1
|
Bai B, Wang L, Guan F, Pi H, Wang A, Zhai L. Maturity phase is crucial for removing antibiotic resistance genes during composting: novel insights into dissolved organic matter-microbial symbiosis system. BIORESOURCE TECHNOLOGY 2025; 431:132607. [PMID: 40311709 DOI: 10.1016/j.biortech.2025.132607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Composting is widely regarded as an effective method for reducing antibiotic resistance genes (ARGs) in livestock and poultry manure. However, the critical mechanisms of ARGs in different composting phase are still unclear. In this study, normal composting and two types of rapid composting (without mature phase) were used to analyze the removal of ARGs and the succession of dissolved organic matter (DOM). Compared to normal composting, rapid composting reactivated tetracyclines, sulfonamide, and quinolones resistance genes during the maturation phase and reduced the total ARGs removal rates by 45.58 %-57.87 %. Humus-like components could inhibit the proliferation of ARGs, and the enrichment of protein-like components increased abundances of Pusillimonas, Persicitalea, and Pseudomonas, indirectly reducing the removal. This study is the first to demonstrate the contribution of DOM and microbial community to ARGs removal, emphasizing the importance of the maturation phase for ARGs elimination. This research provides guidance for producing safe compost products.
Collapse
Affiliation(s)
- Bing Bai
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lixia Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Fachun Guan
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Houan Pi
- Jilin University, Changchun 130015, China
| | - Anxun Wang
- Jilin University, Changchun 130015, China
| | - Limei Zhai
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Li C, Zhu YX, Shen XX, Gao Y, Xu M, Chen MK, An MY. Exploring the distribution and transmission mechanism of ARGs in crab aquaculture ponds and ditches using metagenomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126209. [PMID: 40210157 DOI: 10.1016/j.envpol.2025.126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Aquaculture provides notable economic benefits; however, the excessive use of antibiotics has resulted in the production and spread of antibiotic resistance genes (ARGs). The intricate pollution dynamics in aquaculture areas complicate the comprehension of the distribution and transmission of ARGs in aquaculture systems. Using metagenomic sequencing technology, this study used eight ponds and four ditches in a large crab aquaculture area in Taizhou City, where Proteobacteria (61.58 %) and Acidobacteria (6.04 %) were identified as the dominant phyla and Thiobacillus (1.84 %) and Lysobacter (0.99 %) were the dominant genera. Network and linear discriminant analysis effect size (LEfse) analyses showed that Proteobacteria and Lysobacter were the main host phyla of ARGs, and Lysobacter, which are key host bacteria in ponds, played an important role in determining the abundance of ARGs in ponds. Co-occurrence network analysis (spearman r > 0.7, p < 0.01) revealed that prophages can dominate the spread of ARGs by carrying several ARG subtypes (rsmA, OXA-21, THIN-B and lnuF). Analysis of variance demonstrated that functions related to the horizontal gene transfer (HGT) of ARGs, such as EPS synthesis (lptF), oxidative stress (gor and ompR), ATP synthesis (lapB and vcaM), and cell membrane permeability (yajC and gspJ), were significantly expressed in the pond (p < 0.05), confirming that ARGs had stronger transmission potential in the pond. The Mantel test and partial least squares path modeling (PLS-PM) analysis showed that ARGs exist in bacteria and spread among them through mobile genetic elements and HGT. This study revealed the distribution and transmission mechanism of ARGs in the ponds and ditches of a crab aquaculture system and provided a theoretical basis for controlling the spread of ARGs in crab aquaculture in this area.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yun-Xiang Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao-Xiao Shen
- Institute of Water Science and Technology, Hohai University, Nanjing, 210098, China
| | - Yuan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Meng-Kai Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Ming-Yang An
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
3
|
Chen X, Zhan M, Shao H, Ma S, Liu L, Chen Z, Fang C. Mechanism of reducing antibiotic resistance genes by nano-selenium during composting: insight into host microorganisms and a two-component system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125704. [PMID: 40378797 DOI: 10.1016/j.jenvman.2025.125704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/29/2025] [Accepted: 05/04/2025] [Indexed: 05/19/2025]
Abstract
Nano-selenium (nano-Se) makes up for the low biological activity and high toxicity of inorganic selenium, and is widely used as a novel Se fertilizer in agriculture. This study investigated the effects of different concentrations of nano-Se on Antibiotic resistance genes (ARGs) and host microorganisms during aerobic composting of cow manure. The results showed that high-concentration nano-Se had excellent effects on ARG removal, effectively inhibiting the dominant ARG subtypes such as aada and tetA(48). Transposase was the mobile genetic element (MGE) that deserves the most attention, which maintained a relatively high abundance in each sample. Antibiotic efflux-transposase had the highest abundance of all ARG resistance mechanism-MGE types. At the end of composting, antibiotic efflux-transposase abundance in group Se_H decreased by 7.14 %, 21.96 %, and 54.92 %, respectively, compared with groups CK, Se_L, and Se_M. High-concentration nano-Se inhibited the activity of transposase to reduce the risk of horizontal transmission of antibiotic efflux ARGs. Proteobacteria and Actinobacteria were the main ARG host microorganisms, and Actinobacteria had a lower tolerance threshold for nano-Se. Network analysis and Mantel testing demonstrated that high-concentration nano-Se could weaken the association between host microorganisms and the ARG subtypes. Structural equation models showed that high-concentration nano-Se regulated the transfer of ARGs primarily by stimulating signal transduction in host microorganisms. Thus, the addition of proper concentrations of nano-Se during aerobic composting of cow manure was effective in reducing ARG exposure risk by regulating transposase and host microorganisms.
Collapse
Affiliation(s)
- Xi Chen
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China
| | - Muqing Zhan
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China
| | - Haochen Shao
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuangshuang Ma
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Li Liu
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China
| | - Zuyong Chen
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China
| | - Chen Fang
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China.
| |
Collapse
|
4
|
Yin D, Wang K, Wu C, Wang Z, Gu Y, Liu P, You S. Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. ENVIRONMENTAL RESEARCH 2025; 269:120811. [PMID: 39798649 DOI: 10.1016/j.envres.2025.120811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost.
Collapse
Affiliation(s)
- Dan Yin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chuandong Wu
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yue Gu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Peng Liu
- Harbin Institute of Technology National Engineering Research Center of Urban Water Resources Co., Ltd, Harbin, 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen, 518021, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Mussa S, Farhan M, Ahmad S, Zahra K, Kanwal A, Khan QF, Afzaal M, Wahid A, Sarker PK, El-Sheikh MA, Ali S. Exploring the utility of different bulking agents for speeding up the composting process of household kitchen waste. Sci Rep 2025; 15:2488. [PMID: 39833327 PMCID: PMC11747255 DOI: 10.1038/s41598-025-85433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Household kitchen waste (HKW) is produced in large quantity and its management is difficult due to high moisture content and complex organic matter. Aerobic composting of HKW is an easy, efficient, cost-effective and eco-friendly method. This study is designed to achieve a zero-waste concept and to convert HKW. We optimized the type and size of three different bulking agents to speed up the composting process. The tested bulking agents were fallen leaves, sawdust and fly ash. The results showed a higher and longer thermophilic phase (55oC) for 11 days in C2. Higher moisture content (69%) and higher organic matter degradation (38.4%) were also observed in C2. The pH range in all compost treatments was 7-8.5, Electrical conductivity range was 1.8-3.55 mS/cm, C/N ratio range was 15.4-18.1, water holding capacity range was 3.25-4.3 g water/g dry sample, total potassium range was 1.52-1.61%, total phosphorous range was 0.83-1.14%. The highest germination index (119.1%) was also obtained in C2. The highest chili height (16.7 cm), greater number of leaves (20), greater shoot fresh weight (4.75 g) and root fresh weight (1.2 g) was obtained in the presence of C2. Similarly, greater water WHC (2.8 g water/g DW), higher porosity (55.49%) and higher aggregate stability (54.14%) of soil was also obtained by C2. This research effectively reduced the maturation time to 32 days and converted kitchen waste into compost (resource). This is a very practical idea for home composting and kitchen gardening to combat food security issues in developing countries.
Collapse
Affiliation(s)
- Sania Mussa
- Sustainable Development Study Center, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Farhan
- Sustainable Development Study Center, Government College University Lahore, Lahore, Pakistan.
| | - Shoaib Ahmad
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Khadija Zahra
- Sustainable Development Study Center, Government College University Lahore, Lahore, Pakistan
| | - Amina Kanwal
- Department of Botany, Government College Women University Sialkot, Punjab, Pakistan
| | - Qaiser Farid Khan
- Department of Microbiology, Ikam ul Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Muhammad Afzaal
- Sustainable Development Study Center, Government College University Lahore, Lahore, Pakistan
| | - Abdul Wahid
- Department of Environmental Science, Bahu din Zakaria University, Multan, Pakistan
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
6
|
Cui L, Chen J, Yan Y, Fei Q, Ma Y, Wang Q. Development of oriented microbial consortium-based compound enzyme strengthens food waste hydrolysis and antibiotic resistance genes removal: Deciphering of performance, metabolic pathways and microbial communities. ENVIRONMENTAL RESEARCH 2024; 262:119973. [PMID: 39260723 DOI: 10.1016/j.envres.2024.119973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Enzymatic hydrolysis has been considered as an eco-friendly pretreatment method for enhancing bioconversion process of food waste (FW). However, existing commercial enzymes and microbial monomer-based compound enzymes (MME) have the issues of uneven distribution of enzymatic activity and low matching degree with the components of FW, leading to low efficiency with enzymatic hydrolysis and removal of antibiotic resistance genes (ARGs). This study used FW as the substrate, under the co-culture system, produced a microbial consortium-based compound enzymes (MCE) with oriented and well-matching degree for FW hydrolysis and ARGs removal, of which the performance, metabolic pathways and microbial communities were also investigated in depth. Results showed that the best performance for ARGs was achieved by the MCE prepared by mixing 1:5 of Aspergillus oryzae and Aspergillus niger after 12 days fermentation. The highest soluble chemical oxygen demand (SCOD) concentration and ARGs removal could respectively reach 83.90 ± 1.67 g/L and 45.95% after MCE pretreatment. The analysis of metabolic pathways revealed that 1:5 MCE pretreatment strengthened the catalytic activity of carbohydrate-active enzymes, increased the abundances of genes involved in cellulose and starch degradation, polysaccharide synthesis, ATP binding cassette (ABC) transporters and global regulation, while decreased the abundances of genes involved in mating pair formation system, two-component regulatory systems and quorum sensing, thereby enhanced FW hydrolysis and restrained ARGs dissemination. Microbial community analysis further indicated that the 1:5 MCE pretreatment promoted growth, metabolism and richness of functional microbes, while inhibited the host microbes of ARGs. It is expected that this study can provide useful insights into understanding the fate of ARGs in food waste during MCE pretreatment process.
Collapse
Affiliation(s)
- Lihui Cui
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxin Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yiming Yan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, X''an, 710049, China
| | - Yingqun Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, X''an, 710049, China.
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
7
|
Lalthlansanga C, Pottipati S, Mohanty B, Kalamdhad AS. Role of cow dung and sawdust during the bioconversion of swine waste through the rotary drum composting process. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1205. [PMID: 39551902 DOI: 10.1007/s10661-024-13395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
The demand for strategic and environment-friendly swine waste (SW) management is critical in the northeastern states of India, which account for 46.7% of the country's total swine population. This paper examines nutrient-rich compost production from SW with minimal negative environmental fallout, using cow dung microbiological inoculum and sawdust bulking agent for expeditious rotary drum composting. Aerobic biodegradation conducted in a rotary drum composter (RDC), raised the feedstock temperature to > 40 °C in just 24 h, which stimulated thermophilic decomposition. The thermophilic phase remained for 16 days in the cow dung-amended 10:1:1 (swine waste:cow dung:sawdust) trial (RDC1) versus 7 days for the sawdust-amended 10:1 (swine waste:sawdust) trial (RDC2). After 20 days, the RDC1 product exhibited superior nutritional characteristics, with a total nitrogen content of 2.52%, a significantly reduced coliform population, and an overall weight loss of 25%. These findings highlight that incorporating cow dung (10% w/w) into SW and bulking agents through RDC produces high-quality compost in just 20 days. Thus, the livestock industry benefits significantly from this laboratory-scale method of improved waste management by producing valuable bioproducts via RDC.
Collapse
Affiliation(s)
- C Lalthlansanga
- Department of Civil Engineering, National Institute of Technology, Mizoram, Aizawl, 796012, Mizoram, India.
- State Institute of Rural Development & Panchayati Raj, Aizawl, 796015, Mizoram, India.
| | - Suryateja Pottipati
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Department of Civil Engineering, National Institute of Technology Goa, South Goa District, Goa, 403703, India
| | - Bijayananda Mohanty
- Department of Civil Engineering, National Institute of Technology, Mizoram, Aizawl, 796012, Mizoram, India
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
8
|
Wang X, Chen Q, Pang R, Zhang C, Huang G, Han Z, Su Y. Exposure modes determined the effects of nanomaterials on antibiotic resistance genes: The different roles of oxidative stress and quorum sensing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124772. [PMID: 39168438 DOI: 10.1016/j.envpol.2024.124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The effects of co-occurrent pollutants on antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs) have raised attentions. However, how the different realistic exposure scenarios determining the effects of nanomaterials (NMs) on ARGs, was still unknown. Herein, the effects of NMs on ARGs under two realistic scenarios was investigated by short-term and long-term exposure modes. The presence of NMs with two different exposure modes could both promote the dissemination of ARGs, and the results were dose-, type- and duration-dependent. Compared to short-term exposure, the long-term exposure increased the abundances of ARGs with a greater extent except nano-ZnO. The long-term exposure increased the overall abundances of target ARGs by 2.9%-20.4%, while shot-term exposure caused the 3.4%-10.5% increment. The mechanisms of ARGs fates driven by NMs exposure were further investigated from the levels of microbial community shift, intracellular oxidative stress, and gene abundance. The variations of several potential bacterial hosts did not contribute to the difference in the ARGs transmission with different exposure modes because NMs types played more vital roles in the shift of microbial community compared to the exposure modes. For the short-term exposure, NMs were capable of triggering the QS by upregulating relevant genes, and further activated the production of surfactin and increased membrane permeability, resulting in the facilitation of ARGs transfer. However, NMs under long-term exposure scenario preferentially stimulated oxidative stress by generating more ROS, which then enhanced ARGs dissemination. Therefore, the exposure mode of NMs was one of the pivotal factors determining the ARGs fates by different triggering mechanisms. This study highlighted the importance of exposure scenario of co-occurrent pollutants on ARGs spread, which will benefit the comprehensive understanding of the actual environmental fates of ARGs.
Collapse
Affiliation(s)
- Xueting Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Qirui Chen
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Congyan Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Guangchen Huang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
9
|
Yang Y, Wang J, Yin J, Cui Z, Li G, Liu G, Jiang J, Yuan J. Risk level and removal performance of antibiotic resistance genes and bacterial pathogens in static composting with different temperatures. BIORESOURCE TECHNOLOGY 2024; 412:131420. [PMID: 39233181 DOI: 10.1016/j.biortech.2024.131420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The effect of different levels of temperature on resistance genes is not clear in mesophilic static composting (<50 °C). This study conducted livestock manure composting with different temperature gradients from 20 to 50 °C, it was found that the reduction rates of risk rank-I antibiotic resistance genes (from 3 % to 66 %), metal resistance genes (from -50 % to 76 %) and bacterial pathogens (from 72 % to 91 %) all increased significantly with increasing temperature from 20 to 50°C. The vulnerability of bacterial communities increased significantly, and the assembly process of bacterial communities changed from deterministic to stochastic with the increase of composting temperature. Higher temperature could accelerate the removal of thermolabile resistance genes hosts or pathogenic hosts carrying mobile genetic elements by directly or indirectly affecting organic acids content. Therefore, for soil safety, the temperature of the manure recycling process should be increased as much as possible.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jie Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Zhongliang Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoliang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jinhui Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Liu Y, Zhang Q, Shi Y, Hao Z, Zhan X. Anthropogenic activities significantly interfered distribution and co-occurrence patterns of antibiotic resistance genes in a small rural watershed in Southwest China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117118. [PMID: 39357373 DOI: 10.1016/j.ecoenv.2024.117118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
The prevalence and spread of antibiotic resistance genes (ARGs) have been a significant concern for global public health in recent years. Small rural watersheds are the smallest units of factor mobility for agricultural production in China, and their ARG profiles are the best scale of the contamination status, but the mapping and the distribution and diffusion of ARGs in the water and soil of small rural watersheds are inadequate. In this study, based on microbial metagenomics, we invested prevalence maps of 209 ARGs corresponding to typical commonly used antibiotics (including multidrug, aminoglycoside, macrolide-lincosamide-streptogramin B (MLSB), and β-Lactamase) in water and soil in different agricultural types, as well as within water-soil interfaces in small rural watersheds in Southwest China. The results revealed that the most abundant ARGs in water and soil were consistent, but different in subtypes, and anthropogenic activities affect the transport of ARGs between water and soils. Livestock wastewater discharges influenced the diversity and abundance of ARGs in water, while in soil it is planting type and fertilizer management, and thus interfered with the co-occurrence patterns between bacteria and ARGs. Co-occurrence analysis revealed that Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant ARG hosts in water and soil, but soil exhibited a more intricate ARG-bacterial association. Overall, this study provides integrated profiles of ARGs in water and soil influenced by anthropogenic activities at the small watershed scale in a typical rural area and provides a baseline for comparisons of ARGs.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingwen Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yulong Shi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuo Hao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoying Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Wei H, You A, Wang D, Zhang A. Plant-derived essential oil contributes to the reduction of multidrug resistance genes in the sludge composting process. ENVIRONMENT INTERNATIONAL 2024; 190:108854. [PMID: 38950496 DOI: 10.1016/j.envint.2024.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Multidrug-resistant bacteria and multi-resistance genes in sludge have become a serious issue for public health. It is imperative to develop feasible and environmentally friendly methods of sludge composting to alleviate multidrug resistance genes. Plant-derived essential oil is an effective natural and eco-friendly antibacterial, which has great utilization in inhibiting pathogens in the agricultural industry. Nevertheless, the application of plant-derived essential oil to control pathogenic bacteria and antibiotic resistance in composting has not been reported. This study conducted a composting system by adding plant-derived essential oil i.e., oregano essential oil (OEO), to sludge composting. The findings indicated that multidrug resistance genes and priority pathogens (critical, high, and medium categories) were reduced by (17.0 ± 2.2)% and (26.5 ± 3.0)% in the addition of OEO (OH treatment) compared to control. Besides, the OH treatment changed the bacterial community and enhanced the gene sequences related to carbohydrate metabolism in compost microorganisms. Mantel test and variation partitioning analysis revealed that the target virulence factors (VFs), target mobile genetic elements (MGEs), and priority pathogens were the most important factors affecting multidrug resistance in composting. The OH treatment could significantly inhibit the target VFs, target MGEs, and priority pathogens, which were helpful for the suppression and elimination of multidrug resistance genes. These findings provide new insights into the regulation of multidrug resistance genes during sludge composting and a novel way to diminish the environmental risk of antibiotic resistance.
Collapse
Affiliation(s)
- Huawei Wei
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China.
| | - Anbo You
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New District 561113, Guizhou, PR China.
| |
Collapse
|
12
|
Xu R, Zhang Y, Li Y, Song J, Liang Y, Chen F, Wei X, Li C, Liu W, Rensing C, Wang Y, Chen Y. Linking bacterial life strategies with the distribution pattern of antibiotic resistance genes in soil aggregates after straw addition. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134355. [PMID: 38643583 DOI: 10.1016/j.jhazmat.2024.134355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG.
Collapse
Affiliation(s)
- Risheng Xu
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China
| | - Yuhan Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China
| | - Yue Li
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China
| | - Jianxiao Song
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China
| | - Yanru Liang
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China
| | - Xiaomeng Wei
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, PR China
| | - Cui Li
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China
| | - Wenbo Liu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China.
| | - Yanlong Chen
- School of Ecology and Environment, Northwestern Polytechnical University, 710129 Xi'an, PR China.
| |
Collapse
|
13
|
Wang B, Chen W, Sa C, Gao X, Chang S, Wei Y, Li J, Shi X, Zhang L, Zhang C, Li W, Sun H. Dynamics of antibiotic resistance genes and the association with bacterial community during pig manure composting with chitin and glucosamine addition. Front Microbiol 2024; 15:1384577. [PMID: 38841060 PMCID: PMC11150687 DOI: 10.3389/fmicb.2024.1384577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
In modern ecological systems, the overuse and misuse of antibiotics have escalated the prevalence of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), positioning them as emerging environmental contaminants. Notably, composting serves as a sustainable method to recycle agricultural waste into nutrient-rich fertilizer while potentially reducing ARGs and MGEs. This study conducted a 47-day composting experiment using pig manure and corn straw, supplemented with chitin and N-Acetyl-D-glucosamine, to explore the impact of these additives on the dynamics of ARGs and MGEs, and to unravel the interplay between these genetic elements and microbial communities in pig manure composting. Results showed that adding 5% chitin into composting significantly postponed thermophilic phase, yet enhanced the removal efficiency of total ARGs and MGEs by over 20% compared to the control. Additionally, the addition of N-Acetyl-D-glucosamine significantly increased the abundance of tetracycline-resistant and sulfonamide-resistant genes, as well as MGEs. High-throughput sequencing revealed that N-Acetyl-D-glucosamine enhanced bacterial α-diversity, providing diverse hosts for ARGs and MGEs. Resistance mechanisms, predominantly efflux pumps and antibiotic deactivation, played a pivotal role in shaping the resistome of composting process. Co-occurrence network analysis identified the key bacterial phyla Proteobacteria, Firmicutes, Gemmatimonadota, and Myxococcota in ARGs and MGEs transformation and dissemination. Redundancy analysis indicated that physicochemical factors, particularly the carbon-to-nitrogen ratio emerged as critical variables influencing ARGs and MGEs. The findings lay a foundation for the developing microbial regulation method to reduce the risks of ARGs in animal manure composts.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot, China
| | - Wenjie Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Chula Sa
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot, China
| | - Xin Gao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Su Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, China
| | | | - Chunhua Zhang
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot, China
| | - Wenting Li
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot, China
| | - Haizhou Sun
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot, China
| |
Collapse
|
14
|
Zhao K, Li C, Li F. Research progress on the origin, fate, impacts and harm of microplastics and antibiotic resistance genes in wastewater treatment plants. Sci Rep 2024; 14:9719. [PMID: 38678134 PMCID: PMC11055955 DOI: 10.1038/s41598-024-60458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
Previous studies reported microplastics (MPs), antibiotics, and antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). There is still a lack of research progress on the origin, fate, impact and hazards of MPs and ARGs in WWTPs. This paper fills a gap in this regard. In our search, we used "microplastics", "antibiotic resistance genes", and "wastewater treatment plant" as topic terms in Web of Science, checking the returned results for relevance by examining paper titles and abstracts. This study mainly explores the following points: (1) the origins and fate of MPs, antibiotics and ARGs in WWTPs; (2) the mechanisms of action of MPs, antibiotics and ARGs in sludge biochemical pools; (3) the impacts of MPs in WWTPs and the spread of ARGs; (4) and the harm inflicted by MPs and ARGs on the environment and human body. Contaminants in sewage sludge such as MPs, ARGs, and antibiotic-resistant bacteria enter the soil and water. Contaminants can travel through the food chain and thus reach humans, leading to increased illness, hospitalization, and even mortality. This study will enhance our understanding of the mechanisms of action among MPs, antibiotics, ARGs, and the harm they inflict on the human body.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Chengzhi Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fengxiang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China.
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
15
|
Zahra K, Farhan M, Kanwal A, Sharif F, Hayyat MU, Shahzad L, Ghafoor GZ. Investigating the role of bulking agents in compost maturity. Sci Rep 2023; 13:16003. [PMID: 37749113 PMCID: PMC10520060 DOI: 10.1038/s41598-023-41891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
Kitchen waste is increasing globally, similarly in Pakistan bulk of municipal solid waste comprises of kitchen waste specifically, tea waste. Composting of kitchen waste is one of the promising ways to convert waste into useful product, resulting into zero waste. This study is aimed to convert waste (kitchen waste) in to a resource (compost) using bulking agents (tea waste and biochar) for reducing maturity time. Secondly, compost application on Solanum lycopersicum (tomato) was also tested. Four compost treatments were designed under aerobic composting conditions for 30 days. Tea waste and biochar have accelerated the maturity rate and produced a nutrient rich compost. Final compost had Electrical Conductivity of 2mS/cm, Carbon Nitrogen ration of 15, 54% of organic matter, 15% of moisture content, 48% of cellulose content, and 28% of Lignin content. With the use of Co-compost the Solanum lycopersicum showed 133% germination index, 100% germination, 235% Munoo-Liisa Vitality Index and 1238% seed vigor index. Co-compost also improved the soil total nitrogen by 1.4%, total phosphorous by 2%, total potassium by 2.1% and bulk density by 2.6 gcm-3. This study successfully used tea waste and biochar as bulking agents to reduce maturation time to 30 days. Tea waste and biochar enhanced the organic matter degradation, lignocellulose degradation, water holding capacity, porosity, seed's vigor, germination index. This research can be helpful in developing home composting and home gardening to combat solid waste management and food security issue in developing countries.
Collapse
Affiliation(s)
- Khadija Zahra
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Muhammad Farhan
- Sustainable Development Study Center, Government College University, Lahore, Pakistan.
| | - Amina Kanwal
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Faiza Sharif
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Muhammad Umar Hayyat
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Laila Shahzad
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Gul Zareen Ghafoor
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| |
Collapse
|
16
|
Xu M, Sun H, Chen E, Yang M, Wu C, Sun X, Wang Q. From waste to wealth: Innovations in organic solid waste composting. ENVIRONMENTAL RESEARCH 2023; 229:115977. [PMID: 37100364 DOI: 10.1016/j.envres.2023.115977] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
Organic solid waste (OSW) is not only a major source of environmental contamination, but also a vast store of useful materials due to its high concentration of biodegradable components that can be recycled. Composting has been proposed as an effective strategy for recycling OSW back into the soil in light of the necessity of a sustainable and circular economy. In addition, unconventional composting methods such as membrane-covered aerobic composting and vermicomposting have been reported more effective than traditional composting in improving soil biodiversity and promoting plant growth. This review investigates the current advancements and potential trends of using widely available OSW to produce fertilizers. At the same time, this review highlights the crucial role of additives such as microbial agents and biochar in the control of harmful substances in composting. Composting of OSW should include a complete strategy and a methodical way of thinking that can allow product development and decision optimization through interdisciplinary integration and data-driven methodologies. Future research will likely concentrate on the potential in controlling emerging pollutants, evolution of microbial communities, biochemical composition conversion, and the micro properties of different gases and membranes. Additionally, screening of functional bacteria with stable performance and exploration of advanced analytical methods for compost products are important for understanding the intrinsic mechanisms of pollutant degradation.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Enmiao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|