1
|
Wang Q, Cui L, Zhang Y, Jia B, Wang L, Zhao T, Xu X, Zhou L. Ecological risks of a biopesticide from marine-derived amino-oligosaccharides in agriculture: Food chain effects on non-target organisms Frankliniella occidentalis and its natural predator Neoseiulus barkeri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:118015. [PMID: 40056747 DOI: 10.1016/j.ecoenv.2025.118015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
A biopesticide from marine-derived amino-oligosaccharides (AO) are extensively utilized in China, yet there is a lack of scientific literature on their potential ecological risks when transmitted through the food chain to Neoseiulus barkeri, a natural predator of Frankliniella occidentalis. In this study, we conducted a comprehensive investigation into the food chain effects of AO on both F. occidentalis and N. barkeri. Our findings indicate that AO-treated cucumber leaves facilitated the population growth of F. occidentalis but indirectly suppressed the fecundity of N. barkeri which fed on the first instar nymphs of F. occidentalis. Besides, F. occidentalis that ingested AO-treated cucumber leaves exhibited elevated levels of total protein and defense enzymes, including catalase (CAT) and peroxidase (POD), whereas the detoxification enzymes activity, such as carboxylesterase (CarE) and cytochrome P450 monooxygenase (P450), was diminished. Conversely, N. barkeri exhibited decreased levels of the defense enzymes superoxide dismutase (SOD) and POD, coupled with an elevated CarE activity, because of AO food chain transmission. In conclusion, the food chain effects of AO on non-target organisms F. occidentalis and N. barkeri may involve the modulation of defense and detoxification enzyme activities, leading to varying fitness costs. These findings provide critical insights for agricultural pest management strategies, highlighting the necessity of evaluating the effects of AO on non-target organisms within ecosystems, especially beneficial insects, during its application.
Collapse
Affiliation(s)
- Qinqin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| | - Libo Cui
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yannan Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Life Sciences, Mianyang Teachers' College, Mianyang 621006, China
| | - Bohai Jia
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Li Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Xuenong Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
2
|
Luo ZY, Gao LP, Li WJ, Chen JH, Ali MY, Zhang F, Li FQ, Wang XP, Zhang JP. Assessing the lethal effects of pesticide residue exposure on beneficial parasitoids and their host, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:242-252. [PMID: 39774915 DOI: 10.1093/jee/toae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Chemical control is currently the main strategy for managing brown marmorated stink bug, Halyomorpha halys (Stål). However, chemical pesticides can harm nontarget species, including natural enemies of H. halys. Pesticides with high toxicity to H. halys and low toxicity to its parasitoids need to be identified to support H. halys management. This is not only for natural biological control but also for preemptive classical biological control of H. halys by parasitoids. Here, we assessed the contact toxicity of residues of eight insecticides against H. halys and three of its main parasitoid species (Anastatus japonicus Ashmead (Hymenoptera: Eupelmidae), Trissolcus japonicus Ashmead (Hymenoptera: Scelionidae), Trissolcus cultratus Mayr (Hymenoptera: Scelionidae)). This study aims to provide valuable insights for preemptive classical biological control of H. halys using these parasitoids. Our results showed that A. japonicus exhibited higher tolerance to the tested pesticides, while T. japonicus was the most sensitive species. Among the pesticides, chlorantraniliprole had the lowest overall impact on all three parasitoid species. Additionally, acetamiprid, azadirachtin, and rotenone were found to be harmless to A. japonicus. Acetamiprid, however, was slightly harmful to T. cultratus. The remaining pesticides showed moderate to significant harmful effects on the parasitoids. For H. halys adults and fifth instars, the pesticides tested caused no mortality within the 24 h exposure. However, young nymphs were susceptible to the tested pesticides. Fenpropathrin had the highest toxicity to H. halys, killing 83.3%, 52.8%, and 19.4% of second, third, and fourth instars in a 24 h exposure. Fenpropathrin, acetamiprid, cyfluthrin, azadirachtin, and dinotefuran were all slightly harmful to the first instar nymphs. The other pesticides were harmless to H. halys in a 24 h exposure. Halyomorpha halys mortality increased with the contact time with the residue. Mortality of fourth and fifth instars of H. halys was >70% for fenpropathrin, cyfluthrin, dinotefuran, abamectin-aminomethyl, and acetamiprid if exposure continued for 7 d. Acetamiprid was effective in controlling H. halys nymphs but exhibited varying levels of toxicity towards the three tested parasitoid species, depending on the residue age and exposure time. Azadirachtin showed lower overall toxicity to beneficial insects, suggesting that these materials could be used to manage H. halys while minimizing harm to key beneficial species.
Collapse
Affiliation(s)
- Zheng-Yu Luo
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Ping Gao
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen-Jing Li
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ju-Hong Chen
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Yasir Ali
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Zhang
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng-Qi Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang-Ping Wang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jin-Ping Zhang
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Silva APN, Andrade ES, Nascimento VL, Haddi K. Thermal modulation of insecticide-induced hormetic and oxidative responses in insect pests. CHEMOSPHERE 2025; 370:143920. [PMID: 39657854 DOI: 10.1016/j.chemosphere.2024.143920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Environmental global changes are dramatically affecting agroecosystems. Insects have been shown to present various responses to multi-stress conditions (i.e., increase in temperature and exposure to contaminants). However, there is a knowledge gap on how temperature can modulate the hormetic effects in individuals sublethally exposed to chemical stressors. Here, we investigated how temperature (15, 20, 25, and 28 °C) modulates the effects of lethal and sublethal exposure to insecticides (imidacloprid) on the longevity, fecundity, and oxidative stress of a pest insect, the aphid Mysus persicae. Our results showed additive and interactive effects of temperature and insecticide on the stimulatory and oxidative responses of the insect pest. Overall, imidacloprid was 2.4-fold less toxic at 15 °C (3.547 μg/ml) than at 20 °C (1.482 μg/ml) and 24.6 to 19.8-fold less toxic than at 25 °C (0.144 μg/ml) and 28 °C (0.179 μg/ml) respectively. Furthermore, although the exposure of female aphids to most sublethal concentrations resulted in a decrease in their longevity and fecundity compared to the control, some of the sublethal concentrations produced positive effects in these parameters for the exposed individuals. The magnitude of induced sublethal effects varied between temperatures and occurred in similar ranges of low concentrations at temperatures 15 °C and 20 °C, and at temperatures 25 °C and 28 °C. Additionally, imidacloprid low concentrations induced a temperature-dependent production of reactive oxygen species in exposed insects at 12 and 24 h after exposure indicating oxidative stress. Our study supplies valuable data on how temperature modulates pesticide-mediated hormesis that can alter ecological interactions and functions within agroecosystems with potential implications in pest management.
Collapse
Affiliation(s)
- Ana Paula Nascimento Silva
- Laboratory of Molecular Entomology and Ecotoxicology, Department of Entomology, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
| | - Eduarda Santos Andrade
- Department of Biology, Institute of Natural Sciences, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
| | - Vitor L Nascimento
- Department of Biology, Institute of Natural Sciences, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
| | - Khalid Haddi
- Laboratory of Molecular Entomology and Ecotoxicology, Department of Entomology, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
| |
Collapse
|
4
|
Schöfer N, Saxinger N, Braumandl K, Ruther J. Four Neurotoxic Insecticides Impair Partner and Host Finding in the Parasitoid Leptopilina heterotoma and Bioactive Doses Can Be Taken up Via the Host. J Chem Ecol 2025; 51:14. [PMID: 39880987 PMCID: PMC11779754 DOI: 10.1007/s10886-025-01554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/31/2025]
Abstract
In modern agriculture, control of insect pests is achieved by using insecticides that can also have lethal and sublethal effects on beneficial non-target organisms. Here, we investigate acute toxicity and sublethal effects of four insecticides on the males' sex pheromone response and the female host finding ability of the Drosophila parasitoid Leptopilina heterotoma. The nicotinic acetylcholine receptor antagonists acetamiprid, flupyradifurone and sulfoxaflor, as well as the acetylcholinesterase inhibitor dimethoate were applied topically as acetone solutions. Males treated with all four insecticides no longer preferred the female sex pheromone in a T-olfactometer. Duration of wing fanning, an element of the pheromone-mediated male courtship behavior, was also reduced by all four insecticides. The ability of females to orientate towards host-infested feeding substrate was not affected by acetamiprid in the tested dose range. However, treatment with dimethoate, flupyradifurone and sulfoxaflor resulted in the loss of the females' preference for host odor. At the lowest doses interfering with olfactory abilities of L. heterotoma in this study (acetamiprid: 0.21 ng, dimethoate: 0.105 ng, flupyradifurone: 2.1 ng and sulfoxaflor: 0.21 ng), ≥ 90% of the wasps survive insecticide treatment. Male pheromone responses and female host finding were also disturbed in those L. heterotoma that had developed in D. melanogaster larvae reared on dimethoate-treated feeding medium at sublethal levels. Hence, doses of this insecticide sufficient to interfere with chemical orientation of L. heterotoma can be taken up by the parasitoid via the food chain.
Collapse
Affiliation(s)
- Nils Schöfer
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Nathalie Saxinger
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Katrin Braumandl
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
5
|
Varshney P, Chandra P. Preclinical Data Extrapolation to Clinical Reality: A Translational Approach. Curr Drug Discov Technol 2025; 22:e250424229318. [PMID: 38676496 DOI: 10.2174/0115701638302778240417045451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024]
Abstract
In vivo investigations are much more complex than trials conducted in a test tube; the results sometimes aren't as illuminating and could raise more questions than answers. Preclinical data projection into clinical truth is a transcriptional science that remains a compelling trial in drug development. Preclinical in vivo and in vitro education is important in novel drug's non-violent or active growth. Pharmacokinetic and metabolic research is necessary to better understand the chemical and biological effects of medicines and their metabolites. Information produced by such a policy can be used to progress Phase I studies, primarily for anticancer medication. Both living and deceased in vitro models are theoretically excellent preclinical tools for calculating the pharmacological action of counterparts from the same family, such as vinca alkaloids. The animal species most closely linked to humans are chosen based on metabolic patterns. The estimation of the duration of drug action, particularly for medicines with varied metabolic clearances (e.g., benzodiazepines); The empathetic or estimate of medicine relations, i.e., those defined for cyclosporin A and macrolide antibiotics; and Sclarification of the metabolic roots of individual inconsistencies in pharmaceutical action.
Collapse
Affiliation(s)
- Prakhar Varshney
- Department of Physiology & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, 244001, Uttar Pradesh, India
| | - Phool Chandra
- Department of Physiology & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, 244001, Uttar Pradesh, India
| |
Collapse
|
6
|
Theenoor R, Ghosh A, Venkatesan R. Harmonising control: understanding the complex impact of pesticides on parasitoid wasps for enhanced pest management. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101236. [PMID: 39053811 DOI: 10.1016/j.cois.2024.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The pervasive application of chemical pesticides is globally recognised for its effectiveness and cost-efficiency in controlling pest populations. However, this approach has inadvertently impacted a diverse array of organisms, including humans and beneficial insects, notably those that naturally regulate pest populations. This review synthesises current research on both the direct and indirect effects of pesticides on parasitoid wasps. These wasps are vital for the biological control of herbivorous insect populations through a top-down approach. Here, we examine the complex ways in which pesticides may compromise the parasitoids' life history traits, interfere with their host-seeking behaviour, and modulate the immune responses of the hosts that in turn affect parasitoid success. Gaining a more nuanced understanding of these dynamics is crucial for the development of integrated pest management strategies that aim to reconcile the use of chemical pesticides with biological control approaches, ultimately fostering more sustainable agricultural practices.
Collapse
Affiliation(s)
- Rohini Theenoor
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Anwesha Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Radhika Venkatesan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
7
|
Silva APN, Carvalho GA, Haddi K. The interplay between temperature and an insecticide mixture modulates the stimulatory response of sublethally exposed Myzus persicae. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:818-829. [PMID: 38990494 DOI: 10.1007/s10646-024-02780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Temperature can interact with chemical pesticides and modulate their toxicity. Sublethal exposure to pesticides is known to trigger hormetic responses in pests. However, the simultaneous effects of temperature and sublethal exposure to single or mixture-based insecticides on the insects' stimulatory responses are not frequently considered in toxicological studies. Here we investigated the combined effects of temperature on the lethal and sublethal responses of the green peach aphid Myzus persicae after exposure to commercial formulations of a neonicotinoid (thiamethoxam) and a pyrethroid (lambda-cyhalothrin) and their mixture. Firstly, the concentration-response curves of the insecticides were determined under four temperatures (15 °C, 20 °C, 25 °C, and 28 °C) by the leaf dipping method. Subsequently, the sublethal concentrations C0, CL1, CL5, CL10, CL15, CL20, and CL30 were selected to assess sublethal effects on aphids' longevity and reproduction under the same temperatures. The results showed that the mixture of thiamethoxam + lambda-cyhalothrin caused greater toxicity to aphids compared to the formulations with each active ingredient alone and that the toxicity was higher at elevated temperatures. Furthermore, the exposure to low concentrations of the mixture (thiamethoxam + lambda-cyhalothrin) and the separated insecticides induced stimulatory responses in the longevity and fecundity of exposed aphid females, but the occurrence of such hormetic responses depended on the insecticide type, its sublethal concentration, and the temperature as well as their interactions.
Collapse
Affiliation(s)
- Ana Paula Nascimento Silva
- Laboratory of Molecular Entomology and Ecotoxicology, Department of Entomology, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Geraldo Andrade Carvalho
- Laboratory of Ecotoxicology and Integrated Pest Management, Department of Entomology, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Khalid Haddi
- Laboratory of Molecular Entomology and Ecotoxicology, Department of Entomology, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Unni PS, Kirupaanntha-Rajan P, Vasantha-Srinivasan P, Srinivasan S, Han YS, Karthi S, Radhakrishnan N, Park KB, Rajagopal R, Senthil-Nathan S. Chemical composition and toxicity of commercial Mentha spicata and Eucalyptus citriodora essential oils on Culex quinquefasciatus and non-target insects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21610-21631. [PMID: 38393552 DOI: 10.1007/s11356-024-32249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Current vector control strategies based on synthetic chemicals are not eco-friendly against non-target organisms; hence, alternative approaches are highly required. Commercially purchased oil of Mentha spicata (Spearmint) and Eucalyptus citriodora (Citriodora) were examined against the medical pest Cx. quinquefasciatus (Say) and their non-toxicity on the aquatic species was evaluated. Chemical screening with gas chromatography coupled with mass spectrometry (GC-MS) analysis revealed a total of 14 and 11 compounds in Citriodora and Spearmint oils, respectively, with the highest peak (%) at carvone (70.44%) and isopulegol (30.4%). The larvicidal activity on the fourth instar larvae of Cx. quinquefasciatus showed dose-dependent mortality and significance at a 100 ppm concentration 48 h post-treatment with Citriodora (76.4%, P ≤ 0.001) and Spearmint (100%, P ≤ 0.001). Additionally, the photomicrograph of the fourth instar larvae revealed significant physical abnormalities in the head and midgut tissues post-exposure to Spearmint and Citriodora oils. Moreover, the histological assay revealed severe damage in the epithelial cells and gut lumen 2 to 24 h post-treatment. The repellency percentage of adult Culex mosquitoes was prominent across both oils at 150 ppm 210 min post-exposure. Non-target toxicity on the aquatic predator showed both essential oils (Spearmint oil (17.2%) and Citriodora oil (15.2%)) are safer at the maximum treatment (200 ppm) compared to temephos (75.4% at 1 ppm). The in silico screening of phyto-compounds derived by both essential oils with BeeTox (online server) showed no contact toxicity to the honey bee Apis mellifera. Overall, the present research revealed that Spearmint and Citriodora essential oils and their active phyto-compounds were toxic to Cx. quinquefasciatus and harmless to the aquatic predator and honey bee.
Collapse
Affiliation(s)
- Pavana Sivadasan Unni
- Division of Bio-Pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tirunelveli, Tamil Nadu, India
| | - Pandiyan Kirupaanntha-Rajan
- Division of Bio-Pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tirunelveli, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | | | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sengodan Karthi
- Department of Entomology, University of Kentucky, Lexington, KY, 40503, USA
| | - Narayanaswamy Radhakrishnan
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
| | - Ki Beom Park
- Research & Development Centre, Invirustech Co., Inc, Gwangju, 61222, Korea
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sengottayan Senthil-Nathan
- Division of Bio-Pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tirunelveli, Tamil Nadu, India.
| |
Collapse
|
9
|
Narayanan M, Devarayan K, Verma M, Selvaraj M, Ghramh HA, Kandasamy S. Assessing the ecological impact of pesticides/herbicides on algal communities: A comprehensive review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106851. [PMID: 38325057 DOI: 10.1016/j.aquatox.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
The escalating use of pesticides in agriculture for enhanced crop productivity threatens aquatic ecosystems, jeopardizing environmental integrity and human well-being. Pesticides infiltrate water bodies through runoff, chemical spills, and leachate, adversely affecting algae, vital primary producers in marine ecosystems. The repercussions cascade through higher trophic levels, underscoring the need for a comprehensive understanding of the interplay between pesticides, algae, and the broader ecosystem. Algae, susceptible to pesticides via spillage, runoff, and drift, experience disruptions in community structure and function, with certain species metabolizing and bioaccumulating these contaminants. The toxicological mechanisms vary based on the specific pesticide and algal species involved, particularly evident in herbicides' interference with photosynthetic activity in algae. Despite advancements, gaps persist in comprehending the precise toxic effects and mechanisms affecting algae and non-target species. This review consolidates information on the exposure and toxicity of diverse pesticides and herbicides to aquatic algae, elucidating underlying mechanisms. An emphasis is placed on the complex interactions between pesticides/herbicides, nutrient content, and their toxic effects on algae and microbial species. The variability in the harmful impact of a single pesticide across different algae species underscores the necessity for further research. A holistic approach considering these interactions is imperative to enhance predictions of pesticide effects in marine ecosystems. Continued research in this realm is crucial for a nuanced understanding of the repercussions of pesticides and herbicides on aquatic ecosystems, mainly algae.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Center for Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602 105, Tamil Nadu, India.
| | - Kesavan Devarayan
- Department of Basic Sciences, College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Vettar River View Campus, Nagapattinam 611 002, India
| | - Monu Verma
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul 02504, South Korea; Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641004, India.
| |
Collapse
|
10
|
Agathokleous E, Blande JD, Calabrese EJ, Guedes RNC, Benelli G. Stimulation of insect vectors of pathogens by sublethal environmental contaminants: A hidden threat to human and environmental health? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122422. [PMID: 37604394 DOI: 10.1016/j.envpol.2023.122422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Sublethal stimulation and hormetic responses are increasingly identified and acknowledged in scientific research. However, the occurrence and characteristics of such responses in insect vectors of pathogens are little explored and poorly understood. Here, we collate significant evidence from the scientific literature showing that sublethal doses of environmental contaminants, such as pesticides, microplastics, and plasticizers, induce stimulation and hormetic responses in insect vectors of pathogens of agricultural and public health importance, including mosquitoes, other dipterans, psyllids, aphids, and planthoppers. Physiological, behavioral, and demographic traits can be enhanced by exposure to lower subtoxic contaminant doses while being inhibited by higher toxic doses. Energetic trade-offs can also occur, especially at sublethal doses higher than the no-observed-adverse-effect level (NOAEL). The relevant literature is limited and so are the number of doses commonly included in the studies, precluding firm conclusions and enhanced understanding. Nevertheless, these effects are significant and could undermine human and environmental health, and thus sustainability agendas, if ultimately the transmission of pathogens and disease spread and severity are increased. Further research is urgently needed to tackle these phenomena, especially under field conditions. The findings discussed here are relevant to chemical risk assessment and chemical safety evaluations, in which all possible effects from the lowest to higher doses should be considered.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China.
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, MA, 01003, USA
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|