1
|
Rajendran R, Lakshmanan E, Muddu S, Rajmohan N, Senapathi V, Brindha K. Multi-indices approach for comprehensive appraisal of groundwater quality and the implication on human health in the Amaravathi basin, Southern India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:153. [PMID: 39786487 DOI: 10.1007/s10661-024-13546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Groundwater is often used directly by the public in several river basins of India. Hence, this study was carried out with the objective of assessing the quality of groundwater in the Amaravathi basin, India, using a multiple indices approach. Groundwater quality data from 96 monitoring wells were obtained from the Central Groundwater Board and used in this study. Drinking water quality index (DWQI) and irrigation water quality index (IWQI) were calculated to assess the water suitability for consumption, irrigation, and farming. High levels of fluoride and nitrate have a detrimental impact on health and were evaluated using USEPA methods by calculating the chronic daily intake and hazards quotient. Findings revealed that 42% of samples did not meet the DWQI standards due to high salinity, hardness, nitrate, and fluoride levels. Health risk assessment (HRA) of hazard quotients of nitrate are 81%, 61%, and 39% of samples, while those of fluoride are 85%, 68%, and 18% of samples for infants, children, and adults, respectively are unfit. High salinity rendered 35% of the sample unsuitable for irrigation, though most remained suitable for livestock. Spatial analysis revealed declining groundwater quality from the center to the east of the basin. This mapping study identified areas where the groundwater quality is inappropriate for the intended purpose and alternate water sources should be made viable.
Collapse
Affiliation(s)
- Rajesh Rajendran
- Centre for Earth and Atmospheric Sciences, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, 600119, Tamil Nadu, India.
| | - Elango Lakshmanan
- Hydraulics and Water Resource Engineering Group, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sekhar Muddu
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru, 560012, India
| | - Natarajan Rajmohan
- Water Research Centre, King Abdulaziz University, 21598, Jeddah, Saudi Arabia
| | - Venkatramanan Senapathi
- PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli, 620001, India
| | - Karthikeyan Brindha
- Department of Water Resource and Ecosystems, IHE Delft Institute for Water Education, Westvest 7, Delft, NH, Netherlands
| |
Collapse
|
2
|
Alam SMK, Li P, Rahman M, Fida M, Elumalai V. Key factors affecting groundwater nitrate levels in the Yinchuan Region, Northwest China: Research using the eXtreme Gradient Boosting (XGBoost) model with the SHapley Additive exPlanations (SHAP) method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125336. [PMID: 39566709 DOI: 10.1016/j.envpol.2024.125336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Groundwater is a vital natural resource that has been extensively used but, unfortunately, polluted by human activities, posing a potential threat to human health. Groundwater in the Yinchuan Region is contaminated with NO3-, which is harmful to the local population. This study utilized the eXtreme Gradient Boosting (XGBoost) model with the SHapley Additive exPlanations (SHAP) method to identify the key factors influencing groundwater nitrate pollution in the Yinchuan Region. The SHAP feature dependence plots revealed the intricate relationship between NO3- levels and TDS, Mn2+, TFe, and pH in complex groundwater systems. The results indicate that the high levels of groundwater NO3- are primarily caused by the combined effect of irrigation water from the Yellow River, shallow groundwater depth, unfavorable drainage, water recharge, overuse of fertilizers, and geological factors such as weathering nitrogen-bearing rocks. Hydrochemical parameters such as Mn2+, Fe2+, and pH create a strong reducing groundwater environment, resulting in lower NO3- concentrations in this region. Well depth and soil organic carbon at a depth of 80-100 cm have a negative impact on NO3- concentrations; conversely, sand in soil depths 0-20 cm and 100-150 cm and climatic factors such as precipitation have a weak but positive effect on the level of NO3- in groundwater in the region. The recommendation is to quickly and extensively implement a farming water-conservancy transformation project, reducing water-intensive crops, promoting groundwater use for irrigation in areas where soil salinization is a concern are proposed. This research could provide local agencies with a scientific foundation for sustainable management of farming and groundwater in the Yinchuan Region, ultimately benefiting the entire Yinchuan Plain.
Collapse
Affiliation(s)
- S M Khorshed Alam
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Mahbubur Rahman
- The University of Kansas, Kansas Geological Survey (KGS), 1390 Constant Ave, Lawrence, KS, 66047, USA
| | - Misbah Fida
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Vetrimurugan Elumalai
- Department of Hydrology, University of Zululand, Kwa-Dlangezwa, Richards Bay 3886, Durban, South Africa
| |
Collapse
|
3
|
Li L, Li P, Tian Y, Kou X, He S. Nitrate sources and transformation in surface water and groundwater in Huazhou District, Shaanxi, China: Integrated research using hydrochemistry, isotopes and MixSIAR model. ENVIRONMENTAL RESEARCH 2024; 263:120052. [PMID: 39322058 DOI: 10.1016/j.envres.2024.120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/20/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Global water resources affected by excessive nitrate (NO3-) have caused a series of human health and ecological problems. Therefore, identification of NO3- sources and transformations is of pivotal significance in the strategic governance of widespread NO3- contaminant. In this investigation, a combination of statistical analysis, chemical indicators, isotopes, and MixSIAR model approaches was adopted to reveal the hydrochemical factors affecting NO3- concentrations and quantify the contribution of each source to NO3- concentrations in surface water and groundwater. The findings revealed that high groundwater NO3- concentration is concentrated in the southwestern region, peaking at 271 mg/L. NO3- concentration in the Wei River and Yuxian River exhibited an increase from upstream to downstream, but in the Shidi River and Luowen River, its concentration was highest in the upstream. Groundwater NO3- has noticeable correlation with Na+, Ca2+, Mg2+, Cl-, HCO3-, TDS, EC, and ORP. In surface water, NO3- level is significantly correlated with NH4+ and ORP. Major sources of NO3- in surface and groundwater comprise manure & sewage and soil nitrogen. Source contribution for surface water was calculated by MixSIAR model to obtain soil nitrogen (57.7%), manure & sewage (23.8%), chemical fertilizer (12%), and atmospheric deposition (6.4%). In groundwater, soil nitrogen and manure & sewage accounted for 19% and 63.8% of nitrate sources, respectively. Both surface water and groundwater exhibited strong oxidation, with nitrification the primary process. It is expected that this study will provide insights into the dynamics of NO3- and contribute to the development of effective strategies for mitigating NO3- contaminant, leading to sustainable management of water resources.
Collapse
Affiliation(s)
- Lingxi Li
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Yan Tian
- PowerChina Sinohydro Bureau 3 Co., LTD., No. 4069 Expo Avenue, Chanba Ecological District, Xi'an, 710024, Shaanxi Province, China
| | - Xiaomei Kou
- PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an, 710065, Shaanxi, China
| | - Song He
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China; PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an, 710065, Shaanxi, China
| |
Collapse
|
4
|
Wang C, Wang X, Xu YJ, Lv Q, Ji X, Jia S, Liu Z, Mao B. Multi-evidences investigation into spatiotemporal variety, sources tracing, and health risk assessment of surface water nitrogen contamination in China. ENVIRONMENTAL RESEARCH 2024; 262:119906. [PMID: 39233034 DOI: 10.1016/j.envres.2024.119906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
A comprehensive understanding of nitrogen pollution status, especially the identification of sources and fate of nitrate is essential for effective water quality management at the local scale. However, the nitrogen contamination of surface water across China was poorly understood at the national scale. A dataset related to nitrogen was established based on 111 pieces of literature from 2000 to 2020 in this study. The spatiotemporal variability, source tracing, health risk assessment, and drivers of China's surface water nitrogen pollution were analyzed by integrating multiple methods. These results revealed a significant spatiotemporal heterogeneity in the nitrogen concentration of surface water across China. Spatially, the Haihe River Basin and Yellow River Basin were the basins where surface water was seriously contaminated by nitrogen in China, while the surface water of Southwest Basin was less affected. Temporally, significant differences were observed in the nitrogen content of surface water in the Songhua and Liaohe River Basin, Pearl River Basin, Southeast Basin, and Yellow River Basin. There were 1%, 1%, 12%, and 46% probability exceeding the unacceptable risk level (HI>1) for children in the Songhua and Liaohe River Basin, Pearl River Basin, Haihe River Basin, and Yellow River Basin, respectively. The primary sources of surface water nitrate in China were found to be domestic sewage and manure (37.7%), soil nitrogen (31.7%), and chemical fertilizer (26.9%), with a limited contribution from atmospheric precipitation (3.7%). Human activities determined the current spatiotemporal distribution of nitrogen contamination in China as well as the future development trend. This research could provide scientifically reasonable recommendations for the containment of surface water nitrogen contamination in China and even globally.
Collapse
Affiliation(s)
- Cong Wang
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xihua Wang
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Department of Earth and Environmental Sciences, University of Waterloo, ON N2L 3G1, Canada.
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Qinya Lv
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuming Ji
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shunqing Jia
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zejun Liu
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Boyang Mao
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
5
|
Yan Y, Zhang Y, Yang S, Wei D, Zhang J, Li Q, Yao R, Wu X, Wang Y. Optimized groundwater quality evaluation using unsupervised machine learning, game theory and Monte-Carlo simulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:122902. [PMID: 39531765 DOI: 10.1016/j.jenvman.2024.122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Assessing groundwater quality is essential for achieving sustainable development goals worldwide. However, it is challenging to conduct hydrochemical analysis and water quality evaluation by traditional methods. To fill this gap, this study analyzed the hydrochemical processes, drinking and irrigation water quality, and associated health risks of 93 groundwater samples from the Sichuan Basin in SW China using advanced unsupervised machine learning, the Combined-Weights Water Quality index, and Monte-Carlo simulations. Groundwater samples were categorized into three types using the self-organizing map with the K-means method: Cluster-1 was Ca-HCO3 type, Cluster-2 was dominated by Ca-HCO3, Na-HCO3, and mixed Na-Ca-HCO3 types, Cluster-3 was Ca-Cl and Ca-Mg-Cl types. Ion ratio diagrams revealed that carbonate dissolution and silicate weathering primarily influenced the hydrochemical characteristics. Cluster-1 samples exhibited high NO3- contents from intensive agricultural activities. Cluster-2 samples with high Na+ contents were characterized by positive cation exchange, while Cluster-3 samples with elevated Ca2+ and Mg2+ contents were influenced by reverse cation exchange. Combined-Weights Water Quality Index indicated that 62.37% of total samples were suitable for drinking, predominantly located in the central part of the study area. Irrigation Water Quality Index revealed that 33.34% of total samples were suitable for irrigation, mainly in the northeastern region. NO3- concentration and electrical conductivity (EC) value were the main indicators with the highest sensitivity for drinking and irrigation suitability, respectively. Probabilistic health risk assessments suggested that a significant portion of the groundwater samples posed a health risk greater than 1 to children (63%) and adults (52%) by Monte-Carlo simulation. The high-risk areas (hazard index >4), primarily in the eastern region, are closely associated with nitrate distribution. Sensitivity analysis demonstrated that NO3- concentration is the primary indicator accounting for health risks. Reducing the application of nitrogen-based fertilizers on cultivated land is the most effective approach to improve drinking quality and mitigate the associated health risks to the population. This study's findings aim to produce a novel groundwater quality evaluation for promoting the sustainable management and utilization of groundwater resources.
Collapse
Affiliation(s)
- Yuting Yan
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yunhui Zhang
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China; Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu, 611756, China.
| | - Shiming Yang
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Denghui Wei
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Ji Zhang
- Sichuan Research Institute of Geological Engineering Survey, Chengdu, 611032, China
| | - Qiang Li
- Sichuan Research Institute of Geological Engineering Survey, Chengdu, 611032, China
| | - Rongwen Yao
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xiangchuan Wu
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yangshuang Wang
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
6
|
Wang S, Chen J, Liu F, Chen D, Zhang S, Bai Y, Zhang X, Kang S. Identification of groundwater nitrate sources and its human health risks in a typical agriculture-dominated watershed, North China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:495. [PMID: 39508929 DOI: 10.1007/s10653-024-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Identifying nitrate sources and migratory pathways is crucial for controlling groundwater nitrate pollution in agricultural watersheds. This study collected 35 shallow groundwater samples in the Nansi Lake Basin (NLB) to identify groundwater nitrate sources and potential health risks. Results showed that NO3- concentration in 62.9% of groundwater samples exceeded the drinking water standard (50 mg/L). Hierarchical cluster analysis (HCA) was used to classify the sampling points into three groups based on hydrochemical and isotopic data. Groups A and C were situated in the eastern recharge and discharge regions of Nansi Lake, while Group B was located in the Yellow River floodplain west of the lake. Hydrochemical data and nitrate stable isotopes (δ15N-NO3- and δ18O-NO3-) indicated that elevated NO3- primarily originated from soil organic nitrogen (SON) in Group A, while manure and sewage (M&S) were the primary sources in Groups B and C samples. Microbial nitrification was identified as the primary nitrogen transformation process across all groups. The source apportionment results indicated that SON contributed approximately 40.1% in Group A, while M&S contributed about 53.9% and 81.2% in Groups B and C, respectively. The Human Health Risk Assessment (HHRA) model indicated significant non-carcinogenic risks for residents east of Nansi Lake, primarily through the oral pathway, with NO3- concentration identified as the most influential factor by sensitivity analysis. These findings provide new perspectives on identifying and handling groundwater nitrogen pollution in agriculture-dominated NLB and similar basins that require enhanced nitrogen contamination management.
Collapse
Affiliation(s)
- Shou Wang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210024, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Jing Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210024, China.
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China.
| | - Fei Liu
- School of Water Conservancy and Hydropower, Hebei University of Engineering, 19 Taiji Road, Handan, 056038, Hebei, China.
| | - Dan Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Shuxuan Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210024, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Yanjie Bai
- School of Water Conservancy and Hydropower, Hebei University of Engineering, 19 Taiji Road, Handan, 056038, Hebei, China
| | - Xiaoyan Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Senqi Kang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| |
Collapse
|
7
|
Huang P, Cui M, Chai S, Li Y, Zhang Y, Yu Z, Peng W. Limestone water mixing process and hydrogen and oxygen stable isotope fractionation response under mining action. ENVIRONMENTAL RESEARCH 2024; 255:119208. [PMID: 38782341 DOI: 10.1016/j.envres.2024.119208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
North China type coalfield are gradually mining deep, and the mixing of groundwater is intensified. Hydrogen and oxygen isotopes are important elements for tracing groundwater movement. The fractionation response mechanism under mining conditions is not clear. In this paper, combined with numerical simulation, MixSIAR isotope mixing model and other methods, according to the δD, δ18O and hydrochemical information of various water bodies, the impact of coal mining on hydrogen and oxygen isotope fractionation is analyzed from multiple perspectives. The results show that summer soil water is the main source of recharge for limestone water, accounting for 30.7%-41.5%, and the Zhan River is the main source of recharge for limestone water. Before groundwater recharge, evaporation leads to the increase of δ18O in surface water by 0.31‰-5.58‰, water loss by 1.81%-28.00%, the increase of δ18O in soil water by 0.47‰-6.33‰, and water loss by 2.74%-35.80%. Compared with the coal mining layer, the degree of hydrogen and oxygen isotope drift and water-rock interaction in the coal mine stopping layer are significantly improved. The results of numerical simulation show that the pumping activity reduces the 18O concentration in the mining layer. The ion ratio is used as a new variable to eliminate the influence of water-rock interaction when calculating the mixing ratio. The results show that the limestone water is in a state of receiving external recharge, and mixing effect increases the δ18O in limestone water by 0.86‰ on average, and the δD increases by 0.72‰ on average. The research results explain the controlled process of hydrogen and oxygen isotope fractionation under mining conditions, which is of great significance to coal mine safety production.
Collapse
Affiliation(s)
- Pinghua Huang
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| | - Mengke Cui
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| | - Shuangwei Chai
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| | - Yuanmeng Li
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| | - Yanni Zhang
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| | - Zhiheng Yu
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| | - Wanyu Peng
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| |
Collapse
|
8
|
Gao H, Wang G, Fan Y, Wu J, Yao M, Zhu X, Guo X, Long B, Zhao J. Tracing groundwater nitrate sources in an intensive agricultural region integrated of a self-organizing map and end-member mixing model tool. Sci Rep 2024; 14:16873. [PMID: 39043782 PMCID: PMC11266494 DOI: 10.1038/s41598-024-67735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
The traceability of groundwater nitrate pollution is crucial for controlling and managing polluted groundwater. This study integrates hydrochemistry, nitrate isotope (δ15N-NO3- and δ18O-NO3-), and self-organizing map (SOM) and end-member mixing (EMMTE) models to identify the sources and quantify the contributions of nitrate pollution to groundwater in an intensive agricultural region in the Sha River Basin in southwestern Henan Province. The results indicate that the NO3--N concentration in 74% (n = 39) of the groundwater samples exceeded the WHO standard of 10 mg/L. According to the results of EMMTE modeling, soil nitrogen (68.4%) was the main source of nitrate in Cluster-1, followed by manure and sewage (16.5%), chemical fertilizer (11.9%) and atmospheric deposition (3.3%). In Cluster-2, soil nitrogen (60.1%) was the main source of nitrate, with a significant increase in the contribution of manure and sewage (35.5%). The considerable contributions of soil nitrogen may be attributed to the high nitrogen fertilizer usage that accumulated in the soil in this traditional agricultural area. Moreover, it is apparent that most Cluster-2 sampling sites with high contributions of manure and sewage are located around residential land. Therefore, the arbitrary discharge and leaching of domestic sewage may be responsible for these results. Therefore, this study provides useful assistance for the continuous management and pollution control of groundwater in the Sha River Basin.
Collapse
Affiliation(s)
- Hongbin Gao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Gang Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yanru Fan
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Mengyang Yao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xiang Guo
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Bei Long
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Jie Zhao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
9
|
Shi H, Du Y, Xiong Y, Deng Y, Li Q. Source-oriented health risk assessment of groundwater nitrate by using EMMTE coupled with HHRA model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173283. [PMID: 38759927 DOI: 10.1016/j.scitotenv.2024.173283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Conventional concentration-oriented approaches for nitrate risk diagnosis only provide overall risk levels without identifying risk values of individual sources or sources accountable for potential health risks. Therefore, a hybrid model combining the end-member mixing model tool on Excel™ (EMMTE) with human health risk assessment (HHRA) was developed to assess the source-oriented health risks for groundwater nitrate, particularly in the Poyang Lake Plain (PLP) region. The results indicated that the EMMTE and the Bayesian stable isotope mixing model (MixSIAR) exhibited remarkable consistency in source apportionment of groundwater nitrate. The source contribution of groundwater nitrate in PLP was related to land use types, hydrogeological conditions, and soil properties. Notably, manure and sewage sources, contributing up to 53.4 %, represented the largest nitrate pollution sources, with a significant contribution of soil nitrogen and nitrogen fertilizers. The non-carcinogenic risk for four potential sources was below the acceptable threshold of 1. Given the factors including rainfall dilution and economic development, attention should be directed towards mitigating the health risks posed by manure and sewage. This study can verify the efficacy of EMMTE in source apportionment and offer valuable insights for decision-makers to regulate the largest sources of nitrate contamination and enhance groundwater management efficiency.
Collapse
Affiliation(s)
- Huanhuan Shi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Yao Du
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
| | - Yaojin Xiong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Yamin Deng
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Qinghua Li
- Wuhan Center of China Geological Survey, Wuhan 430205, China.
| |
Collapse
|
10
|
Liu R, Qiu J, Wang S, Fu R, Qi X, Jian C, Hu Q, Zeng J, Liu N. Hydrochemical and microbial community characteristics and the sources of inorganic nitrogen in groundwater from different aquifers in Zhanjiang, Guangdong Province, China. ENVIRONMENTAL RESEARCH 2024; 252:119022. [PMID: 38685304 DOI: 10.1016/j.envres.2024.119022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Groundwater from different aquifers in the Zhanjiang area suffers from different degrees of nitrogen pollution, which poses a serious threat to the health of urban and rural residents as well as the surrounding aquatic ecological environment. However, neither the water chemistry and microbial community characteristics in different aquifer media nor the sources of inorganic nitrogen pollution have been extensively studied. This study integrated water quality parameters, dual isotopes (δ15N-NO3- and δ18O-NO3-), and 16S rRNA data to clarify the hydrochemical and microbial characteristics of loose rock pore water (LRPW), layered bedrock fissure water (LBFW), and volcanic rock pore fissure water (VRPFW) in the Zhanjiang area and to determine inorganic nitrogen pollution and sources. The results show that the hydrochemistry of groundwater in different aquifers is complex and diverse, which is mainly affected by rock weathering and atmospheric precipitation, and the cation exchange is strong. High NO3- concentration reduces the richness of the microbial community (VRPFW). There are a large number of bacteria related to nitrogen (N) cycle in groundwater and nitrification dominated the N transformation. A quarter of the samples exceeded the relevant inorganic nitrogen index limits specified in the drinking water standard for China. The NO3- content is highest in VRPFW and the NH4+ content is highest in shallow loose rock pore water (SLRPW). In general, NO3-/Cl-, dual isotope (δ15N-NO3- and δ18O-NO3-) data and MixSIAR quantitative results indicate manure and sewage (M&S) and soil organic nitrogen (SON) are the main sources of NO3-. In LRPW, as the depth increases, the contribution rate of M&S gradually decreases, and the contribution rate of SON gradually increases. The results of uncertainty analysis show that the UI90 values of SON and M&S are higher. This study provides a scientific basis for local relevant departments to address inorganic nitrogen pollution in groundwater.
Collapse
Affiliation(s)
- Rentao Liu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinrong Qiu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, Guangdong, China
| | - Shuang Wang
- Guangdong Geological Bureau Fourth Geological Brigade, Zhanjiang, 524049, Guangdong, China
| | - Renchuan Fu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaochen Qi
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chuanqi Jian
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qizhi Hu
- Guangdong Hydrogeology Battalion, Guangzhou, 510510, Guangdong, China
| | - Jingwen Zeng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, Guangdong, China
| | - Na Liu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
11
|
Bao Y, Sun M, Wang Y, Hu M, Hu P, Wu L, Huang W, Li S, Wen J, Wang Z, Zhang Q, Wu N. Nitrate transformation and source tracking of Yarlung Tsangpo River using a multi-tracer approach combined with Bayesian stable isotope mixing model. ENVIRONMENTAL RESEARCH 2024; 252:118925. [PMID: 38615795 DOI: 10.1016/j.envres.2024.118925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Excessive levels of nitrate nitrogen (NO3--N) could lead to ecological issues, particularly in the Yarlung Tsangpo River (YTR) region located on the Qinghai Tibet Plateau. Therefore, it is crucial to understand the fate and sources of nitrogen to facilitate pollution mitigation efforts. Herein, multiple isotopes and source resolution models were applied to analyze key transformation processes and quantify the sources of NO3-. The δ15N-NO3- and δ18O-NO3- isotopic compositions in the YTR varied between 1.23‰ and 13.64‰ and -7.88‰-11.19‰, respectively. The NO3--N concentrations varied from 0.08 to 0.86 mg/L in the dry season and 0.20-1.19 mg/L during the wet season. Nitrification remained the primary process for nitrogen transformation in both seasons. However, the wet season had a widespread effect on increasing nitrate levels, while denitrification had a limited ability to reduce nitrate. The elevated nitrate concentrations during the flood season were caused by increased release of NO3- from manure & sewage (M&S) and chemical fertilizers (CF). Future endeavors should prioritize enhancing management strategies to improve the utilization efficiency of CF and hinder the direct entry of untreated sewage into the water system.
Collapse
Affiliation(s)
- Yufei Bao
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Meng Sun
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yuchun Wang
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Mingming Hu
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Peng Hu
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Leixiang Wu
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Wei Huang
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Shanze Li
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Jie Wen
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - ZhongJun Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Nanping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
12
|
Ren X, Li P, He X, Zhang Q. Tracing the sources and evaporation fate of surface water and groundwater using stable isotopes of hydrogen and oxygen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172708. [PMID: 38677416 DOI: 10.1016/j.scitotenv.2024.172708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Recognizing the origins and movement processes of surface water and groundwater is crucial for understanding hydrochemical genesis, conserving water supplies, and managing water resources. Estimating the source water typically involves identifying the intersection of evaporation line (EL) and meteoric water line. However, there is currently confusion in determining the regional EL and selecting strategies for estimating the source water. This study aimed to explore the source of surface water and groundwater, as well as evaporation effect utilizing stable isotope tracing (δ2H and δ18O). The line-conditioned excess was adopted to differentiate evaporated water and non-evaporated water, then Craig-Gordon model and an analytical framework with Bayesian theory were used to investigate the source of surface water and groundwater and the evaporation influence. The findings revealed that surface water and groundwater in the northern region of the Weihe River suffered more sever evaporation impacts that the south, and the evaporated surface water (7.54 % to 27.34 %) with a wider range of mean evaporation ratio than evaporated groundwater (5.38 % to 8.52 %). Monsoon precipitation is the main contributor to both surface water (contribution ratio: 0.46) and groundwater (0.49) sources. This research provides specific information on evaporation and detailed insights into the source water of surface water and groundwater, aiding in understanding the evaporation effect during the hydrological cycle and facilitating the management of regional water resources.
Collapse
Affiliation(s)
- Xiaofei Ren
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, Shaanxi 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, Shaanxi 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, Shaanxi 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, Shaanxi 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China.
| | - Xiaodong He
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, Shaanxi 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, Shaanxi 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Qixiao Zhang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, Shaanxi 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, Shaanxi 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; The National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| |
Collapse
|
13
|
Zhang C, Rao W, Wu Z, Zheng F, Li T, Li C, Lei X, Xie H, Xiaodong Chu. Anthropogenic impacts and quantitative sources of nitrate in a rural-urban canal using a combined PMF, δ 15N/δ 18O-NO 3-, and MixSIAR approach. ENVIRONMENTAL RESEARCH 2024; 251:118587. [PMID: 38437903 DOI: 10.1016/j.envres.2024.118587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Nitrate (NO3-) pollution in irrigation canals is of great concern because it threatens canal water use; however, little is known about it at present. Herein, a combination of positive matrix factorization (PMF), isotope tracers, and Mixing Stable Isotope Analysis in R (MixSIAR) was developed to identify anthropogenic impacts and quantitative sources of NO3- in a rural-urban canal in China. The NO3- concentration (0.99-1.93 mg/L) of canal water increased along the flow direction and was higher than the internationally recognized eutrophication risk value in autumn and spring. The inputs of the Fuhe River, NH4+ fertilizer, soil nitrogen, manure & sewage, and rainfall were the main driving factors of canal water NO3- based on principal component analysis and PMF, which was supported by evidence from δ15N/δ18O-NO3-. According to the chemical and isotopic analyses, nitrogen transformation was weak, highlighting the potential of δ15N/δ18O-NO3- to trace NO3- sources in canal water. The MixSIAR and PMF results with a <15% divergence emphasized the predominance of the Fuhe River (contributing >50%) and anthropogenic impacts (NH4+ fertilizer plus manure & sewage, >37%) on NO3- in the entire canal, reflecting the effectiveness of the model analysis. According to the MixSIAR model, (1) higher NO3- concentration in canal water was caused by the general enhancement of human activities in spring and (2) NO3- source contributions were associated with land-use patterns. The high contributions of NH4+ fertilizer and manure & sewage showed inverse spatial variations, suggesting the necessity of reducing excessive fertilizer use in the agricultural area and controlling blind wastewater release in the urban area. These findings provide valuable insights into NO3- dynamics and fate for sustainable management of canal water resources. Nevertheless, long-term chemical and isotopic monitoring with alternative modeling should be strengthened for the accurate evaluation of canal NO3- pollution in future studies.
Collapse
Affiliation(s)
- Chi Zhang
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China
| | - Wenbo Rao
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China.
| | - Zhihua Wu
- Jiangxi Authority of Water Conservancy Project of the Ganfu Plain, No. 2, Fazhan Road, High-Tech Development District, Nanchang 330096, China
| | - Fangwen Zheng
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Qingshanhu District, No. 59, Beijingdong Road, Nanchang 330099, China
| | - Tianning Li
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China
| | - Chao Li
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China
| | - Xiang Lei
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China
| | - Hengwang Xie
- Jiangxi Authority of Water Conservancy Project of the Ganfu Plain, No. 2, Fazhan Road, High-Tech Development District, Nanchang 330096, China
| | - Xiaodong Chu
- Jiangxi Institute of Geo-Environment Monitoring, Nanchang 330095, China
| |
Collapse
|
14
|
Awaleh MO, Boschetti T, Ahmed MM, Dabar OA, Robleh MA, Waberi MM, Ibrahim NH, Dirieh ES. Spatial distribution, geochemical processes of high-content fluoride and nitrate groundwater, and an associated probabilistic human health risk appraisal in the Republic of Djibouti. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171968. [PMID: 38588734 DOI: 10.1016/j.scitotenv.2024.171968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/10/2024]
Abstract
In the northern East African Rift System, the Republic of Djibouti relies exclusively on groundwater, with levels of fluoride (up to 14 mg/L) and nitrate (up to 256 mg/L) posing potential health risks. To address this, 362 samples were considered, including 133 shallow groundwater samples, along with new and previously published data dating back to 2012 on deep (88) and thermal (141) groundwater samples. To understand the enrichment mechanisms, dissolved anion and cation constituents, geochemical and thermodynamic tools, and stable isotope ratios, such as δ2H(H2O), δ18O(H2O), δ15N(NO3-), and δ18O(NO3-), were used. In particular, two activity diagrams (Mg2+ vs. Ca2+ and Na+ vs. Ca2+), focused on aqueous and solid fluoride species in an updated thermodynamic dataset of 15 fluoride-bearing minerals, are shown for the first time. The dataset offers new and valuable insights into fluoride geochemistry (classic thermodynamic datasets combined with geochemical codes rely solely on fluorapatite and fluorite F-bearing minerals). Activity diagrams and geochemical modeling indicate that mineral dissolution primarily drives groundwater fluoride enrichment in all water types, whereas the elevated nitrate levels may stem from organic fertilizers like animal manure, as indicated by nitrate isotopes and NO3-/Cl- vs Cl- diagrams. Despite the arid climate and 2H18O enrichment in shallow waters, evaporation seems to play a minor role. Monte Carlo simulations and sensitivity analysis were used to assess the health risks associated with elevated F- and NO3- concentrations. Mapping-related spatial distribution analysis identified regional contamination hotspots using a global Moran's I and GIS tools. One fluoride and three nitrate contamination hotspots were identified at a p-value of 0.05. Groundwater chemistry revealed that 88 % of groundwater being consumed exceeded the permissible levels for fluoride and nitrate, posing potential health risks, particularly for teenagers and children. This study pinpoints specific areas with excessive nitrate and fluoride contamination, highlighting a high non-carcinogenic risk.
Collapse
Affiliation(s)
- Mohamed Osman Awaleh
- Institut des Sciences de la Terre, Centre d'Etudes et de Recherches de Djibouti (CERD), Route de l'aéroport, 486, Djibouti-ville, Djibouti.
| | - Tiziano Boschetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 157/a, 43124 Parma, Italy.
| | - Moussa Mahdi Ahmed
- Observatoire Régional de la Recherche pour l'Environnement et le Climat (ORREC), Centre d'Etudes et de Recherches de Djibouti (CERD), Route de l'aéroport, 486, Djibouti-ville, Djibouti
| | - Omar Assowe Dabar
- Observatoire Régional de la Recherche pour l'Environnement et le Climat (ORREC), Centre d'Etudes et de Recherches de Djibouti (CERD), Route de l'aéroport, 486, Djibouti-ville, Djibouti
| | - Mohamed Abdillahi Robleh
- Institut des Sciences de la Terre, Centre d'Etudes et de Recherches de Djibouti (CERD), Route de l'aéroport, 486, Djibouti-ville, Djibouti
| | - Moussa Mohamed Waberi
- Observatoire Régional de la Recherche pour l'Environnement et le Climat (ORREC), Centre d'Etudes et de Recherches de Djibouti (CERD), Route de l'aéroport, 486, Djibouti-ville, Djibouti
| | - Nasri Hassan Ibrahim
- Observatoire Régional de la Recherche pour l'Environnement et le Climat (ORREC), Centre d'Etudes et de Recherches de Djibouti (CERD), Route de l'aéroport, 486, Djibouti-ville, Djibouti
| | - Elias Said Dirieh
- Cabinet Médico-Chirurgical de Gachamaleh, Cité Gachamaleh, Lot 14, 493, Djibouti-ville, Djibouti; Data Pathology Laboratory, Cité Gachamaleh, Recette Centrale, 493, Djibouti-ville, Djibouti
| |
Collapse
|
15
|
Wang S, Chen J, Zhang S, Bai Y, Zhang X, Chen D, Hu J. Groundwater hydrochemical signatures, nitrate sources, and potential health risks in a typical karst catchment of North China using hydrochemistry and multiple stable isotopes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:173. [PMID: 38592592 DOI: 10.1007/s10653-024-01964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Nitrate pollution in aquatic ecosystems has received growing concern, particularly in fragile karst basins. In this study, hydrochemical compositions, multiple stable isotopes (δ2H-H2O, δ18Ο-Η2Ο, δ15Ν-ΝΟ3-, and δ18Ο-ΝΟ3-), and Bayesian stable isotope mixing model (MixSIAR) were applied to elucidate nitrate pollution sources in groundwater of the Yangzhuang Basin. The Durov diagram identified the dominant groundwater chemical face as Ca-HCO3 type. The NO3- concentration ranged from 10.89 to 90.45 mg/L (average 47.34 mg/L), showing an increasing trend from the upstream forest and grassland to the downstream agricultural dominant area. It is worth noting that 47.2% of groundwater samples exceeded the NO3- threshold value of 50 mg/L for drinking water recommended by the World Health Organization. The relationship between NO3-/Cl- and Cl- ratios suggested that most groundwater samples were located in nitrate mixed endmember from agricultural input, soil organic nitrogen, and manure & sewage. The Self-Organizing Map (SOM) and Pearson correlations analysis further indicated that the application of calcium fertilizer, sodium fertilizer, and livestock and poultry excrement in farmland elevated NO3- level in groundwater. The output results of the MixSIAR model showed that the primary sources of NO3- in groundwater were soil organic nitrogen (55.3%), followed by chemical fertilizers (28.5%), sewage & manure (12.7%), and atmospheric deposition (3.4%). Microbial nitrification was a dominant nitrogen conversion pathway elevating NO3- levels in groundwater, while the denitrification can be neglectable across the study area. The human health risk assessment (HHRA) model identified that about 88.9%, 77.8%, 72.2%, and 50.0% of groundwater samples posing nitrate's non-carcinogenic health hazards (HQ > 1) through oral intake for infants, children, females, and males, respectively. The findings of this study can offer useful biogeochemical information on nitrogen pollution in karst groundwater to support sustainable groundwater management in similar human-affected karst regions.
Collapse
Affiliation(s)
- Shou Wang
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Jing Chen
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China.
| | - Shuxuan Zhang
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Yanjie Bai
- Nanjing Hydraulic Research Institute, State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Nanjing, 210029, China
| | - Xiaoyan Zhang
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Dan Chen
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Jiahong Hu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology of CAS, Shijiazhuang, 050021, Hebei, China
| |
Collapse
|
16
|
Su H, Li H, Chen H, Li Z, Zhang S. Source identification and potential health risks of fluoride and nitrate in groundwater of a typical alluvial plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166920. [PMID: 37689194 DOI: 10.1016/j.scitotenv.2023.166920] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A comprehensive understanding of the role of natural and anthropogenic factors in groundwater pollution is essential for sustainable groundwater resource management, especially in alluvial plains with intensive anthropogenic activities. Numerous studies have focused on the contribution of individual factors on groundwater pollution in alluvial aquifers, but distinguishing the effects of natural and anthropogenic factors is limited. In this study, 64 wells were sampled in different seasons from the Yellow River alluvial plain in China for hydrochemical and isotopic analysis to investigate the spatiotemporal distribution, sources and health risks of fluoride and nitrate in alluvial aquifers. Results showed that fluoride contamination was widely distributed without significant seasonal variation, and 78.1 % of the dry season samples and 65.6 % of the wet season samples showed fluoride concentrations above the permissible limit (1.5 mg/L). High-F- groundwater was generally accompanied by Na-HCO3 and Na-HCO3·SO4 water types. Fluoride was from a natural origin mainly associated with mineral dissolution, competitive adsorption, cation exchange, and evaporation. Groundwater nitrate contamination was spatially sporadic and showed significant seasonal differences. Only 13.6 % of the dry season samples and 3.2 % of the wet season samples had NO3- concentrations exceeded the permissible limit of 50 mg/L. The hydrochemical phase evolved from bicarbonate or sulfate type to chloride type with increasing nitrate concentration. Manure and sewage attributed to agricultural activities contributed the most nitrogen to groundwater, followed by soil organic nitrogen and chemical fertilizers, revealing the anthropogenic origin of nitrate. Nitrification was the dominant nitrogen transformation process in the wet season, and denitrification was prevalent in the dry season. Oral ingestion of high fluoride groundwater was a major threat to human health, especially for infants. This study provided a significant reference for water resources management in alluvial aquifers.
Collapse
Affiliation(s)
- He Su
- Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Transportation Technology Research & Development Co., Ltd., Taiyuan 030032, China.
| | - He Li
- Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hao Chen
- Shandong Provincial Lunan Geology and Exploration Institute, Jining 272100, China
| | - Zhi Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | | |
Collapse
|