1
|
Olowoyo JO, Okoya AA, Adesiyan IM, Awe YT, Lion GN, Agboola OO, Oladeji OM. Environmental health science research: opportunities and challenges for some developing countries in Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-25. [PMID: 38909292 DOI: 10.1080/09603123.2024.2370388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Due to ongoing developmental projects, there is a need for regular monitoring of the impact of pollutants on the environment. This review documented the challenges and opportunities in the field of environmental health sciences in some African countries. A systematic review was used to investigate opportunities and challenges in the field of environmental health science in Africa by examining published work with a specific focus on Africa. The reports showed that funding and infrastructure as the major problems. The study also highlighted recruiting study participants, retention, and compensation as a bane in the field in Africa. The absence of modern equipment also hinders research. The review, however, noted research collaboration from the region including studies on emerging pollutants such as pharmaceuticals, per and polyfluoroalkyl substances (PFAS), and microplastic (MPs) as great opportunities. The study concluded that collaboration with other continents, exchange programs and improved governmental interventions may help.
Collapse
Affiliation(s)
- J O Olowoyo
- Department of Health Sciences and The Water School, Florida Gulf Coast University, Fort Myers, FL, USA
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences, South Africa
| | - A A Okoya
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - I M Adesiyan
- Department of Environmental and Occupational Health, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - Y T Awe
- Environmental Management Program, Pan African University of Life and Earth Sciences, University of Ibadan, Oyo State, Nigeria
| | - G N Lion
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences, South Africa
| | - O O Agboola
- Department of Botany, University Lokoja, Kogi State, Nigeria
- Department of Biological Sciences, Federal University of Health Sciences Otukpo, Benue State, Nigeria
| | - O M Oladeji
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences, South Africa
| |
Collapse
|
2
|
Zhang C, Xia T, Zhang L, Chen Z, Zhang H, Jia X, Jia L, Zhu X, Li G. Mercury pollution risks of agricultural soils and crops in mercury mining areas in Guizhou Province, China: effects of large mercury slag piles. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:53. [PMID: 38245580 DOI: 10.1007/s10653-023-01841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
The historical large mercury slag piles still contain high concentrations of mercury and their impact on the surrounding environment has rarely been reported. In this study, three different agricultural areas [the area with untreated piles (PUT), the area with treated piles (PT), and the background area with no piles (NP)] were selected to investigate mercury slag piles pollution in the Tongren mercury mining area. The mercury concentrations of agricultural soils ranged from 0.42 to 155.00 mg/kg, determined by atomic fluorescence spectrometry of 146 soil samples; and mercury concentrations in local crops (rice, maize, pepper, eggplant, tomato and bean) all exceeded the Chinese food safety limits. Soil and crop pollution trends in the three areas were consistent as PUT > PT > NP, indicating that mercury slag piles have exacerbated pollution. Mercury in the slag piles was adsorbed by multiple pathways of transport into soils with high organic matter, which made the ecological risk of agricultural soils appear extremely high. The total hazard quotients for residents from ingesting mercury in these crops were unacceptable in all areas, and children were more likely to be harmed than adults. Compared to the PT area, treatment of slag piles in the PUT area may decrease mercury concentrations in paddy fields and dry fields by 46.02% and 70.36%; further decreasing health risks for adults and children by 47.06% and 79.90%. This study provided a scientific basis for the necessity of treating large slag piles in mercury mining areas.
Collapse
Affiliation(s)
- Chengcheng Zhang
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Tianxiang Xia
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.
| | - Lina Zhang
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Zhuo Chen
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Haonan Zhang
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Xiaoyang Jia
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Lin Jia
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Xiaoying Zhu
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Guangbing Li
- Tongren Environmental Science and Technology Consulting Center, Tongren, 554399, China
| |
Collapse
|
3
|
Şener Ş, Şener E, Bulut C. Appraisal of heavy metal contents, spatial-temporal variation, toxic metal pollution, and health risk in water and sediment of Uluabat Lake (Ramsar Site, Turkey). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115246-115265. [PMID: 37880398 DOI: 10.1007/s11356-023-30490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Uluabat Lake holds a significant status as one of our country's essential Ramsar areas. Nevertheless, the lake faces considerable pressure from environmental pollutants. This study employed GIS-based index methods to examine the heavy metal pollution and water quality in Uluabat Lake. To achieve this, sediment and water samples were collected from 19 different locations during various seasons. The concentrations of As, Ni, Cr, Zn, Cu, Cd, Pb, Hg, Al, Fe, and Mn in these samples were analyzed. The average contents of the investigated heavy metals in the lake waters were found to be in the following order: Al > Fe > Mn > As > Zn > Ni > Pb > Cu > Cr > Hg > Cd. The As content in the lake waters exceeded the limit value of 10 μg/L, as defined by TS-266 (2005) and WHO (2017) guidelines. Consequently, the lake waters were deemed unsuitable for drinking. The health risk assessments revealed that consuming the lake waters could lead to both carcinogenic and non-carcinogenic health problems. However, all other metal concentrations were measured below the specified limit values. Based on index calculations, the heavy metal pollution index value indicated that the lake water samples were suitable for drinking water use. Additionally, all samples fell into the "low pollution" category according to the heavy metal evaluation index, and degree of contamination values. However, geoaccumulation index values indicated that As was moderately contaminated. Moreover, enrichment factors of As, Cr, Ni, Pb, and Cd exhibited significant enrichment in lake sediments, with pollution load index values of all sediment samples indicating the impact of anthropogenic pollutants and a decline in sediment quality. Considering all the obtained results together, it can be concluded that environmental pollutants, especially heavy metal pollution, primarily enter the lake water through stream transports, leading to pollution in Uluabat Lake.
Collapse
Affiliation(s)
- Şehnaz Şener
- Department of Geological Engineering, Suleyman Demirel University, Isparta, Turkey.
| | - Erhan Şener
- Remote Sensing Center, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Cafer Bulut
- Eğirdir Fisheries Research Institute, Isparta, Turkey
| |
Collapse
|
4
|
Numpilai T, Seubsai A, Chareonpanich M, Witoon T. Unraveling the roles of microporous and micro-mesoporous structures of carbon supports on iron oxide properties and As (V) removal performance in contaminated water. ENVIRONMENTAL RESEARCH 2023; 236:116742. [PMID: 37507043 DOI: 10.1016/j.envres.2023.116742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
This study investigates the impact of microporous (SP-C) and micro-mesoporous carbon (DP-C) supports on the dispersion and phase transformation of iron oxides and their arsenic (V) removal efficiency. The research demonstrates that carbon-supported iron oxide sorbents exhibit superior As(V) uptake capacity compared to unsupported Fe2O3, attributed to reduced iron oxide crystallite sizes and As(V) adsorption on carbon supports. Maximum As(V) uptake capacities of 23.8 mg/g and 18.9 mg/g were achieved for Fe/SP-C and Fe/DP-C at 30 wt% and 50 wt% iron loading, respectively. The study reveals a nonlinear relationship between As(V) sorption capacity and iron oxide crystallite size after excluding As(V) adsorption capacity on carbon supports, suggesting the iron oxide phase (Fe3O4) plays a role in determining adsorption capacity. Iron oxide-loaded DP-C sorbents exhibit faster adsorption rates at low As(V) concentrations (5 mg/L) than SP-C sorbents due to their bimodal pore structure. Adsorption behavior varies at higher As(V) concentrations (45 mg/L), with Fe/DP-C reaching maximum capacity more slowly due to limited available adsorptive sites. All adsorbents maintained near-complete As(V) removal efficiency over five cycles. The findings provide insights for designing more efficient adsorbents for As(V) removal from contaminated water sources.
Collapse
Affiliation(s)
- Thanapha Numpilai
- Department of Environmental Science, Faculty of Science and Technology, Thammasat University, Pathum Thani, 12120, Thailand
| | - Anusorn Seubsai
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Metta Chareonpanich
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Thongthai Witoon
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
5
|
Chen D, Li R, Nan F, Li H, Huang P, Zhan W. Co-adsorption mechanisms of As(V) and Cd(II) by three-dimensional flower-like Mg/Al/Fe-CLDH synthesized by "memory effect". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103044-103061. [PMID: 37676456 DOI: 10.1007/s11356-023-29673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Due to the different physical and chemical properties such as surface charge and ion morphology between As(V) and Cd(II), it is challenging to remove As(V) and Cd(II), especially at low concentrations. This study constructed a novel three-dimension nanocomposite adsorbent Mg/Al/Fe-CLDH (CFMA) by "hydrothermal + calcination method". And different initial concentration ratios (Cd: As=1: 2, 1: 1, 2: 1) were used to investigate the removal performance of CFMA for Cd(II) and As(V). When the concentration ratio Cd: As=1: 2, the residual concentrations of As(V) and Cd(II) were 8.7 μg/L and 4.2 μg/L, respectively, which met the drinking water standard; In the co-adsorption system, As(V) and Cd(II) influence each other's adsorption behavior due to the anionic bridge and shielding effect of As(V) on Cd(II), As(V) gradually changed from monolayer adsorption to multi-layer adsorption dominant, while Cd(II) gradually changed from multi-layer adsorption to monolayer adsorption dominant. In this paper, the structure-activity relationship between material structure and synchronous removal of arsenic and cadmium was clarified, and the mechanism of synchronous removal was revealed, which provided technical guidance for synchronous removal of As(V) and Cd(II) from non-ferrous metal smelting wastewater.
Collapse
Affiliation(s)
- Donghui Chen
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Ruiyue Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Fangming Nan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Hong Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Ping Huang
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Wei Zhan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China.
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China.
| |
Collapse
|
6
|
Mestanza-Ramón C, Jiménez-Oyola S, Montoya AVG, Vizuete DDC, D’Orio G, Cedeño-Laje J, Straface S. Assessment of Hg pollution in stream waters and human health risk in areas impacted by mining activities in the Ecuadorian Amazon. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7183-7197. [PMID: 37160830 PMCID: PMC10517888 DOI: 10.1007/s10653-023-01597-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Illegal gold mining activities have contributed to the release and mobilization of Hg and environmental degradation in many parts of the world. This study aims to determine the concentration of Hg in five provinces of the Amazon Region of Ecuador, in addition to assessing the risk to human health of exposed populations, applying deterministic and probabilistic methods. For this purpose, 147 water samples were collected in rivers and streams crossing and/or located near mining areas. As a result, 100% of the samples analyzed exceeded the maximum permissible limit (MPL) according to the water quality criteria for the preservation of aquatic life of the Ecuadorian regulations, while 7% of the samples exceeded the MPL for drinking water. On the other hand, considering the European Environmental Quality Standard (EQS) for surface water bodies, in our study, 100% of the samples exceed the maximum permissible limit (0.07 µg/L), and with respect to the Canadian water quality guidelines, 35% of the samples exceed the permissible limit (0.001 mg/l) for drinking water, and 100% of the samples exceed the limit for life in water bodies (0.0001 mg/l). The risk assessment revealed that the probability of developing adverse health effects from exposure to Hg is below the recommended limits according to the probabilistic assessment; this is in relation to the criterion of residential and recreational use of water resources. However, it was identified that the child population doubles the acceptable systemic risk level according to the results of the deterministic assessment in the residential scenario. This information can be used by decision-makers to implement strategies to reduce Hg contamination and exposure of the population in Ecuadorian Amazonian rivers.
Collapse
Affiliation(s)
- Carlos Mestanza-Ramón
- Research Group YASUNI-SDC, Escuela Superior Politécnica de Chimborazo, Sede Orellana, 20001 El Coca, Ecuador
- Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy
| | - Samantha Jiménez-Oyola
- Facultad de Ingeniería en Ciencias de La Tierra, Escuela Superior Politécnica del Litoral, ESPOL, ESPOL Polytechnic University, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Alex Vinicio Gavilanes Montoya
- Faculty of Natural Resources, Escuela Superior Politécnica de Chimborazo, Panamericana Sur, Km 1 ½, EC-060155 Riobamba, Ecuador
- Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, Şirul Beethoven 1, 500123 Brasov, Romania
| | - Danny Daniel Castillo Vizuete
- Faculty of Natural Resources, Escuela Superior Politécnica de Chimborazo, Panamericana Sur, Km 1 ½, EC-060155 Riobamba, Ecuador
- Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, Şirul Beethoven 1, 500123 Brasov, Romania
| | - Giovanni D’Orio
- Department of Economics, Statistics ands Finasnce, University of Calabria, 87036 Arcavacata Di Rende, Italy
| | - Juan Cedeño-Laje
- Facultad de Ingeniería en Ciencias de La Tierra, Escuela Superior Politécnica del Litoral, ESPOL, ESPOL Polytechnic University, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Salvatore Straface
- Facultad de Ingeniería en Ciencias de La Tierra, Escuela Superior Politécnica del Litoral, ESPOL, ESPOL Polytechnic University, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
7
|
Scutarașu EC, Trincă LC. Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods. Foods 2023; 12:3340. [PMID: 37761050 PMCID: PMC10528236 DOI: 10.3390/foods12183340] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Heavy metals are chemical elements with a toxic effect on the human body. The expansion of industries has led to significant increasing levels of these constituents in the environment. Intensive agriculture can also lead to an increased concentration of heavy metals as a result of using different fertilizers and pesticides. Heavy metal accumulation in soil and plants represents a serious issue because of the potential risks to consumers. There are several methods available for the removal of these toxic components from different substrates (chemical precipitation, electrodialysis, coagulation and flocculation, photocatalytic removal, and adsorption-based processes), but most procedures are expensive and difficult to perform. Thus, more research is needed on the development of low-cost methods in foods. This work represents a review on the heavy metal presence in different food substrates (such as fruits and vegetables, milk and dairy products, meat and meat derivatives, oils, and alcoholic beverages) and provides an overview of the current situation worldwide, taking into account the fact that risks for human health are induced by the intensification of industry and the high degree of pollution. Considering that the toxicological quality of food affects its acceptability, this work provides valuable data regarding the actual situation on the proposed topic.
Collapse
Affiliation(s)
| | - Lucia Carmen Trincă
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iași University of Life Sciences, 3rd M. Sadoveanu Alley, 700490 Iași, Romania;
| |
Collapse
|
8
|
Li X, Zhang D, Zhao Y, Kuang L, Huang H, Chen W, Fu X, Wu Y, Li T, Zhang J, Yuan L, Hu H, Liu Y, Hu F, Zhang M, Sun X, Hu D. Correlation of heavy metals' exposure with the prevalence of coronary heart disease among US adults: findings of the US NHANES from 2003 to 2018. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6745-6759. [PMID: 37378736 DOI: 10.1007/s10653-023-01670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
We sought to explore the association between heavy metal exposure and coronary heart disease (CHD) based on data from the US National Health and Nutrition Examination Survey (NHANES, 2003-2018). In the analyses, participants were all aged > 20 and had participated in heavy metal sub-tests with valid CHD status. The Mann-Kendall test was employed to assess the trends in heavy metals' exposure and the trends in CHD prevalence over 16 years. Spearman's rank correlation coefficient and a logistics regression (LR) model were used to estimate the association between heavy metals and CHD prevalence. 42,749 participants were included in our analyses, 1802 of whom had a CHD diagnosis. Total arsenic, dimethylarsonic acid, monomethylarsonic acid, barium, cadmium, lead, and antimony in urine, and cadmium, lead, and total mercury in blood all showed a substantial decreasing exposure level tendency over the 16 years (all Pfor trend < 0.05). CHD prevalence varied from 3.53 to 5.23% between 2003 and 2018. The correlation between 15 heavy metals and CHD ranges from - 0.238 to 0.910. There was also a significant positive correlation between total arsenic, monomethylarsonic acid, and thallium in urine and CHD by data release cycles (all P < 0.05). The cesium in urine showed a negative correlation with CHD (P < 0.05). We found that exposure trends of total arsenic, dimethylarsonic acid, monomethylarsonic acid, barium, cadmium, lead, and antimony in urine and blood decreased. CHD prevalence fluctuated, however. Moreover, total arsenic, monomethylarsonic acid, and thallium in urine all showed positive relationships with CHD, while cesium in urine showed a negative relationship with CHD.
Collapse
Affiliation(s)
- Xi Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Dongdong Zhang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Lei Kuang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Hao Huang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, People's Republic of China
| | - Weiling Chen
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Xueru Fu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yuying Wu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Tianze Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jinli Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Lijun Yuan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Huifang Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yu Liu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Xizhuo Sun
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, People's Republic of China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
9
|
Romero-Crespo P, Jiménez-Oyola S, Salgado-Almeida B, Zambrano-Anchundia J, Goyburo-Chávez C, González-Valoys A, Higueras P. Trace elements in farmland soils and crops, and probabilistic health risk assessment in areas influenced by mining activity in Ecuador. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4549-4563. [PMID: 36856885 PMCID: PMC10310628 DOI: 10.1007/s10653-023-01514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Consumption of food grown in contaminated soils may be a significant human exposure pathway to pollutants, including toxic elements. This study aimed to investigate the pollution level of trace elements in farmland soil and crops collected in orchards from Ponce Enriquez, one of the Ecuador's most important gold mining areas. The concentration of arsenic (As), cadmium (Cd), chrome (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) was analyzed in soil and crop samples (celery, chives, corn, herbs, lettuce, turnips, green beans, cassava, and carrots). In addition, a probabilistic human health risk assessment, in terms of hazard quotients (HQ) and cancer risk (CR), was conducted to assess the potential risk related to local crop ingestion. The contents of As, Cr, Cu, and Ni in soils exceeded the Ecuadorian quality guidelines for agricultural soils. The trace elements concentration in local crops was higher than the maximum permissible levels set by the Food and Agriculture Organization of the United Nations (FAO). The HQ and CR of local crop ingestion were several orders higher than the safe exposure threshold, mainly for lettuce, chives, and turnips. Our results revealed that inhabitants of the study area are exposed to developing carcinogenic and non-carcinogenic effects due to long-term food consumption with high trace elements. This study sheds light on the need to assess further the quality of agricultural soils and crops grown in mining areas with signs of contamination to guarantee consumer food safety.
Collapse
Affiliation(s)
- Paola Romero-Crespo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de La Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Samantha Jiménez-Oyola
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de La Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Bryan Salgado-Almeida
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de La Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Johanna Zambrano-Anchundia
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de La Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Cindy Goyburo-Chávez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de La Tierra, Campus Gustavo Galindo km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ana González-Valoys
- Centro Experimental de Ingeniería, Universidad Tecnológica de Panamá, Vía Tocumen, P.O. Box 0819-07289, Panama City, Panama
- SNI-SENACYT Sistema Nacional de Investigación-Secretaria Nacional de Ciencia, Tecnología e Innovación, Clayton, Ciudad del Saber Edif.205, P.O. Box 0816-02852, Panama City, Panama
| | - Pablo Higueras
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, EIMI Almadén. Almadén, 13400, Ciudad Real, Spain
| |
Collapse
|
10
|
Caicedo-Rivas G, Salas-Moreno M, Marrugo-Negrete J. Health Risk Assessment for Human Exposure to Heavy Metals via Food Consumption in Inhabitants of Middle Basin of the Atrato River in the Colombian Pacific. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:435. [PMID: 36612759 PMCID: PMC9819723 DOI: 10.3390/ijerph20010435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
The Atrato river basin is one of the world's most biodiverse areas; however, it is highly impacted by mercury gold mining, which generates air, water, and soil pollution. (1) Background: The concentrations of persistent heavy metal pollutants, mercury (Hg), lead (Pb), cadmium (Cd), and arsenic (As) in the fish, fruits, and vegetables most consumed by the riverside inhabitants of the middle basin of the Atrato river represent a danger to public health; (2) Methods: A total of 154 samples of different fruits and vegetables and 440 samples of fish were analyzed by atomic absorption spectroscopy. A sample of 446 people were surveyed to evaluate food consumption and carcinogenic and non-carcinogenic risk; (4) Conclusions: High concentrations of As, Hg, Pb, and Cd were identified in fish, fruits-tubers, and vegetables-stems commonly consumed by inhabitants of the middle basin of the Atrato River, which exceeded the Codex limits and the limits established by the WHO/FAO, especially for carnivorous fish species. A high carcinogenic and non-carcinogenic risk was evidenced amongst inhabitants of the middle basin of the Atrato River due to the consumption of fish contaminated with high concentrations of As, MeHg, and THg. The risk due to the consumption of vegetables was very low.
Collapse
Affiliation(s)
- Gabriel Caicedo-Rivas
- Biosistematic Research Group, Biology Department, Faculty of Natural Sciences, Universidad Tecnológica Del Chocó, Quibdó 270002, Chocó, Colombia
| | - Manuel Salas-Moreno
- Biosistematic Research Group, Biology Department, Faculty of Natural Sciences, Universidad Tecnológica Del Chocó, Quibdó 270002, Chocó, Colombia
| | - José Marrugo-Negrete
- Faculty of Basic Sciences, Universidad de Córdoba, Carrera 6 No. 76-103, Montería 230002, Córdoba, Colombia
| |
Collapse
|
11
|
de Vasconcellos ACS, Ferreira SRB, de Sousa CC, de Oliveira MW, de Oliveira Lima M, Basta PC. Health Risk Assessment Attributed to Consumption of Fish Contaminated with Mercury in the Rio Branco Basin, Roraima, Amazon, Brazil. TOXICS 2022; 10:516. [PMID: 36136481 PMCID: PMC9504189 DOI: 10.3390/toxics10090516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to assess the health risk attributable to the consumption of mercury-contaminated fish for the urban and non-urban populations living in the Roraima state, Amazon, Brazil. Seventy-five fish specimens distributed across twenty different species, comprising four trophic levels (i.e., herbivore, omnivore, detritivore, and carnivore), were collected at four locations in the Branco River Basin. The fish samples were sent to the Toxicology Laboratory at Evandro Chagas Institute to determine the total-Hg levels by using the cold vapor atomic system (CVAAS). The total-Hg levels ranged from 0 to 3.159 µg/g. The average concentration in non-carnivorous species (n = 32) was 0.116 µg/g, and among carnivorous fish (n = 43), it was 0.869 µg/g. The weighted average of contamination levels for all samples was 0.545 µg/g. The health risk assessment was conducted according to the methodology proposed by the World Health Organization and different scenarios of human exposure were considered, based on three levels of fish consumption (low: 50 g/day; moderate: 100 g/day and high: 200 g/day). Women of childbearing age ingest 5 to 21 times more mercury than the dose considered safe by the U.S. EPA and intake a dose from 2 to 9 times higher than the safe dose proposed by FAO/WHO. Children under 5 years of age ingest from 18 to 75 times the dose proposed by the U.S. EPA and from 8 to 32 more mercury than the limit proposed by FAO/WHO. In summary, regardless of the level of fish consumption, type of residency (urban or non-urban), and the subset of the population analyzed, anyone who consumes fish from the locations sampled is at high risk attributable to mercury ingestion, with the only exception of adult men, who consume an average of 50 g of fish per day.
Collapse
Affiliation(s)
- Ana Claudia Santiago de Vasconcellos
- Laboratory of Professional Education on Health Surveillance, Joaquim Venâncio Polytechnic School of Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Sylvio Romério Briglia Ferreira
- Postgraduate Program in Natural Resources (Pronat), Federal University of Roraima, Campus Paricarana, Boa Vista 69310-000, RR, Brazil
| | | | | | - Marcelo de Oliveira Lima
- Environmental Section, Evandro Chagas Institute, Secretariat of Science, Technology and Strategic Products, Ministry of Health of Brazil, Belém 70723-040, PA, Brazil
| | - Paulo Cesar Basta
- Department of Endemic Diseases Samuel Pessoa, National School of Public Health Sergio Arouca, Oswaldo Cruz Foundation, Rio de Janeiro 21041-210, RJ, Brazil
| |
Collapse
|