1
|
Sun J, Yang W, Li M, Zhang S, Sun Y, Wang F. Metagenomic analysis reveals soil microbiome responses to microplastics and ZnO nanoparticles in an agricultural soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138164. [PMID: 40188549 DOI: 10.1016/j.jhazmat.2025.138164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
Both microplastics (MPs) and engineered nanoparticles are pervasive emerging contaminants that can produce combined toxicity to terrestrial ecosystems, yet their effects on soil microbiomes remain inadequately understood. Here, metagenomic analysis was employed to investigate the impacts of three common MPs [i.e., polyethylene (PE), polystyrene (PS), and polylactic acid (PLA)] and zinc oxide nanoparticles (nZnO) on soil microbiomes. Both MPs and nZnO significantly altered the taxonomic, genetic, and functional diversity of soil microbes, with distinct effects depending on dosage or type. Archaea, fungi, and viruses exhibited more pronounced responses compared to bacteria. Higher doses of MPs and nZnO reduced gene abundance for nutrient cycles like C degradation and N cycling, but enhanced CO2 fixation and S metabolism. nZnO consistently decreased the complexity, connectivity, and modularity of microbial networks; however, these negative effects could be mitigated by co-existing MPs, particularly at elevated doses. Notably, PLA (10 %, w/w) exhibited greater harm to fungal communities and increased negative interactions between microbes and nutrient-cycling genes, posing unique risks compared to PE and PS. These findings demonstrate that MPs and nZnO interact synergistically, complicating ecological predictions and emphasizing the need to consider pollutant interactions in ecological risk assessments, particularly for biodegradable MPs.
Collapse
Affiliation(s)
- Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Weiwei Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Mingwei Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China.
| |
Collapse
|
2
|
Qiu G, Wu M, Duan Z, Li N, Zhang C, Wang J, Yue J, Wang Q, Yu H. Mechanism of nanoplastics altering soil carbon turnover under freeze-thaw cycle. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137956. [PMID: 40107095 DOI: 10.1016/j.jhazmat.2025.137956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Nanoplastics (NPs) affect soil carbon (C) turnover, but their influence on this process through modifications in soil aggregate stability under freeze-thaw cycles remains unclear. In this study rare earth oxides (REOs) and C isotope (13C) labeling, combined with Soil Microstructure Scanning Computed Tomography (SMS-CT) and data modeling, were used to examine the relationship between soil aggregate turnover and C turnover under NPs. Compared with the control group, the total phase porosity and surface area of soil treated with NPs increased by 11.9 % and 30.9 %, respectively under freeze-thaw cycle. NPs exhibited a positive effect on the stability of soil aggregates, and the change in soil aggregate stability were attributed to shifts in aggregate composition. During the freeze-thaw cycle, the distribution of 13C in 0.5-1 mm aggregates decreased by 41.9 % compared with the control group, while it increased by 60.8 % in < 0.25 mm aggregates, indicating NPs redirected C toward microaggregates. Freeze-thaw cycles improved the connection between soil aggregates and C turnover, whereas NPs increased resistance of aggregate to freeze-thaw forces. This study provides new insights into the environmental effects of NPs on soil ecosystems and food security.
Collapse
Affiliation(s)
- Guankai Qiu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixuan Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxu Duan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chuanzhong Zhang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingying Wang
- Center for Agricultural Technology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jing Yue
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Quanying Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Hongwen Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
3
|
Yu Y, Wang Y, Tang DWS, Xue S, Liu M, Geissen V, Yang X. Soil C-N and microbial community were altered by polybutylene adipate terephthalate microplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138328. [PMID: 40253785 DOI: 10.1016/j.jhazmat.2025.138328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
The risks posed by biodegradable plastics to the plant-soil system have been increasingly studied due to potentially hazardous effects on soil properties and nutrient cycling. In this study, we investigated the effects of Poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) on soil carbon, nitrogen and microbial communities under different levels of contamination (0 % (control), 0.1 %, 0.2 %, 0.5 % and 1 %), in soils planted with soybean (Glycine max (Linn.) Merr.) and maize (Zea mays L.). The results showed that PBAT-MPs significantly altered soil dissolved organic carbon, dissolved organic nitrogen and nitrate nitrogen contents, and that these effects varied by plant type and growth stage (p < 0.05). PBAT-MPs significantly increased soil microbial biomass carbon and nitrogen for both plants (p < 0.05), except for microbial biomass nitrogen at the soybean flowering stage. PBAT-MPs altered the β-diversity and composition of bacterial and fungal communities, increasing the relative abundances of Proteobacteria but decreasing the relative abundances of Acidobacteriota for both plants. FAPROTAX analysis showed that PBAT-MPs had significant effects on functional bacterial groups related to the nitrogen and carbon cycle, that varied by plant type and growth stage. These results suggest that biodegradable microplastics may have plant-specific effects on soil microbial communities and microbial metabolism, and thereby influence soil carbon and nitrogen cycling.
Collapse
Affiliation(s)
- Yao Yu
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yan Wang
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen 6700AA, the Netherlands
| | - Darrell W S Tang
- Water, Energy, and Environmental Engineering, University of Oulu, Finland
| | - Sha Xue
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Mengjuan Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen 6700AA, the Netherlands
| | - Xiaomei Yang
- State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, Wageningen 6700AA, the Netherlands.
| |
Collapse
|
4
|
Men C, Pan Z, Liu J, Miao S, Yuan X, Zhang Y, Yang N, Cheng S, Li Z, Zuo J. Single and Combined Effects of Aged Polyethylene Microplastics and Cadmium on Nitrogen Species in Stormwater Filtration Systems: Perspectives from Treatment Efficiency, Key Microbial Communities, and Nitrogen Cycling Functional Genes. Molecules 2025; 30:1464. [PMID: 40286059 PMCID: PMC11990492 DOI: 10.3390/molecules30071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Microplastics and heavy metal contamination frequently co-occur in stormwater filtration systems, where their interactions may potentially compromise nitrogen removal. Current research on microplastics and Cd contamination predominantly focuses on soils and constructed wetlands, with limited attention given to stormwater filtration systems. In this study, the single and synergistic effects of aged polyethylene microplastics (PE) and cadmium (Cd) contamination in stormwater infiltration systems were investigated from perspectives of nitrogen removal, microbial community structures, and predicted functional genes in nitrogen cycling. Results showed that PE single contamination demonstrated stronger inhibition on NO3--N removal than Cd. Low-level PE contamination (PE content: 0.1% w/w) in Cd-contaminated systems showed stronger inhibitory effect than high-level PE contamination (PE content: 5% w/w). The mean NO3--N removal efficiency under combined Cd50 (Cd concentration: 50 μg/L) and PE5 contamination during the sixth rainstorm event was 1.04 to 34.68 times that under other contamination scenarios. Metagenomic analysis identified keystone genera (Saccharimonadales, Enterobacter, Aeromonas, etc.), and critical nitrogen transformation pathways (nitrate reduction to ammonium, denitrification, nitrogen fixation, and nitrification) govern system performance. PE and Cd contamination effects were most pronounced on nitrification/denitrification enzymes beyond nitrite oxidase and nitrate reductase. These mechanistic findings advance our understanding of co-contaminant interactions in stormwater filtration systems.
Collapse
Affiliation(s)
- Cong Men
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (C.M.)
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Iron and Steel Industry Environmental Protection, Central Research Institute of Building and Construction, Co., Ltd., MCC Group, Beijing 100088, China
| | - Zixin Pan
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (C.M.)
| | - Jiayao Liu
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (C.M.)
| | - Sun Miao
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xin Yuan
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Nina Yang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shikun Cheng
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (C.M.)
| | - Zifu Li
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (C.M.)
| | - Jiane Zuo
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
5
|
Wu W, Zhou X, Zhao Z, Wang C, Jiang H. Impacts of microplastic concentrations and sizes on the rheology properties of lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174294. [PMID: 38925378 DOI: 10.1016/j.scitotenv.2024.174294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The information concerning the effects of microplastics (MPs) on lake sediment environment, particularly structural properties, is still scant. This study aimed to investigate the effect of MPs characteristics (including concentration and size) on the sediment rheological properties, which affected sediment resuspension. After 60-day experiments, it was found that (0.5-2 %) MP in sediments decreased sediment viscosity, yield stress, and flow point shear stress by 14.7-38.4 %, 3.9-24.1 % and 13.5-36.5 %. Besides, sediment (with 50 μm MP addition) yield stress and flow point shear stress also dropped by 1.1-14.1 % and 9.6-12.9 % compared to 100 and 200 μm MP addition. The instability in sediment structure could be attributed to MP-induced EPS production and cation exchange capacity (CEC) changes. Accordingly, the decreases in rheological properties induced by different sizes and concentrations MPs might facilitate the sediments resuspension with wind and wave disturbances. The study shed light on previously overlooked environmental issues caused by MPs characteristics from a new perspective, thereby enhancing our understanding about the environmental behavior of MPs in lake sediment ecosystems.
Collapse
Affiliation(s)
- Wenbin Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zheng Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunliu Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
6
|
Wei X, Tian X, Zhao K, Yu X, Chen Q, Zhang L, Liao D, Penttinen P, Gu Y. Bacterial community in the buckwheat rhizosphere responds more sensitively to single microplastics in lead-contaminated soil compared to the arbuscular mycorrhizal fungi community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116683. [PMID: 38964061 DOI: 10.1016/j.ecoenv.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Soil pollution by microplastics (MPs), defined as plastic particles <5 mm, and heavy metals is a significant environmental issue. However, studies on the co-contamination effects of MPs and heavy metals on buckwheat rhizosphere microorganisms, especially on the arbuscular mycorrhizal fungi (AMF) community, are limited. We introduced low (0.01 g kg-1) and high doses of lead (Pb) (2 g kg-1) along with polyethylene (PE) and polylactic acid (PLA) MPs, both individually and in combination, into soil and assessed soil properties, buckwheat growth, and rhizosphere bacterial and AMF communities in a 40-day pot experiment. Notable alterations were observed in soil properties such as pH, alkaline hydrolyzable nitrogen (AN), and the available Pb (APb). High-dose Pb combined with PLA-MPs hindered buckwheat growth. Compared to the control, bacterial Chao1 richness and Shannon diversity were lower in the high dose Pb with PLA treatment, and differentially abundant bacteria were mainly detected in the high Pb dose treatments. Variations in bacterial communities correlated with APb, pH and AN. Overall, the AMF community composition remained largely consistent across all treatments. This phenomenon may be due to fungi having lower nutritional demands than bacteria. Stochastic processes played a relatively important role in the assembly of both bacterial and AMF communities. In summary, MPs appeared to amplify both the positive and negative effects of high Pb doses on the buckwheat rhizosphere bacteria.
Collapse
Affiliation(s)
- Xieluyao Wei
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianrui Tian
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Decong Liao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
7
|
Gao B, Gao F, Zhang X, Li Y, Yao H. Effects of different sizes of microplastic particles on soil respiration, enzyme activities, microbial communities, and seed germination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173100. [PMID: 38735330 DOI: 10.1016/j.scitotenv.2024.173100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Microplastics (MPs) are emerging pollutants of terrestrial ecosystems. The impacts of MP particle size on terrestrial systems remain unclear. The current study aimed to investigate the effects of six particle sizes (i.e., 4500, 1500, 500, 50, 5, and 0.5 μm) of polyethylene (PE) and polyvinyl chloride (PVC) on soil respiration, enzyme activity, bacteria, fungi, protists, and seed germination. MPs significantly promoted soil respiration, and the stimulating effects of PE were the strongest for medium and small-sized (0.5-1500 μm) particles, while those of PVC were the strongest for small particle sizes (0.5-50 μm). Large-sized (4500 μm) PE and all sizes of PVC significantly improved soil urease activity, while medium-sized (1500 μm) PVC significantly improved soil invertase activity. MPs altered the soil microbial community diversity, and the effects were especially pronounced for medium and small-sized (0.5-1500 μm) particles of PE and PVC on bacteria and fungi and small-sized (0.5 μm) particles of PE on protists. The impacts of MPs on bacteria and fungi were greater than on protists. The seed germination rate of Brassica chinensis decreased gradually with the decrease in PE MPs particle size. Therefore, to reduce the impact of MPs on soil ecosystems, effective measures should be taken to avoid the transformation of MPs into smaller particles in soil environmental management.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin 541004, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Fuyun Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Xingfeng Zhang
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st road, Wuhan 430205, People's Republic of China.
| |
Collapse
|
8
|
Aralappanavar VK, Mukhopadhyay R, Yu Y, Liu J, Bhatnagar A, Praveena SM, Li Y, Paller M, Adyel TM, Rinklebe J, Bolan NS, Sarkar B. Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171435. [PMID: 38438042 DOI: 10.1016/j.scitotenv.2024.171435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The harmful effects of microplastics (MPs) pollution in the soil ecosystem have drawn global attention in recent years. This paper critically reviews the effects of MPs on soil microbial diversity and functions in relation to nutrients and carbon cycling. Reports suggested that both plastisphere (MP-microbe consortium) and MP-contaminated soils had distinct and lower microbial diversity than that of non-contaminated soils. Alteration in soil physicochemical properties and microbial interactions within the plastisphere facilitated the enrichment of plastic-degrading microorganisms, including those involved in carbon (C) and nutrient cycling. MPs conferred a significant increase in the relative abundance of soil nitrogen (N)-fixing and phosphorus (P)-solubilizing bacteria, while decreased the abundance of soil nitrifiers and ammonia oxidisers. Depending on soil types, MPs increased bioavailable N and P contents and nitrous oxide emission in some instances. Furthermore, MPs regulated soil microbial functional activities owing to the combined toxicity of organic and inorganic contaminants derived from MPs and contaminants frequently encountered in the soil environment. However, a thorough understanding of the interactions among soil microorganisms, MPs and other contaminants still needs to develop. Since currently available reports are mostly based on short-term laboratory experiments, field investigations are needed to assess the long-term impact of MPs (at environmentally relevant concentration) on soil microorganisms and their functions under different soil types and agro-climatic conditions.
Collapse
Affiliation(s)
| | - Raj Mukhopadhyay
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh 15213, United States
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jingnan Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mike Paller
- Aquatic Biology Consultants, Inc., 35 Bungalow Ct., Aiken, SC 29803, USA
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Nanthi S Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6001, Australia
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
9
|
Wu W, Wang C, Jiang H. Impacts of microplastic contamination on the rheology properties of sediments in a eutrophic shallow lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123545. [PMID: 38346632 DOI: 10.1016/j.envpol.2024.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Microplastic (MP) contamination is a growing global concern, with lake sediments serving as a significant sink for MP due to both anthropogenic and natural activities. Given the increasing evidence of MP accumulation in sediments, it was crucial to assess their influence on sediment erosion resistance, which directly affected sediment resuspension. To fill this gap, this study focused on the effect of MP on the sediments rheological properties. After 60-day experiments, it was found that MP addition into sediments reduced sediment viscosity, yield stress, and flow point shear stress. Meanwhile, MPs also significantly altered sediment properties and extracellular polymer composition. MP addition reduced extracellular polymeric substances production and cation exchange capacity, which then worked together and led to a weak sediment structure. Seemingly, MPs changed fluid sediment characteristics and caused stronger fluidity under less shear force. Consequently, the accumulation of MP might facilitate the resuspension of sediments under smaller wind and wave disturbances. This study provided novel insights into the direct impact of MPs on sediment physical properties using rheology, thereby enhancing our understanding of the environmental behavior of MPs in lake ecosystems.
Collapse
Affiliation(s)
- Wenbin Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunliu Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|