemical Engineering Department, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, Madrid E-28049, Spain
| | - Hui Li
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Zhu C, Yu Z, Chen Y, Pan Y, Yang R, Zhang Q, Jiang G. Distribution patterns and origins of organophosphate esters in soils from different climate systems on the Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124085. [PMID: 38697247 DOI: 10.1016/j.envpol.2024.124085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Organophosphate esters (OPEs) are extensively applied in various materials as flame retardants and plasticizers, and have high biological toxicity. OPEs are detected worldwide, even in distant polar regions and the Tibetan Plateau (TP). However, few studies have been performed to evaluate the distribution patterns and origins of OPEs in different climate systems on the TP. This study investigated the distribution characteristics, possible sources, and ecological risks of OPEs in soils from the different climate systems on the TP and its surroundings. The total concentrations of OPEs in soil varied from 468 to 17,451 pg g-1 dry weight, with greater concentrations in southeast Tibet (monsoon zone), followed by Qinghai (transition zone) and, finally, southern Xingjiang (westerly zone). OPE composition profiles also differed among the three areas with tri-n-butyl phosphate dominant in the westerly zone and tris(2-butoxyethyl) phosphate dominant in the Indian monsoon zone. Correlations between different compounds and altitude, soil organic carbon, or longitude varied in different climate zones, indicating that OPE distribution originates from both long-range atmospheric transport and local emissions. Ecological risk assessment showed that tris(2-chloroethyl) phosphate and tri-phenyl phosphate exhibited medium risks in soil at several sites in southeast Tibet. Considering the sensitivity and vulnerability of TP ecosystems to anthropogenic pollutants, the ecological risks potentially caused by OPEs in this region should be further assessed.
Collapse
Affiliation(s)
- Chengcheng Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhigang Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yifan Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yiyao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Marlina N, Hassan F, Chao HR, Latif MT, Yeh CF, Horie Y, Shiu RF, Hsieh YK, Jiang JJ. Organophosphate esters in water and air: A minireview of their sources, occurrence, and air-water exchange. CHEMOSPHERE 2024; 356:141874. [PMID: 38575079 DOI: 10.1016/j.chemosphere.2024.141874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Organophosphate esters (OPEs) have received considerable attention in environmental research due to their extensive production, wide-ranging applications, prevalent presence, potential for bioaccumulation, and associated ecological and health concerns. Low efficiency of OPE removal results in the effluents of wastewater treatment plants emerging as a significant contributor to OPE contamination. Their notable solubility and mobility give OPEs the potential to be transported to coastal ecosystems via river discharge and atmospheric deposition. Previous research has indicated that OPEs have been widely detected in the atmosphere and water bodies. Atmospheric deposition across air-water exchange is the main input route for OPEs into the environment and ecosystems. The main processes that contribute to air-water exchange is air-water diffusion, dry deposition, wet deposition, and the air-water volatilization process. The present minireview links together the source, occurrence, and exchange of OPEs in water and air, integrates the occurrence and profile data, and summarizes their air-water exchange in the environment.
Collapse
Affiliation(s)
- Nelly Marlina
- Advanced Environmental Ultra Research Laboratory (ADVENTURE) & Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Fahir Hassan
- Advanced Environmental Ultra Research Laboratory (ADVENTURE) & Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Faculty of Engineering, University of Jember, Jember, 68121, Indonesia
| | - How-Ran Chao
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Chi-Fu Yeh
- Hwa-Ying Environment Technical Consultants Co., Ltd., Kaohsiung, 81463, Taiwan
| | - Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - Ruei-Feng Shiu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yen-Kung Hsieh
- Climate Change Research Center, National Environmental Research Academy, Taoyuan, 320680, Taiwan.
| | - Jheng-Jie Jiang
- Advanced Environmental Ultra Research Laboratory (ADVENTURE) & Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Center for Environmental Risk Management (CERM), Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Research Center for Carbon Neutrality and Net Zero Emissions, Chung Yuan Christian University, Taoyuan, 320314, Taiwan.
| |
Collapse
|
7
|
Xie H, Chen R, Song Y, Shen Y, Song F, He B, Jiang X, Yin Y, Wang W. Myriophyllum Biochar-Supported Mn/Mg Nano-Composites as Efficient Periodate Activators to Enhance Triphenyl Phosphate Removal from Wastewater. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1118. [PMID: 38473590 DOI: 10.3390/ma17051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Transition metals and their oxide compounds exhibit excellent chemical reactivity; however, their easy agglomeration and high cost limit their catalysis applications. In this study, an interpolation structure of a Myriophyllum verticillatum L. biochar-supported Mn/Mg composite (Mn/Mg@MV) was prepared to degrade triphenyl phosphate (TPhP) from wastewater through the activating periodate (PI) process. Interestingly, the Mn/Mg@MV composite showed strong radical self-producing capacities. The Mn/Mg@MV system degraded 93.34% TPhP (pH 5, 10 μM) within 150 min. The experimental results confirmed that the predominant role of IO3· and the auxiliary ·OH jointly contributed to the TPhP degradation. In addition, the TPhP pollutants were degraded to various intermediates and subsequent Mg mineral phase mineralization via mechanisms like interfacial processes and radical oxidation. DFT theoretical calculations further indicated that the synergy between Mn and Mg induced the charge transfer of the carbon-based surface, leading to the formation of an ·OH radical-enriched surface and enhancing the multivariate interface process of ·OH, IO3, and Mn(VII) to TPhP degradation, resulting in the further formation of Mg PO4 mineralization.
Collapse
Affiliation(s)
- Hanyun Xie
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yuxia Song
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yan Shen
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| | - Fengming Song
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| | - Bo He
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| | - Xiaomei Jiang
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| | - Yifan Yin
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha 410208, China
| |
Collapse
|
8
|
Ai S, Chen X, Zhou Y. Critical review on organophosphate esters in water environment: Occurrence, health hazards and removal technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123218. [PMID: 38147949 DOI: 10.1016/j.envpol.2023.123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
Organophosphate esters (OPEs), which are phosphoric acid ester derivatives, are anthropogenic substances that are widely used in commerce. Nevertheless, there is growing public concern about these ubiquitous contaminants, which are frequently detected in contaminated water sources. OPEs are mostly emitted by industrial operations, and the primary routes of human exposure to OPEs include food intake and dermal absorption. Because of their negative effects on both human health and the environment, it is clear that innovative methods are needed to facilitate their eradication. In this study, we present a comprehensive overview of the existing characteristics and origins of OPEs, their possible impacts on human health, and the merits, drawbacks, and future possibilities of contemporary sophisticated remediation methods. Current advanced remediation approaches for OPEs include adsorption, degradation (advanced oxidation, advanced reduction, and redox technology), membrane filtration, and municipal wastewater treatment plants, degradation and adsorption are the most promising removal technologies. Meanwhile, we proposed potential areas for future research (appropriate management approaches, exploring the combination treatment process, economic factors, and potential for secondary pollution). Collectively, this work gives a comprehensive understanding of OPEs, providing useful insights for future research on OPEs pollution.
Collapse
Affiliation(s)
- Shali Ai
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Xia Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
9
|
Cheng J, Ma J, Li S, Wang S, Huang C, Lv M, Li J, Wang X, Chen L. A heteropore covalent organic framework for highly selective enrichment of aryl-organophosphate esters in environmental water coupled with UHPLC-MS/MS determination. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132613. [PMID: 37748313 DOI: 10.1016/j.jhazmat.2023.132613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
The identification of an increasing number of aryl organophosphate esters (aryl-OPEs) in environmental samples has led to growing attention recently. Due to the potential adverse effects on human health and environment, development of new analytical methods for sensitive and selective determination of aryl-OPEs in complex matrices is urgently needed. Here, a novel analytical method for the identification and determination of trace amounts of aryl-OPEs in water samples is developed by using melamine sponge@heteropore covalent organic framework (MS@HCOF) based on vortex-assisted extraction (VAE) prior to UHPLC-MS/MS analysis. The MS@HCOF was rationally designed and synthesized through an in-situ growth strategy and exhibited superior selectivity toward aryl-OPEs compared with that of MS@single-pore COF (MS@SCOF) due to steric effect. A systematic optimization was conducted on important parameters of VAE, resulting in the successful extraction of nine aryl-OPEs in just 6 min. Under optimized conditions, the limits of detection (S/N = 3) and quantification (S/N = 10) were within the ranges of 0.001-0.027 and 0.005-0.091 ng/L for nine aryl-OPEs, respectively. The validated method was proven applicable to real water samples, i.e., the recoveries were 65.3-119.5 % for seawater, 59.4-112.9 % for effluent, and 76.0-117.4 % for tap water. Furthermore, the adsorption mechanisms were explored through density functional theory (DFT) calculations. DFT results revealed that a notable selective enrichment capacity of MS@HCOF towards aryl-OPEs stems from π-π conjugation and hydrogen bonding. The established method benefits from the advantages of high selectivity and sensitivity for the ultra-trace determination of aryl-OPEs.
Collapse
Affiliation(s)
- Jiawen Cheng
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Shasha Wang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Chaonan Huang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
10
|
Lao JY, Xu S, Zhang K, Lin H, Cao Y, Wu R, Tao D, Ruan Y, Yee Leung KM, Lam PKS. New Perspective to Understand and Prioritize the Ecological Impacts of Organophosphate Esters and Transformation Products in Urban Stormwater and Sewage Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11656-11665. [PMID: 37503546 DOI: 10.1021/acs.est.3c04159] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Due to their prevalence in urban contaminated water, the driving factors of organophosphate esters (OPEs) need to be well examined, and their related ecological impacts should include that of their transformation products (TPs). Additionally, a robust framework needs to be developed to integrate multiple variables related to ecological impacts for improving the ecological health assessment. Therefore, OPEs and TPs in urban stormwater and wastewater in Hong Kong were analyzed to fill these gaps. The results revealed that the total concentrations of OPEs in stormwater were positively correlated with the area of transportation land. Individual TP concentrations and the mass ratios of individual TPs/OPEs were somewhat higher in sewage effluents than that in stormwater. OPEs generally showed relatively higher risk quotients than TPs; however, the total risk quotients increased by approximately 38% when TPs were factored in. Moreover, the molecular docking results suggested that the investigated TPs might cause similar endocrine disruption in marine organisms as their parent OPEs. This study employed the Toxicological-Priority-Index scheme to successfully integrate the ecological risks and endocrine-disrupting effects to refine the ecological health assessment of the exposure to OPEs and their TPs, which can better inform the authority on the prioritization for regulating these contaminants of emerging concern in urban built environments.
Collapse
Affiliation(s)
- Jia-Yong Lao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao; Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
- Center for Ocean Research in Hong Kong and Macau (CORE), The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yaru Cao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, City University of Hong Kong, Hong Kong SAR 999077, China
- Center for Ocean Research in Hong Kong and Macau (CORE), The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, Hong Kong 999077, China
| |
Collapse
|
11
|
Castro G, Sørmo E, Yu G, Sait STL, González SV, Arp HPH, Asimakopoulos AG. Analysis, occurrence and removal efficiencies of organophosphate flame retardants (OPFRs) in sludge undergoing anaerobic digestion followed by diverse thermal treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161856. [PMID: 36708840 DOI: 10.1016/j.scitotenv.2023.161856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Organophosphate flame retardants (OPFRs) are a complex group of contaminants to deal with in sewage sludge, as currently there is a lack of robust analytical methods to measure them and management strategies to remove them. To facilitate quantifications of the occurrence of OPFRs in sludge and to establish their removal efficiencies (REs%) during thermal treatments, a simple, reliable, and rapid sample preparation methodology was developed for the determination of 21 OPFRs in diverse sludge, ash and biochar matrices. Matrix-solid phase dispersion (MSPD) tailored to ultra-performance liquid chromatography (UPLC) coupled to tandem mass spectrometry (MS/MS) was applied. Under optimal conditions, 0.5 g of freeze-dried sample were dispersed in 2 g of Bondesil C18, and 1.5 g of deactivated florisil were used as clean-up sorbent. The target analytes were extracted with 5 mL of acetone. The obtained extract was ready for analysis within 20 min without the need of any further treatment. The proposed methodology was assessed, providing absolute recoveries (Abs%) ranging from 50.4 to 112 % with good method repeatability (RSDs <17.9 %). Method limits of quantification ranged from 0.10 to 14.0 ng g-1 dry weight (d.w.). The optimized methodology was applied to raw-, digested-, combusted and pyrolyzed sludge samples collected from different waste treatment plants located in Norway, where 16 out of 21 OPFRs were detected in digested sludge samples up to 2186 ng g-1 (d.w.; sum concentration of OPFRs). Diverse thermal treatments of combustion and dry pyrolysis were assessed for the removal of OPFRs from sludge. Combustion at 300 °C reduced the concentrations of OPFRs by 98 % (in the ashes formed), whereas pyrolysis at temperatures >500 °C effectively removed the OPFRs in the produced biochar. Thermal treatments, in particularly dry pyrolysis, showed potential for achieving zero pollution management and recycling of OPFR contaminated sludge.
Collapse
Affiliation(s)
- Gabriela Castro
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Guanhua Yu
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Shannen T L Sait
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Susana V González
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Hans Peter H Arp
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| |
Collapse
|
12
|
Pang L, Huang Z, Yang P, Wu M, Zhang Y, Pang R, Jin B, Zhang R. Effects of biochar on the degradation of organophosphate esters in sewage sludge aerobic composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130047. [PMID: 36194960 DOI: 10.1016/j.jhazmat.2022.130047] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, the impact of biochar on the degradation of organophosphate esters (OPEs) during the aerobic composting of sewage sludge was investigated. Three treatments were conducted with different percentages of biochar in the compost, including 5 %, 10 %, and 20 %. The treatment with 10 % of biochar showed the longest thermophilic phase compared to that of 5 % and 20 % of biochar, which greatly promoted the decomposition of organic matter. In addition, the degradation rate of the hard-to-degrade chlorinated-OPEs was significantly increased by 10 % biochar, reaching to 57.2 %. Correspondingly, approximately 43.6 % of the total concentration of OPEs (Σ6OPEs) was eliminated in the presence of 10 % of biochar, which was higher than the treatments with 5 % and 20 % of biochar. Biochar significantly influenced the microbial community structure of compost, but the previously reported organophosphorus-degrading bacteria did not play a major role in the degradation of OPEs. The redox ability of the increased oxygen-containing functional groups such as quinone on the surface of biochar and the biochar-mediated electron transfer ability may play an essential role in the degradation of OPEs during the composting process.
Collapse
Affiliation(s)
- Long Pang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Ziling Huang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Peijie Yang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Mingkai Wu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanyan Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Rong Pang
- Department of Medicine, Huanghe Science and Technology College, Zhengzhou, Henan, 450001, China
| | - Baodan Jin
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ruiming Zhang
- College of Chemistry and Materials, Longyan University, Fujian 364012, China
| |
Collapse
|