1
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Garcia BDG. Unraveling microplastic behavior in simulated digestion: Methods, insights, and standardization. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138340. [PMID: 40273860 DOI: 10.1016/j.jhazmat.2025.138340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Despite the rapid expansion of in vitro digestion studies on microplastics (MPs), the field remains fragmented due to inconsistent methodologies, varying analytical approaches, and a lack of standardized protocols. These discrepancies hinder cross-study comparisons, complicate risk assessments, and limit the applicability of in vitro models for understanding MP fate and pollutant interactions in the gastrointestinal environment. A comprehensive synthesis is needed to assess progress, identify research gaps, and establish a unified research direction. This review systematically evaluates 85 studies (2020-2024), consolidating key findings and methodological challenges. It examines disparities in digestion protocols, fluid compositions, and exposure conditions, assessing how factors such as pH, enzyme activity, residence time, and temperature shape MPs' behavior and physicochemical transformations. Key findings on bio-corona formation, structural modifications, contaminant bioaccessibility, and interactions with digestive enzymes are synthesized to provide a clearer picture of MP behavior during digestion. With the field remains dominated by studies on polystyrene and polyethylene MPs in human-based models, inconsistencies persist, highlighting the urgent need for standardized methodologies. By addressing these gaps, this review lays a critical foundation for improving reproducibility, advancing standardization efforts, and strengthening exposure assessments, ultimately enhancing our understanding of MP ingestion risks to human health.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico; CIITEC - IPN. Centro de Investigación e Innovación Tecnológica, Cda. de Cecati s/n, Santa Catarina, Azcapotzalco, Ciudad de México 02250, Mexico.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico
| | - Berenice Dafne Garcia Garcia
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Ciudad de México 07360, Mexico
| |
Collapse
|
2
|
Tabinda AB, Maqsood A, Ansar J, Yasar A, Javed R, Nadeem M. Assessment and treatment of microplastics in different environmental compartments of Kallar Kahar Lake-a case study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:271. [PMID: 39934448 DOI: 10.1007/s10661-025-13713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Microplastic pollution has garnered global attention in recent decades due to its recognized ecological concerns through previous studies. However, in Pakistan, scarce information has been reported on MP pollution concerning the freshwater ecosystem. The current study was conducted on Kallar Kahar Lake, Punjab, Pakistan for (1) quantification, characterization, and distribution of MPs in surface water, sediments, and fish samples and (2) two treatment processes (magnetization and coagulation + flocculation) for the removal of MPs from the water. Samples were collected from each point by grab sampling method to investigate the MPs according to their type, shape, and color. The MP quantification and analysis were accomplished via the counting method by a stereomicroscope and Fourier transform infrared spectroscopy for their polymer type and composition. Results indicated the average MP abundance as 49.6 ± 11.14 MP/500 mL, 143 ± 48.18 MP/100 g, and 79 ± 12.2 items for water, sediments, and fish correspondingly. The dominant MP colors were blue, transparent, and green in all three environmental compartments. The ATR-FTIR identified the polymer types in lake water, sediment, and fish were PPS, PIB, and PLF; PET, PE, PP, and Natural Latex Rubber; and PET, respectively. The MP removal rate was observed high in both treatments. The average % removal rate of iron ore magnetization treatment was observed to be 80% at 1300 mg/L dosage of Fe2O3. Similarly in chemical coagulation processes, the highest MP removal efficiency was 85% (PET), 83% (PPS) and 80% (PIB) at the different concentration dosages of 150 + 15 mg/L, 111 + 15 mg/L, and 150 + 111 + 15 mg/L for Combination 1, Combination 2, and Combination 3, respectively. Overall, this study provided an integrative and novel approach for the removal of MP from surface water, which also holds an explicit commercial utilization prospect to overpower the MP pollution in water bodies. Also, the current findings serve as baseline data for the study of local freshwater systems.
Collapse
Affiliation(s)
- Amtul Bari Tabinda
- Sustainable Development Study Center, Government College University, Lahore, Pakistan.
| | - Azka Maqsood
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Javairia Ansar
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Abdullah Yasar
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Rimsha Javed
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Mahnoor Nadeem
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| |
Collapse
|
3
|
Patel T, Lata R, Arikibe JE, Rohindra D. Towards sustainable microplastic cleanup: Al/Fe ionotropic chitosan hydrogels for efficient PET removal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:228. [PMID: 39900689 DOI: 10.1007/s10661-025-13661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
Chitosan (CHI) was modified with iron and aluminum salts to create ionotropic beads, Fe-CHI and Al-CHI, for the removal of polyethylene terephthalate microplastics (PET-MP) from water. Infrared spectroscopy revealed reduced hydrogen bonding associated with N-H vibration of CHI (3500-3100 cm-1) due to the interaction with the metal ions, and absorption peaks between 500 and 916 cm⁻1 predominantly due to metal-oxygen stretching vibrations. The swelling behavior of the beads increased with temperature but decreased as pH and metal doping concentration increased. Conductivity and PET-MP removal efficiency improved with higher metal ion concentrations, with Al-CHI exhibiting greater swelling and conductivity compared to Fe-CHI. The highest efficiency for MP remediation was recorded at low pH levels. MP adsorption decreased with rising temperatures and varied with pH changes due to protonation and deprotonation reactions of CHI, along with the various cationic and anionic species formed by the metals. At pH 7, MP removal by Fe-CHI beads declined as the doping concentration increased, attributed to specific Fe species that emerged at this pH. The zeta potential measurements showed that both the beads and the MP were in an unstable range at low pH but shifted towards stability at higher pH levels. Re-adsorption efficiencies exceeded 70% for both low and high-doped Fe-CHI and Al-CHI beads when tested with ~ 40 MP/mL of MP suspension over three different cycles. Overall, the use of ionotropic CHI beads offers a promising, eco-friendly method for effectively reducing PET-MPs in water.
Collapse
Affiliation(s)
- Tejesvi Patel
- School of Agriculture, Geography, Environment, Oceans and Natural Sciences, The University of the South Pacific, Private Mail Bag, Suva, Fiji
| | - Roselyn Lata
- School of Agriculture, Geography, Environment, Oceans and Natural Sciences, The University of the South Pacific, Private Mail Bag, Suva, Fiji
| | - Joachim Emeka Arikibe
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padua, PD, Italy
| | - David Rohindra
- School of Agriculture, Geography, Environment, Oceans and Natural Sciences, The University of the South Pacific, Private Mail Bag, Suva, Fiji.
| |
Collapse
|
4
|
Yu R, Li P, Shen R. Collaborative removal of microplastics, bacteria, antibiotic resistance genes, and heavy metals in a full-scale wastewater treatment plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:438-452. [PMID: 40018901 DOI: 10.2166/wst.2025.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Plastics are used in large quantities in food packaging and industrial products in China, which results in ecological risks of microplastics (MPs) to the environment. In this study, the MPs' removal efficiency of a full-scale wastewater treatment plant (WWTP) and the internal interaction of microorganisms, antibiotic resistance genes (ARGs), and heavy metals with MPs were investigated. The dominant MPs in urban sewage were polyurethane (PU), acrylate copolymer (ACR), fluororubber, and polyethylene. MPs in wastewater were removed by WWTP with a total efficiency of 76%. The removal efficiencies of ACR, ethylene-vinyl acetate copolymer, polybutadiene, poly(tetrafluoroethylene), polystyrene, and polypropylene reached 100%. The highest concentration of MPs PU in the influent got a removal efficiency of 93.41%. The interactions between MPs, heavy metals, microorganisms, and ARGs involved adsorption, hydrogen bonds, coprecipitation, and polar interaction. Heavy metals and MPs formed larger aggregated particles, which were removed in the primary process. Heavy metals accumulated in sludge pose ecological risks to soil during landfill or compost to fertilizer. The release of MPs from WWTPs leads to accumulation in organisms and soil. It may affect the entire food chain and promote the transmission of ARGs in the environment, posing potential threats to the entire ecosystem.
Collapse
Affiliation(s)
- Ran Yu
- Department of Bioengineering, Beijing Polytechnic, Daxing District, Beijing 100176, China
| | - Peng Li
- Xinkai Environment Investment Co., Ltd, Tongzhou District, Beijing 101101, China; Beijing Zhiyu Tiancheng Design Consulting Co., Ltd, Tongzhou District, Beijing 101101, China E-mail:
| | - Rong Shen
- Department of Bioengineering, Beijing Polytechnic, Daxing District, Beijing 100176, China
| |
Collapse
|
5
|
Lee SH, Han SJ, Wee JH. A mini review of recent advances in environmentally friendly microplastic removal technologies in water systems. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104485. [PMID: 39674083 DOI: 10.1016/j.jconhyd.2024.104485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
The current increase in microplastic (MP) occurrence worldwide is predicted to cause severe environmental crises in the future. Therefore, it is imperative to develop innovative MP removal technologies that can effectively mitigate MP emissions in any given scenario. This review discusses recent environmentally friendly advances in MP removal technologies that aim to overcome the limitations of current technologies, prevent secondary pollution, and utilize low energy. It also explores the potential applicability of these technologies under the current environmental conditions in South Korea. The core principles of these technologies, such as adsorption or flocculation, focus on minimizing the energy required to initiate and sustain these processes and on reducing the usage of adsorbents and flocculants. Employing microalgae as flocculants and triboelectricity for electrophoresis are identified as promising technologies. Incinerating MP-adsorbed materials from the process could be a viable disposal method, potentially serving as a source of heat energy. Consequently, technologies based on biochar or microalgae are especially advantageous in this context. The location where these technologies are applied plays a crucial role in their overall energy consumption. Ideally, implementation should occur as close as possible to points where MPs are found or within wastewater treatment plants. Froth flotation, microalgae flocculation, and triboelectricity-based electrophoresis are suitable methods in this regard. Establishing and enforcing administrative systems, laws, and policies globally to prevent MP occurrence remains critical. However, while these measures are vital, the most effective method for reducing MP occurrence is lowering plastic consumption alongside implementing stringent segregation and collection procedures.
Collapse
Affiliation(s)
- Seung Hyeon Lee
- Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Sang-Jun Han
- Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Jung-Ho Wee
- Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea.
| |
Collapse
|
6
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
7
|
Lee JY, Chia RW, Veerasingam S, Uddin S, Jeon WH, Moon HS, Cha J, Lee J. A comprehensive review of urban microplastic pollution sources, environment and human health impacts, and regulatory efforts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174297. [PMID: 38945237 DOI: 10.1016/j.scitotenv.2024.174297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Microplastic (MP) pollution in urban environments is a pervasive and complex problem with significant environmental and human health implications. Although studies have been conducted on MP pollution in urban environments, there are still research gaps in understanding the exact sources, regulation, and impact of urban MP on the environment and public health. Therefore, the goal of this study is to provide a comprehensive overview of the complex pathways, harmful effects, and regulatory efforts of urban MP pollution. It discusses the research challenges and suggests future directions for addressing MPs related to environmental issues in urban settings. In this study, original research papers published from 2010 to 2024 across ten database categories, including PubMed, Google Scholar, Scopus, and Web of Science, were selected and reviewed to improve our understanding of urban MP pollution. The analysis revealed multifaceted sources of MPs, including surface runoff, wastewater discharge, atmospheric deposition, and biological interactions, which contribute to the contamination of aquatic and terrestrial ecosystems. MPs pose a threat to marine and terrestrial life, freshwater organisms, soil health, plant communities, and human health through ingestion, inhalation, and dermal exposure. Current regulatory measures for MP pollution include improved waste management, upgraded wastewater treatment, stormwater management, product innovation, public awareness campaigns, and community engagement. Despite these regulatory measures, several challenges such as; the absence of standardized MPs testing methods, MPs enter into the environment through a multitude of sources and pathways, countries struggle in balancing trade interests with environmental concerns have hindered effective policy implementation and enforcement. Addressing MP pollution in urban environments is essential for preserving ecosystems, safeguarding public health, and advancing sustainable development. Interdisciplinary collaboration, innovative research, stringent regulations, and public participation are vital for mitigating this critical issue and ensuring a cleaner and healthier future for urban environments and the planet.
Collapse
Affiliation(s)
- Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - S Veerasingam
- Environmental Science Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Saif Uddin
- Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Woo-Hyun Jeon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Hee Sun Moon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| | - Jejung Lee
- School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| |
Collapse
|
8
|
Khan MT, Rashid S, Yaman U, Khalid SA, Kamal A, Ahmad M, Akther N, Kashem MA, Hossain MF, Rashid W. Microplastic pollution in aquatic ecosystem: A review of existing policies and regulations. CHEMOSPHERE 2024; 364:143221. [PMID: 39233299 DOI: 10.1016/j.chemosphere.2024.143221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Environmental pollution due to plastic waste is a global challenge causing adverse impacts on the ecosystem and public health. Microplastic (MP) originates at the upstream processes such as industrial and household activities; however, their existence is affecting the downstream environment. Even though many governments and non-government organizations have taken technological and regulatory steps, these current efforts and strategies are insufficient to prevent the MP release in the environment. Thus, a multidisciplinary global approach is required, which must prioritize the reducing of plastic inputs to the environment. To regulate MP levels in the environment, worldwide reformative and preventive strategies are required because the issue is not limited to a single nation or region. In relation to marine plastic waste, a number of multilateral agreements and measures exist at global level. Several regulatory measures have been examined by regulatory bodies with the intention of safeguarding the environment from excessive MP contamination. However, neither of the frameworks in place is specifically made to stop the increased MP pollution in the environment. Therefore, this review focused on the preventive measures taken by the government and non-government organizations for MP control through legislations. The study also critically discussed MP-related policies aiming to increase the viability and efficiency of implementing future plastic management. This review is expected to provide the basic guidelines for formulating MP standards in the environment.
Collapse
Affiliation(s)
- Muhammad Tariq Khan
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai po New Territories, Hong Kong
| | - Sajid Rashid
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Unzile Yaman
- Department of Pharmaceutical Toxicology Izmir Katip Celebi University, Faculty of Pharmacy, 35620, Cigli, Izmir, Turkey
| | - Saeed Ahsan Khalid
- Department of Law, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Asif Kamal
- Guanghua Law School Zhejiang University, Hangzhou, China
| | - Mushtaq Ahmad
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nasrin Akther
- Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Abul Kashem
- Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Faysal Hossain
- Fibre and Particle Engineering Research Unit, University of Oulu, Erkki Koiso-Kanttilan katu, Oulu, 90014, Finland
| | - Wajid Rashid
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19120, Pakistan.
| |
Collapse
|
9
|
Tepe Y, Aydın H, Ustaoğlu F, Kodat M. Occurrence of microplastics in the gastrointestinal tracts of four most consumed fish species in Giresun, the Southeastern Black Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55336-55345. [PMID: 39227534 DOI: 10.1007/s11356-024-34814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Microplastic studies investigating concentrations in water are numerous, but the majority of microplastics settle and are retained in sediment, and higher concentrations are regularly reported in sediments. Thus, MPs accumulation may be more threatening to benthic fish living in sediments than to pelagic fish. The presence, abundance and diversity of microplastics were investigated by collecting samples from two pelagic, European anchovy, and horse mackerel and two benthic fish species, red mullet, and whiting that are popularly consumed in Giresun province of Türkiye, located on the southern coast of the Black Sea. Visual classification and chemical compositions of microplastics was performed using a light microscope and ATR-FTIR spectrophotometry, consecutively. The overall incidence and mean microplastics abundance in sampled fishes were 17 and 1.7 ± 0.18 MP fish-1, respectively. MPs were within the range of 0.026-5 mm in size. In most of the cases, the MP was black in color with 41%. With the rates of 56%, polypropylene was the predominant polymer type. The most dominant MP type was identified as fiber followed by fragments and pellets. The relationship between MP amounts in fish and Fulton condition factor was not strong enough to establish a cause-effect relationship.
Collapse
Affiliation(s)
- Yalçın Tepe
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun, 28200, Türkiye.
| | - Handan Aydın
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun, 28200, Türkiye
| | - Fikret Ustaoğlu
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun, 28200, Türkiye
| | - Murat Kodat
- Department of Biology, Faculty of Arts and Science, Giresun University, Güre Campus, Giresun, 28200, Türkiye
| |
Collapse
|
10
|
Biao W, Hashim NA, Rabuni MFB, Lide O, Ullah A. Microplastics in aquatic systems: An in-depth review of current and potential water treatment processes. CHEMOSPHERE 2024; 361:142546. [PMID: 38849101 DOI: 10.1016/j.chemosphere.2024.142546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Plastic products, despite their undeniable utility in modern life, pose significant environmental challenges, particularly when it comes to recycling. A crucial concern is the pervasive introduction of microplastics (MPs) into aquatic ecosystems, with deleterious effects on marine organisms. This review presents a detailed examination of the methodologies developed for MPs removal in water treatment systems. Initially, investigating the most common types of MPs in wastewater, subsequently presenting methodologies for their precise identification and quantification in aquatic environments. Instruments such as scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy, surface-enhanced Raman spectroscopy, and Raman tweezers stand out as powerful tools for studying MPs. The discussion then transitions to the exploration of both existing and emergent techniques for MPs removal in wastewater treatment plants and drinking water treatment plants. This includes a description of the core mechanisms that drive these techniques, with an emphasis on the latest research developments in MPs degradation. Present MPs removal methodologies, ranging from physical separation to chemical and biological adsorption and degradation, offer varied advantages and constraints. Addressing the MPs contamination problem in its entirety remains a significant challenge. In conclusion, the review offers a succinct overview of each technique and forwards recommendations for future research, highlighting the pressing nature of this environmental dilemma.
Collapse
Affiliation(s)
- Wang Biao
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - N Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Mohamad Fairus Bin Rabuni
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Ong Lide
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aubaid Ullah
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Carnevale Miino M, Galafassi S, Zullo R, Torretta V, Rada EC. Microplastics removal in wastewater treatment plants: A review of the different approaches to limit their release in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172675. [PMID: 38670366 DOI: 10.1016/j.scitotenv.2024.172675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
In last 10 years, the interest about the presence of microplastics (MPs) in the environment has strongly grown. Wastewaters function as a carrier for MPs contamination from source to the aquatic environment, so the knowledge of the fate of this emerging contaminant in wastewater treatment plants (WWTPs) is a priority. This work aims to review the presence of MPs in the influent wastewater (WW) and the effectiveness of the treatments of conventional WWTPs. Moreover, the negative impacts of MPs on the management of the processes have been also discussed. The work also focuses on the possible approaches to tackle MPs contamination enhancing the effectiveness of the WWTPs. Based on literature results, despite WWTPs are not designed for MPs removal from WW, they can effectively remove the MPs (up to 99 % in some references). Nevertheless, they normally act as "hotspots" of MPs contamination considering the remaining concentration of MPs in WWTPs' effluents can be several orders of magnitude higher than receiving waters. Moreover, MPs removed from WW are concentrated in sewage sludge (potentially >65 % of MPs entering the WWTP) posing a concern in case of the potential reuse as a soil improver. This work aims to present a paradigm shift intending WWTPs as key barriers for environmental protection. Approaches for increasing effectiveness against MPs have been discussed in order to define the optimal point(s) of the WWTP in which these technologies should be located. The need of a future legislation about MPs in water and sludge is discussed.
Collapse
Affiliation(s)
- Marco Carnevale Miino
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Silvia Galafassi
- Water Research Institute, National Research Council, Largo Tonolli 50, 28920 Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Rosa Zullo
- Water Research Institute, National Research Council, Largo Tonolli 50, 28920 Verbania, Italy.
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Elena Cristina Rada
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
12
|
Ezaier Y, Hader A, Latif A, Khan ME, Ali W, Ali SK, Khan AU, Bashiri AH, Zakri W, Yusuf M, Rajamohan N, Ibrahim H. Solving the fouling mechanisms in composite membranes for water purification: An advance approach. ENVIRONMENTAL RESEARCH 2024; 250:118487. [PMID: 38365055 DOI: 10.1016/j.envres.2024.118487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
With the increasing population worldwide more wastewater is created by human activities and discharged into the waterbodies. This is causing the contamination of aquatic bodies, thus disturbing the marine ecosystems. The rising population is also posing a challenge to meet the demands of fresh drinking water in the water-scarce regions of the world, where drinking water is made available to people by desalination process. The fouling of composite membranes remains a major challenge in water desalination. In this innovative study, we present a novel probabilistic approach to analyse and anticipate the predominant fouling mechanisms in the filtration process. Our establishment of a robust theoretical framework hinges upon the utilization of both the geometric law and the Hermia model, elucidating the concept of resistance in series (RIS). By manipulating the transmembrane pressure, we demonstrate effective management of permeate flux rate and overall product quality. Our investigations reveal a decrease in permeate flux in three distinct phases over time, with the final stage marked by a significant reduction due to the accumulation of a denser cake layer. Additionally, an increase in transmembrane pressure leads to a correlative rise in permeate flux, while also exerting negative effects such as membrane ruptures. Our study highlights the minimal immediate impact of the intermediate blocking mechanism (n = 1) on permeate flux, necessitating continuous monitoring for potential long-term effects. Additionally, we note a reduced membrane selectivity across all three fouling types (n = 0, n = 1.5, n = 2). Ultimately, our findings indicate that the membrane undergoes complete fouling with a probability of P = 0.9 in the presence of all three fouling mechanisms. This situation renders the membrane unable to produce water at its previous flow rate, resulting in a significant reduction in the desalination plant's productivity. I have demonstrated that higher pressure values notably correlate with increased permeate flux across all four membrane types. This correlation highlights the significant role of TMP in enhancing the production rate of purified water or desired substances through membrane filtration systems. Our innovative approach opens new perspectives for water desalination management and optimization, providing crucial insights into fouling mechanisms and proposing potential strategies to address associated challenges.
Collapse
Affiliation(s)
- Yassine Ezaier
- Bio-Geosciences and Materials Engineering Laboratory, Ecole Normale Supérieure, University Hassan II, Casablanca, Morocco
| | - Ahmed Hader
- Bio-Geosciences and Materials Engineering Laboratory, Ecole Normale Supérieure, University Hassan II, Casablanca, Morocco; Regional Center for Education and Training Professions, Settat establishment, Morocco
| | - Abdelaziz Latif
- Bio-Geosciences and Materials Engineering Laboratory, Ecole Normale Supérieure, University Hassan II, Casablanca, Morocco
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan, 45142, Saudi Arabia.
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan, 45142, Saudi Arabia
| | - Syed Kashif Ali
- Department of Chemistry, Faculty of Science Jazan University, Jazan, PO Box 114, Saudi Arabia
| | - Anwar Ulla Khan
- Department of Electrical Engineering, College of Engineering, Jazan University, P. O. Box 114, Jazan, 45142, Saudi Arabia
| | - Abdullateef H Bashiri
- Department of Mechanical Engineering, College of Engineering, Jazan University, P. O. Box 114, Jazan, 45142, Saudi Arabia
| | - Waleed Zakri
- Department of Mechanical Engineering, College of Engineering, Jazan University, P. O. Box 114, Jazan, 45142, Saudi Arabia
| | - Mohammad Yusuf
- Clean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, P C 311, Sohar, Oman
| | - Hussameldin Ibrahim
- Clean Energy Technologies Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| |
Collapse
|
13
|
Sacco VA, Zuanazzi NR, Selinger A, Alliprandini da Costa JH, Spanhol Lemunie É, Comelli CL, Abilhoa V, Sousa FCD, Fávaro LF, Rios Mendoza LM, de Castilhos Ghisi N, Delariva RL. What are the global patterns of microplastic ingestion by fish? A scientometric review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123972. [PMID: 38642794 DOI: 10.1016/j.envpol.2024.123972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
The billions of tons of plastic released into the environment mostly fragment into smaller particles that reach rivers and oceans, posing toxicity risks to aquatic organisms. As fish serve as excellent environmental indicator organisms, this study aims to comprehensively review and quantify published data regarding the abundance of microplastics (MPs) ingested by fish through scientometric analysis. Systematic analysis reveals that global aquatic ecosystems are contaminated by MPs, with the characteristics of these contaminants stemming from inadequate disposal management practices. The abundance of MPs was recorded in several fish species, notably Cyprinus carpio in natural environments and Danio rerio in controlled environments. According to the surveyed studies, laboratory experiments do not accurately represent the conditions found in natural environments. The results suggest that, in natural environments, the predominant colors of MPs are blue, black, and red. Fibers emerged as the most prevalent type, with polyethylene (PE) and polypropylene (PP) being the most frequently identified chemical compositions. On the other hand, laboratory studies showed that the spheres and fragments ingested were predominantly polystyrene (PS) green, followed by the colors blue and red. This discrepancy complicates drawing accurate conclusions regarding the actual effects of plastic particles on aquatic biota. Given the enduring presence of plastic in the environment, it is imperative to consider and implement environmental monitoring for effective, long-term management.
Collapse
Affiliation(s)
- Vania Aparecida Sacco
- Graduate Program in Comparative Biology, State University of Maringá (UEM), Maringá, Brazil.
| | - Natana Raquel Zuanazzi
- Graduate Program in Comparative Biology, State University of Maringá (UEM), Maringá, Brazil.
| | - Amanda Selinger
- Laboratory of Biology of Marine and Coastal Organisms, Santa Cecília University (UNISANTA), Santos, São Paulo State, Brazil.
| | - João Henrique Alliprandini da Costa
- Laboratory of Ecophysiology and Aquatic Toxicology, São Paulo State University "Júlio de Mesquita Filho" - (UNESP), Campus do Litoral Paulista, 11330-900, São Vicente, SP, Brazil.
| | - Érika Spanhol Lemunie
- Graduate Program in Conservation and Management of Natural Resources, State University of West Paraná (Unioeste), Cascavel, Brazil.
| | - Camila Luiza Comelli
- Graduate Program in Biotechnology - PPGBIOTEC - Universidade Tecnológica Federal do Paraná (UTFPR) Dois Vizinhos, Brazil.
| | - Vinícius Abilhoa
- Laboratório de Ictiologia, Museu de História Natural Capão da Imbuia. Prefeitura Municipal de Curitiba, Secretaria Municipal do Meio Ambiente, Rua Prof. Benedito Conceição, 407 - Capão da Imbuia, CEP 82810080, Curitiba, PR, Brazil.
| | - Fernando Carlos de Sousa
- Laboratório de Anatomia Humana, Universidade Tecnológica Federal do Paraná (UTFPR) Dois Vizinhos, Brazil.
| | - Luis Fernando Fávaro
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| | - Lorena M Rios Mendoza
- Program of Chemistry and Physics, Department of Natural Sciences, University of Wisconsin-Superior, Belknap and Catlin, P.O. Box 2000, Superior, WI, 54880, USA.
| | - Nédia de Castilhos Ghisi
- Graduate Program in Biotechnology - PPGBIOTEC - Universidade Tecnológica Federal do Paraná (UTFPR) Dois Vizinhos, Brazil.
| | - Rosilene Luciana Delariva
- Graduate Program in Comparative Biology, State University of Maringá (UEM), Maringá, Brazil; Laboratory of Ichthyology, Ecology and Biomonitoring, State University of West Paraná (Unioeste), Rua Universitária, University Garden, 1619, Cascavel, PR, Brazil.
| |
Collapse
|
14
|
Chandra S, Walsh KB. Microplastics in water: Occurrence, fate and removal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104360. [PMID: 38729026 DOI: 10.1016/j.jconhyd.2024.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
A global study on tap water samples has found that up to 83% of these contained microplastic fibres. These findings raise concerns about their potential health risks. Ingested microplastic particles have already been associated with harmful effects in animals, which raise concerns about similar outcomes in humans. Microplastics are ubiquitous in the environment, commonly found disposed in landfills and waste sites. Within indoor environments, the common sources are synthetic textiles, plastic bottles, and packaging. From the various point sources, they are globally distributed through air and water and can enter humans through various pathways. The finding of microplastics in fresh snow in the Antarctic highlights just how widely they are dispersed. The behaviour and health risks from microplastic particles are strongly influenced by their physicochemical properties, which is why their surfaces are important. Surface interactions are also important in pollutant transport via adsorption onto the microplastic particles. Our review covers the latest findings in microplastics research including the latest statistics in their abundance, their occurrence and fate in the environment, the methods of reducing microplastics exposure and their removal. We conclude by proposing future research directions into more effective remediation methods including new technologies and sustainable green remediation methods that need to be explored to achieve success in microplastics removal from waters at large scale.
Collapse
Affiliation(s)
- Shaneel Chandra
- College of Science and Sustainability, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton North, QLD 4702, Australia; Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone Marina Campus, Bryan Jordan Drive, Gladstone, QLD 4680, Australia.
| | - Kerry B Walsh
- College of Science and Sustainability, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton North, QLD 4702, Australia
| |
Collapse
|
15
|
Zambrano-Pinto MV, Tinizaray-Castillo R, Riera MA, Maddela NR, Luque R, Díaz JMR. Microplastics as vectors of other contaminants: Analytical determination techniques and remediation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168244. [PMID: 37923271 DOI: 10.1016/j.scitotenv.2023.168244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The ubiquitous and persistent presence of microplastics (MPs) in aquatic and terrestrial ecosystems has raised global concerns due to their detrimental effects on human health and the natural environment. These minuscule plastic fragments not only threaten biodiversity but also serve as vectors for contaminants, absorbing organic and inorganic pollutants, thereby causing a range of health and environmental issues. This review provides an overview of microplastics and their effects. This work highlights available analytical techniques for detecting and characterizing microplastics in different environmental matrices, assessing their advantages and limitations. Additionally, this review explores innovative remediation approaches, such as microbial degradation and other advanced methods, offering promising prospects for combatting microplastic accumulation in contaminated environments. The focus on environmentally-friendly technologies, such as the use of microorganisms and enzymes for microplastic degradation, underscores the importance of sustainable solutions in plastic pollution management. In conclusion, this article not only deepens our understanding of the microplastic issue and its impact but also advocates for the urgent need to develop and implement effective strategies to mitigate this critical environmental challenge. In this context, the crucial role of advanced technologies, like quantitative Nuclear Magnetic Resonance spectroscopy (qNMR), as promising tools for rapid and efficient microplastic detection, is emphasized. Furthermore, the potential of the enzyme PETase (polyethylene terephthalate esterase) in microplastic degradation is examined, aiming to address the growing plastic pollution, particularly in saline environments like oceanic ecosystems. These innovations offer hope for effectively addressing microplastic accumulation in contaminated environments and minimizing its adverse impacts.
Collapse
Affiliation(s)
- Maria Veronica Zambrano-Pinto
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Rolando Tinizaray-Castillo
- Departamento de Construcciones Civiles, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - María A Riera
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador.
| | - Joan Manuel Rodríguez Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| |
Collapse
|
16
|
Xiong X, Wang J, Liu J, Xiao T. Microplastics and potentially toxic elements: A review of interactions, fate and bioavailability in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122754. [PMID: 37844862 DOI: 10.1016/j.envpol.2023.122754] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
In recent years, microplastics (MPs) have obtained growing public concern due to widespread distribution and harmful impacts. Their distinctive features including porous structure, small size, as well as large specific surface area render MPs to be carriers for transporting other pollutants in the environment, especially potentially toxic elements (PTEs). Considering the hot topic of MPs, it is of great significance to comb the reported literature on environmental behaviors of co-occurrence of MPs and PTEs, and systematically discuss their co-mobility, transportation and biotoxicity to different living organisms in diverse environmental media. Therefore, the aim of this work is to systematically review and summarize recent advances on interactions and co-toxicity of MPs and PTEs, in order to provide in-depth understanding on the transport behaviors as well as environmental impacts. Electrostatic attraction and surface complexation mainly govern the interactions between MPs and PTEs, which are subordinated by other physical sorption processes. Besides, the adsorption behaviors are mainly determined by physicochemical properties regarding to different MPs types and various condition factors (e.g., ageing and PTEs concentrations, presence of substances). Generally speaking, recently published papers make a great progress in elucidating the mechanisms, impact factors, as well as thermodynamic and kinetic studies. Bioavailability and bioaccumulation by plant, microbes, and other organisms in both aquatic and terrestrial environment have also been under investigation. This review will shed novel perspectives on future research to meet the sustainable development goals, and obtain critical insights on revealing comprehensive mechanisms. It is crucial to promote efficient approaches on environmental quality improvement as well as management strategies towards the challenge of MPs-PTEs.
Collapse
Affiliation(s)
- Xinni Xiong
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
17
|
Zha H, Xia J, Wang K, Xu L, Chang K, Li L. Foodborne and airborne polyethersulfone nanoplastics respectively induce liver and lung injury in mice: Comparison with microplastics. ENVIRONMENT INTERNATIONAL 2024; 183:108350. [PMID: 38043322 DOI: 10.1016/j.envint.2023.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Micro/nanoplastics (MNP) are ubiquitous in the environment and multiple living organisms. The toxicity of some common types of MNP, e.g., polyethersulfone (PES) MNP, remains poorly understood. Multi-omics approaches were used in this study to determine the effects of foodborne and airborne PES MNP on liver and lung, respectively. Foodborne MNP were capable of inducing gut microbial dysbiosis, gut and serum metabolic disruption, and liver transcriptomic dysregulation, and affecting serum antioxidant activity and liver function, resulting in liver injury. As for the airborne MNP, they were found to induce nasal and lung microbial dysbiosis, serum and lung metabolic disruption, and liver transcriptome disturbance, and cause disrupted serum antioxidant activity and lung injury. Foodborne and airborne PES NP were found to respectively induce greater liver and lung toxicity than MP, which could be associated with the differences between NP and MP exposures. The relevant results suggest that foodborne PES MNP could disrupt the "gut microbiota-gut-liver" axis and induce hepatic injury, while airborne PES MNP could affect the "airborne microbiota-lung" axis and cause lung injury. The findings could benefit the diagnoses of liver and lung injury respectively induced by foodborne and airborne PES MNP, as well as the proper use of PES in human living environment.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lvwan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Letwin NV, Gillespie AW, Ijzerman MM, Kudla YM, Csajaghy JD, Prosser RS. Characterizing the Microplastic Content of Biosolids in Southern Ontario, Canada. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38116985 DOI: 10.1002/etc.5813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
The application of biosolids to agricultural land has been identified as a major pathway of microplastic (MP) pollution to the environment. Very little research, however, has been done on the MP content of biosolids within Canada. Fifteen biosolid samples from different treatment processes (liquid, dewatered, pelletized, and alkali-stabilized) were collected from 11 sources across southern Ontario to quantify and characterize the MP load within them. All samples exhibited MP concentrations ranging from 188 200 (±24 161) to 512 000 (±28 571) MPs/kg dry weight and from 4122 (±231) to 453 746 (±38 194) MPs/kg wet weight. Field amendment of these biosolids can introduce up to 3.73 × 106 to 4.12 × 108 MP/ha of agricultural soil. There was no significant difference in the MP concentrations of liquid, dewatered, and pelletized samples; but a reduction in MP content was observed in alkali-stabilized biosolids. Fragments composed 57.6% of the MPs identified, while 36.7% were fibers. In addition, MPs showed an exponential increase in abundance with decreasing size. Characterization of MPs confirmed that polyester was the most abundant, while polyethylene, polypropylene, polyamide, polyacrylamide, and polyurethane were present across the majority of biosolid samples. The results of the present study provide an estimate of the potential extent of MP contamination to agricultural fields through the amendment of biosolids. Environ Toxicol Chem 2024;00:1-14. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Nicholas V Letwin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Adam W Gillespie
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Moira M Ijzerman
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Yaryna M Kudla
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Joel D Csajaghy
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
Kamaraj P, Vardhan Sridhar V, Vijaykumar Tharumasivam S, Parthasarathy S, Bupesh G, Kumar Raju N, Kumar Sahoo U, Nanda A, Saravanan KM. Carbon nanoparticles fabricated microfilm: A potent filter for microplastics debased water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122502. [PMID: 37666462 DOI: 10.1016/j.envpol.2023.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Microplastics were found to be the major pollutant across the globe. Plastic microbeads, like 0.5 mm, are very small and mainly used for exfoliation. The marine species cannot distinguish between their usual food and these microbeads. Microbeads have the potential to transfer up the food chain, which may lead to consumption by humans in the end. Activated carbon from inexpensive sources has greatly interested separation systems, especially in water treatment. In that view, carbon nanoparticles were produced, combined with polyvinylidene fluoride (PVDF) polymer, and used as a membrane to trap the microplastic particles. UV-Vis, FTIR, TEM, and powder X-ray diffraction (XRD) analysis confirmed the produced carbon nanoparticles. FT-RAMAN Spectroscopy studies, microbial viable cell count, and turbidity analysis followed the membrane preparation and post-treatment. The carbon nanoparticle fabricated nanofilm effectively eliminates the microbial count and microplastics and reduces the turbidity (0.13 NTU). This study confirms that the membrane effectively filters microplastics and other contaminants. Nowadays, nanofiltration technologies have been considered beneficial for eliminating microplastics to an efficiency of 95%. Further research is needed to determine a feasible low-cost, ecologically suitable, and effective solution to remove the microplastics in water.
Collapse
Affiliation(s)
- Prabhu Kamaraj
- PG & Research Department of Biotechnology, Srimad Andavan Arts Science College(Autonomous), Tiruvanaikoil, Tiruchirappalli, 620005, Tamil Nadu, India
| | - Vishnu Vardhan Sridhar
- PG & Research Department of Biotechnology, Srimad Andavan Arts Science College(Autonomous), Tiruvanaikoil, Tiruchirappalli, 620005, Tamil Nadu, India
| | - Siva Vijaykumar Tharumasivam
- Department of Biotechnology Engineering, Dhanalakshmi Srinivasan University, Samayapuram, Tiruchirappalli, 621112, Tamil Nadu, India
| | | | - Giridharan Bupesh
- Department of Forestry, Nagaland University (Central), Lumami, Nagaland, 798627, India.
| | - Nirmal Kumar Raju
- PG & Research Department of Physics, Srimad Andavan Arts & Science College (Autonomous), Tiruvanaikoil, Tiruchirappalli, 620005, Tamil Nadu, India
| | | | - Anima Nanda
- Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Chennai, India
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, 600073, Tamil Nadu, India
| |
Collapse
|
20
|
Thacharodi A, Meenatchi R, Hassan S, Hussain N, Bhat MA, Arockiaraj J, Ngo HH, Le QH, Pugazhendhi A. Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119433. [PMID: 39492398 DOI: 10.1016/j.jenvman.2023.119433] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Microplastics are small plastic pieces ranging in size from 1μ to <5 mm in diameter, are water-soluble, and can be either primary as they are initially created in small sizes or secondary as they develop due to plastic degradation. Approximately 360 million tons of plastic are produced globally every year, with only 7% recycled, leaving the majority of waste to accumulate in the environment and pose a serious threat in the form of microplastics. All ecosystems, particularly freshwater ecosystems, experience microplastic accumulation and are also prone to degrading processes. Degraded microplastics accumulate in many aquatic systems, contaminate them, and enter the food chain as a result of the excessive discharge of plastic trash annually from the domestic to the industrial sector. Due to their pervasiveness, these tiny plastic particles are constantly present in freshwater environments, which are essential to human life. In this sense, microplastic pollution is seen as a worldwide problem that has a detrimental impact on every component of the freshwater environment. Microplastics act as carriers for various toxic components such as additives and other hazardous substances from industrial and urbanized areas. These microplastic-contaminated effluents are ultimately transferred into water systems and directly ingested by organisms associated with a particular ecosystem. The microplastics components also pose an indirect threat to aquatic ecosystems by adsorbing surrounding water pollutants. This review mainly focuses on the sources of microplastics, the ecotoxicity of microplastics and the impact microplastics have on aquatic and marine life, management, and bioremediation of microplastics. Policies and strategies adopted by the Government to combat microplastic pollution are also discussed in this review.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Naseer Hussain
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Mansoor Ahmad Bhat
- Eskişehir Technical University, Faculty of Engineering, Department of Environmental Engineering, Eskişehir, 26555, Turkey
| | - Jesu Arockiaraj
- Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
21
|
Liang J, Abdullah ALB, Wang H, Liu G, Han M. Change in energy-consuming strategy, nucleolar metabolism and physical defense in Macrobrachium rosenbergii after acute and chronic polystyrene nanoparticles exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106711. [PMID: 37783050 DOI: 10.1016/j.aquatox.2023.106711] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
The COVID-19 pandemic has further intensified plastic pollution due to the escalated use of single-use gloves and masks, consequently leading to the widespread presence of microplastics (MPs) and nanoplastics (NPs) in major rivers and lakes worldwide. Macrobrachium rosenbergii has become an important experimental subject due to its ecological role and environmental sensitivity. In this study, we sought to comprehend the ramifications of NPs on the widely-distributed freshwater prawn, M rosenbergii, by conducting a detailed analysis of its responses to NPs after both 96 h and 30 days of exposure. The transcriptome analysis revealed 918 differentially expressed unigenes (DEGs) after 30 days of NPs exposure (356 upregulated, 562 downregulated) and 2376 DEGs after 96 h of NPs exposure (1541 upregulated, 835 downregulated). The results of DEGs expression indicated that acute NPs exposure enhanced carbohydrate transport and metabolism, fostering chitin and extracellular matrix processes. In contrast, chronic NPs exposure induced nucleolar stress in M. rosenbergii, impeding ribosome development and mRNA maturation while showing no significant changes in glucose metabolism. Our findings underscore the M. rosenbergii distinct coping mechanisms during acute and chronic NPs exposure, elucidating its vital adaptive strategies. These results contribute to our understanding of the ecological implications of NPs pollution and its impact on aquatic animals.
Collapse
Affiliation(s)
- Ji Liang
- School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | | | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Mingming Han
- Centre for marine and coastal studies, University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
22
|
Xu L, Chen Y, Feng A, Shi X, Feng Y, Yang Y, Wang Y, Wu Z, Zou Z, Ma W, He Y, Yang N, Feng J, Zhao Y. Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology. ENVIRONMENTAL RESEARCH 2023:116389. [PMID: 37302742 DOI: 10.1016/j.envres.2023.116389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) in farming soils can have a substantial impact on soil ecology and agricultural productivity, as well as affecting human health and the food chain cycle. As a result, it is vital to study MPs detection technologies that are rapid, efficient, and accurate in agriculture soils. This study investigated the classification and detection of MPs using hyperspectral imaging (HSI) technology and a machine learning methodology. To begin, the hyperspectral data was preprocessed using SG convolution smoothing and Z-score normalization. Second, the feature variables were extracted from the preprocessed spectral data using bootstrapping soft shrinkage, model adaptive space shrinkage, principal component analysis, isometric mapping (Isomap), genetic algorithm, successive projections algorithm (SPA), and uninformative variable elimination. Finally, three support vector machine (SVM), back propagation neural network (BPNN), and one-dimensional convolutional neural network (1D-CNN) models were developed to classify and detect three microplastic polymers: polyethylene, polypropylene, and polyvinyl chloride, as well as their combinations. According to the experimental results, the best approaches based on three models were Isomap-SVM, Isomap-BPNN, and SPA-1D-CNN. Among them, the accuracy, precision, recall and F1_score of Isomap-SVM were 0.9385, 0.9433, 0.9385 and 0.9388, respectively. The accuracy, precision, recall and F1_score of Isomap-BPNN were 0.9414, 0.9427, 0.9414 and 0.9414, respectively, while the accuracy, precision, recall and F1_score of SPA-1D-CNN were 0.9500, 0.9515, 0.9500 and 0.9500, respectively. When their classification accuracy was compared, SPA-1D-CNN had the best classification performance, with a classification accuracy of 0.9500. The findings of this study shown that the SPA-1D-CNN based on HSI technology can efficiently and accurately identify MPs in farmland soils, providing theoretical backing as well as technical means for real-time detection of MPs in farmland soils.
Collapse
Affiliation(s)
- Lijia Xu
- College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya'an, PR China
| | - Yanjun Chen
- College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya'an, PR China
| | - Ao Feng
- College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya'an, PR China
| | - Xiaoshi Shi
- College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya'an, PR China; College of Resources, Sichuan Agriculture University, Chendu, PR China
| | - Yanqi Feng
- College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya'an, PR China
| | - Yuping Yang
- College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya'an, PR China
| | - Yuchao Wang
- College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya'an, PR China
| | - Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya'an, PR China
| | - Zhiyong Zou
- College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya'an, PR China
| | - Wei Ma
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, PR China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, PR China
| | - Ning Yang
- School of Electical and Information Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jing Feng
- China Telecom Corporation Sichuan Branch, Chengdu, PR China
| | - Yongpeng Zhao
- College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya'an, PR China.
| |
Collapse
|
23
|
Mao Y, Fan S, Li X, Shi J, Wang M, Niu Z, Chen G. Trash to treasure: electrocatalytic upcycling of polyethylene terephthalate (PET) microplastic to value-added products by Mn 0.1Ni 0.9Co 2O 4-δ RSFs spinel. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131743. [PMID: 37270957 DOI: 10.1016/j.jhazmat.2023.131743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Microplastic pollution has emerged as a pressing environmental issue of global concern due to its detrimental effects on the environment and ecology. Restricted to their characters of complex composition, it is a great challenge to propose a more cost-effective approach to achieve highly selective conversion of microplastic into add-value products. Here we demonstrate an upcycling strategy for converting PET microplastics into added-value chemicals (formate, terephthalic acid and K2SO4). PET is initially hydrolyzed in KOH solution to produce terephthalic acid and ethylene glycol, which is subsequently used as an electrolyte to produce formate at the anode. Meanwhile, the cathode undergoes hydrogen evolution reaction to produce H2. Preliminary techno-economic analysis suggests that this strategy has certain economic feasibility and a novel Mn0.1Ni0.9Co2O4-δ rod-shaped fiber (RSFs) catalyst we synthesized can achieve high Faradaic efficiency (> 95%) at 1.42 V vs. RHE with optimistic formate productivity. The high catalytic performance can be attributed to the doping of Mn changing the electronic structure and reducing the metal-oxygen covalency of NiCo2O4, reducing the lattice oxygen oxidation in spinel oxide OER electrocatalysts. This work not only put forward an electrocatalytic strategy for PET microplastic upcycling but also guides the design of electrocatalysts with excellent performance.
Collapse
Affiliation(s)
- Yan Mao
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jugong Shi
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mufan Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhaodong Niu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guohua Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
24
|
Nguyen MK, Lin C, Quang Hung NT, Hoang HG, Vo DVN, Tran HT. Investigation of ecological risk of microplastics in peatland areas: A case study in Vietnam. ENVIRONMENTAL RESEARCH 2023; 220:115190. [PMID: 36587718 DOI: 10.1016/j.envres.2022.115190] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
This study aims to investigate the distribution and ecological risk assessment of microplastics (MPs) in peatland areas located in Long An province, Vietnam's Mekong Delta. In general, polyvinyl chloride (60.7%), polyethylene (25.8%), and polypropylene (11.9%) were the most abundant polymers determined in the thirty sediment samples. The hazard index (HI) remarked a level of III for MPs contamination in Tan Thanh and Thanh Hoa districts. The pollution load index (PLI) and potential ecological risk index (RI) indicated that the contamination risk of MPs polymer types in the studied sites is relatively high. According to PLI values, MPs levels of peatlands in Tan Thanh and Thanh Hoa are high and moderate, respectively, while the peatland sediments in Duc Hue district are less contaminated. Furthermore, ecological risk indexes in the peatland areas were relatively high, with PLIoverall (level III); HIoverall (level V), and RIoverall (extreme danger). Hence, this study proposed a SWOT framework for challenges of MPs pollution in order to manage peatlands appropriately and minimize ecological risks. As a result, several practical strategies and appropriate approaches have been recommended to reduce microplastics towards a circular economy. These findings provide the initial quantitative assessment insights into hazard levels and ecological impacts of MPs in Vietnam's Mekong Delta peatlands.
Collapse
Affiliation(s)
- Minh Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
25
|
Li Y, Zhang C, Shen C, Jiang G, Guan B. Enhanced ozonation of polystyrene nanoplastics in water with CeOx@MnOx catalyst. ENVIRONMENTAL RESEARCH 2023; 220:115220. [PMID: 36608764 DOI: 10.1016/j.envres.2023.115220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The nanoplastics released into the environment pose a critical threat to creatures, and thus it is necessary to remove them. However, their natural decomposition usually takes years or even decades, which raises an imminent demand for an efficient removal technology. Herein we report a core-shell CeOx@MnOx catalyst for enhancing ozonation of polystyrene nanoplastics in water. Ozonation achieves 31.67% molecular weight removal of polystyrene nanoplastics in the first 10 min reaction, which is increased to 51.67% in catalytic ozonation by MnOx and further improved to 73.33% in catalytic ozonation via CeOx@MnOx. The remarkable thing is the CeOx@MnOx could achieve almost 96.70% molecular weight removal after 50 min reaction. The specific catalytic mechanism is ozone decomposes into reactive oxygen radicals (•OH, •O2- and 1O2) after capturing electrons from MnOx, improving the polystyrene nanoplastics removal. Meanwhile, the Mn averaged valence state increases, making it harder to donate electrons to ozone. This can be alleviated by encapsulating the CeOx core in the MnOx, enabling electrons replenishment from the CeOx core to the MnOx shell, which is verified by the experiment and density functional theory calculations. The repeated experiment demonstrates the CeOx@MnOx possesses excellent stability, maintaining 95.25-96.70% removal efficiency of polystyrene nanoplastics. This research provides a possibility for the efficient removal of nanoplastics in water.
Collapse
Affiliation(s)
- Yu Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Chuanming Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chunyang Shen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|