1
|
Zhou M, Wang Y, Wang Y, Tu T, Zhang J, Wang X, Zhang G, Huang H, Yao B, Luo H, Qin X. Sequential pretreatment with hydroxyl radical and manganese peroxidase for the efficient enzymatic saccharification of corn stover. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:136. [PMID: 39558384 PMCID: PMC11575438 DOI: 10.1186/s13068-024-02583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND White rot fungi produce various reactive oxygen species and ligninolytic enzymes for lignocellulose deconstruction. However, their interactions during the deconstruction of lignocellulosic structural barriers for efficient enzymatic saccharification remain unclear. RESULTS Herein, the extracellular enzyme activities and secretomic analysis revealed the sequential expression of hydroxyl radical (⋅OH) and manganese peroxidases (MnPs) for lignocellulose deconstruction by the white rot fungus Irpex lacteus. Subsequently, in vitro functional studies found that ⋅OH possessed the ability to disrupt the smooth surface structure of corn stover, resulting in increased enzymatic saccharification and cellulose accessibility. Purified recombinant MnPs from I. lacteus were able to cleave the β-O-4 bond in phenolic and non-phenolic lignin model dimers without the help of any mediators. Furthermore, the sequential pretreatment of corn stover with ⋅OH and MnP exhibited significant synergistic effects, increasing enzymatic saccharification and cellulose accessibility by 2.9-fold and 1.8-fold, respectively. CONCLUSIONS These results proved for the first time the synergistic effects of ⋅OH and MnP pretreatment in improving the enzymatic saccharification and cellulose accessibility of corn stover. These findings also demonstrated the potential application of ⋅OH and MnP pretreatment for the efficient enzymatic saccharification of corn stover.
Collapse
Affiliation(s)
- Man Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guijie Zhang
- College of Animal Science and Technology, Ningxia University, Ningxia, 750001, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xing Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Kapich AN, Suzuki H, Hirth KC, Fernández-Fueyo E, Martínez AT, Houtman CJ, Hammel KE. The white rot basidiomycete Gelatoporia subvermispora produces fatty aldehydes that enable fungal manganese peroxidases to degrade recalcitrant lignin structures. Appl Environ Microbiol 2024; 90:e0204423. [PMID: 38483171 PMCID: PMC11022559 DOI: 10.1128/aem.02044-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 04/18/2024] Open
Abstract
The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids. However, the fatty acid alkylperoxyl radicals initially formed during this process are not reactive enough to attack the major structures in lignin. Here, we evaluate the hypothesis that the peroxidation of fatty aldehydes might provide a source of more reactive acylperoxyl radicals. We found that Gelatoporia subvermispora produced trans-2-nonenal, trans-2-octenal, and n-hexanal (a likely metabolite of trans-2,4-decadienal) during the incipient decay of aspen wood. Fungal fatty aldehydes supported the in vitro oxidation by MnPs of a nonphenolic lignin model dimer, and also of the monomeric model veratryl alcohol. Experiments with the latter compound showed that the reactions were partially inhibited by oxalate, the chelator that white rot fungi employ to detach Mn3+ from the MnP active site, but nevertheless proceeded at its physiological concentration of 1 mM. The addition of catalase was inhibitory, which suggests that the standard MnP catalytic cycle is involved in the oxidation of aldehydes. MnP oxidized trans-2-nonenal quantitatively to trans-2-nonenoic acid with the consumption of one O2 equivalent. The data suggest that when Mn3+ remains associated with MnP, it can oxidize aldehydes to their acyl radicals, and the latter subsequently add O2 to become ligninolytic acylperoxyl radicals.IMPORTANCEThe biodegradation of lignin by white rot fungi is essential for the natural recycling of plant biomass and has useful applications in lignocellulose bioprocessing. Although fungal peroxidases have a key role in ligninolysis, past work indicates that biodegradation is initiated by smaller, as yet unidentified oxidants that can infiltrate the substrate. Here, we present evidence that the peroxidase-catalyzed oxidation of naturally occurring fungal aldehydes may provide a source of ligninolytic free radical oxidants.
Collapse
Affiliation(s)
| | - Hideki Suzuki
- US Forest Products Laboratory, Madison, Wisconsin, USA
| | | | - Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas "Margarita Salas", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas "Margarita Salas", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Kenneth E. Hammel
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Moretti S, Goddard ML, Puca A, Lalevée J, Di Marco S, Mugnai L, Gelhaye E, Goodell B, Bertsch C, Farine S. First Description of Non-Enzymatic Radical-Generating Mechanisms Adopted by Fomitiporia mediterranea: An Unexplored Pathway of the White Rot Agent of the Esca Complex of Diseases. J Fungi (Basel) 2023; 9:jof9040498. [PMID: 37108951 PMCID: PMC10143301 DOI: 10.3390/jof9040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Fomitiporia mediterranea (Fmed) is the primary Basidiomycota species causing white rot in European vineyards affected by the Esca complex of diseases (ECD). In the last few years, an increasing number of studies have highlighted the importance of reconsidering the role of Fmed in ECD etiology, justifying an increase in research interest related to Fmed's biomolecular pathogenetic mechanisms. In the context of the current re-evaluation of the binary distinction (brown vs. white rot) between biomolecular decay pathways induced by Basidiomycota species, our research aims to investigate the potential for non-enzymatic mechanisms adopted by Fmed, which is typically described as a white rot fungus. Our results demonstrate how, in liquid culture reproducing nutrient restriction conditions often found in wood, Fmed can produce low molecular weight compounds, the hallmark of the non-enzymatic "chelator-mediated Fenton" (CMF) reaction, originally described for brown rot fungi. CMF reactions can redox cycle with ferric iron, generating hydrogen peroxide and ferrous iron, necessary reactants leading to hydroxyl radical (•OH) production. These observations led to the conclusion that a non-enzymatic radical-generating CMF-like mechanism may be utilized by Fmed, potentially together with an enzymatic pool, to contribute to degrading wood constituents; moreover, indicating significant variability between strains.
Collapse
Affiliation(s)
- Samuele Moretti
- Laboratoire Vigne, Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
| | - Mary-Lorène Goddard
- Laboratoire Vigne, Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, CEDEX, 68093 Mulhouse, France
| | - Alessandro Puca
- Laboratoire Vigne, Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, P.le delle Cascine, 28, 50144 Firenze, Italy
| | - Jacques Lalevée
- Institut de Science des Materiaux IS2M, Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
| | - Stefano Di Marco
- Institute of Bioeconomy, CNR, Via Gobetti, 101, 40129 Bologna, Italy
| | - Laura Mugnai
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, P.le delle Cascine, 28, 50144 Firenze, Italy
| | - Eric Gelhaye
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Barry Goodell
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Christophe Bertsch
- Laboratoire Vigne, Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
| | - Sibylle Farine
- Laboratoire Vigne, Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
| |
Collapse
|
4
|
Grąz M, Ruminowicz-Stefaniuk M, Jarosz-Wilkołazka A. Oxalic acid degradation in wood-rotting fungi. Searching for a new source of oxalate oxidase. World J Microbiol Biotechnol 2023; 39:13. [PMID: 36380124 PMCID: PMC9666339 DOI: 10.1007/s11274-022-03449-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Oxalate oxidase (EC 1.2.3.4) is an oxalate-decomposing enzyme predominantly found in plants but also described in basidiomycete fungi. In this study, we investigated 23 fungi to determine their capability of oxalic acid degradation. After analyzing their secretomes for the products of the oxalic acid-degrading enzyme activity, three groups were distinguished among the fungi studied. The first group comprised nine fungi classified as oxalate oxidase producers, as their secretome pattern revealed an increase in the hydrogen peroxide concentration, no formic acid, and a reduction in the oxalic acid content. The second group of fungi comprised eight fungi described as oxalate decarboxylase producers characterized by an increase in the formic acid level associated with a decrease in the oxalate content in their secretomes. In the secretomes of the third group of six fungi, no increase in formic acid or hydrogen peroxide contents was observed but a decline in the oxalate level was found. The intracellular activity of OXO in the mycelia of Schizophyllum commune, Trametes hirsuta, Gloeophyllum trabeum, Abortiporus biennis, Cerrena unicolor, Ceriosporopsis mediosetigera, Trametes sanguinea, Ceriporiopsis subvermispora, and Laetiporus sulphureus was confirmed by a spectrophotometric assay.
Collapse
Affiliation(s)
- Marcin Grąz
- grid.29328.320000 0004 1937 1303Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Marta Ruminowicz-Stefaniuk
- grid.29328.320000 0004 1937 1303Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Anna Jarosz-Wilkołazka
- grid.29328.320000 0004 1937 1303Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| |
Collapse
|
5
|
Cloning and Molecular Characterization of CmOxdc3 Coding for Oxalate Decarboxylase in the Mycoparasite Coniothyrium minitans. J Fungi (Basel) 2022; 8:jof8121304. [PMID: 36547637 PMCID: PMC9785797 DOI: 10.3390/jof8121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Coniothyrium minitans (Cm) is a mycoparasitic fungus of Sclerotinia sclerotiorum (Ss), the causal agent of Sclerotinia stem rot of oilseed rape. Ss can produce oxalic acid (OA) as a phytotoxin, whereas Cm can degrade OA, thereby nullifying the toxic effect of OA. Two oxalate decarboxylase (OxDC)-coding genes, CmOxdc1 and CmOxdc2, were cloned, and only CmOxdc1 was found to be partially responsible for OA degradation, implying that other OA-degrading genes may exist in Cm. This study cloned a novel OxDC gene (CmOxdc3) in Cm and its OA-degrading function was characterized by disruption and complementation of CmOxdc3. Sequence analysis indicated that, unlike CmOxdc1, CmOxdc3 does not have the signal peptide sequence, implying that CmOxDC3 may have no secretory capability. Quantitative RT-PCR showed that CmOxdc3 was up-regulated in the presence of OA, malonic acid and hydrochloric acid. Deletion of CmOxdc3 resulted in reduced capability to parasitize sclerotia of Ss. The polypeptide (CmOxDC3) encoded by CmOxdc3 was localized in cytoplasm and gathered in vacuoles in response to the extracellular OA. Taken together, our results demonstrated that CmOxdc3 is a novel gene responsible for OA degradation, which may work in a synergistic manner with CmOxdc1.
Collapse
|
6
|
Marinovíc M, Di Falco M, Aguilar Pontes MV, Gorzsás A, Tsang A, de Vries RP, Mäkelä MR, Hildén K. Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Obba rivulosa and Gelatoporia subvermispora. Biomolecules 2022; 12:biom12081017. [PMID: 35892327 PMCID: PMC9330253 DOI: 10.3390/biom12081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, during eight-week cultivation on solid spruce wood. Plant cell wall degrading carbohydrate-active enzymes (CAZymes) represented approximately 5% of the total proteins in both species. A core set of orthologous plant cell wall degrading CAZymes was shared between these species on spruce suggesting a conserved plant biomass degradation approach in this clade of basidiomycete fungi. However, differences in time-dependent production of plant cell wall degrading enzymes may be due to differences among initial growth rates of these species on solid spruce wood. The obtained results provide insight into specific enzymes and enzyme sets that are produced during the degradation of solid spruce wood in these fungi. These findings expand the knowledge on enzyme production in nature-mimicking conditions and may contribute to the exploitation of white rot fungi and their enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Mila Marinovíc
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland; (M.M.); (M.R.M.)
| | - Marcos Di Falco
- Centre for Structural and Functional Genomics, Concordia University, Montréal, QC H4B 1R6, Canada; (M.D.F.); (A.T.)
| | - Maria Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (M.V.A.P.); (R.P.d.V.)
| | - András Gorzsás
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden;
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montréal, QC H4B 1R6, Canada; (M.D.F.); (A.T.)
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (M.V.A.P.); (R.P.d.V.)
| | - Miia R. Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland; (M.M.); (M.R.M.)
| | - Kristiina Hildén
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland; (M.M.); (M.R.M.)
- Correspondence:
| |
Collapse
|
7
|
Combining Desirable Traits for a Good Biocontrol Strategy against Sclerotinia sclerotiorum. Microorganisms 2022; 10:microorganisms10061189. [PMID: 35744707 PMCID: PMC9228387 DOI: 10.3390/microorganisms10061189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
The fungal pathogen Sclerotinia sclerotiorum (Helotiales: Sclerotiniaceae) causes white mold, a disease that leads to substantial losses on a wide variety of hosts throughout the world. This economically important fungus affects yield and seed quality, and its control mostly relies on the use of environmentally damaging fungicides. This review aimed to present the latest discoveries on microorganisms and the biocontrol mechanisms used against white mold. A special focus is put on the identification of biocontrol desirable traits required for efficient disease control. A better understanding of the mechanisms involved and the conditions required for their action is also essential to ensure a successful implementation of biocontrol under commercial field conditions. In this review, a brief introduction on the pathogen, its disease cycle, and its main pathogenicity factors is presented, followed by a thorough description of the microorganisms that have so far demonstrated biocontrol potential against white mold and the mechanisms they use to achieve control. Antibiosis, induced systemic resistance, mycoparasitism, and hypovirulence are discussed. Finally, based on our actual knowledge, the best control strategies against S. sclerotiorum that are likely to succeed commercially are discussed, including combining biocontrol desirable traits of particular interest.
Collapse
|
8
|
Li F, Zhang J, Ma F, Chen Q, Xiao Q, Zhang X, Xie S, Yu H. Lytic polysaccharide monooxygenases promote oxidative cleavage of lignin and lignin-carbohydrate complexes during fungal degradation of lignocellulose. Environ Microbiol 2021; 23:4547-4560. [PMID: 34169632 DOI: 10.1111/1462-2920.15648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/06/2023]
Abstract
Overcoming lignocellulosic biomass recalcitrance, especially the cleavage of cross-linkages in lignin-carbohydrate complexes (LCCs) and lignin, is essential for both the carbon cycle and industrial biorefinery. Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in fungal polysaccharide oxidative degradation. Nevertheless, comprehensive analysis showed that LPMOs from a white-rot fungus, Pleurotus ostreatus, correlated well with the Fenton reaction and were involved in the degradation of recalcitrant nonpolysaccharide fractions in this research. Thus, LPMOs participated in the extracellular Fenton reaction by enhancing iron reduction in quinone redox cycling. A Fenton reaction system consisting of LPMOs, hydroquinone, and ferric iron can efficiently produce hydroxy radicals and then cleave LCCs or lignin linkages. This finding indicates that LPMOs are underestimated auxiliary enzymes in eliminating biomass recalcitrance.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialong Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qing Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuyun Xiao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
9
|
Storage temperature and time and its influence on feed quality of fungal treated wheat straw. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Preference of fresh and stored Ceriporiopsis subvermispora and Lentinula edodes treated wheat straw by goats. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R, Šantek B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 2018; 18:768-778. [PMID: 32624871 PMCID: PMC6999254 DOI: 10.1002/elsc.201800039] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 11/10/2022] Open
Abstract
This review aims to present current knowledge of the fungi involved in lignocellulose degradation with an overview of the various classes of lignocellulose-acting enzymes engaged in the pretreatment and saccharification step. Fungi have numerous applications and biotechnological potential for various industries including chemicals, fuel, pulp, and paper. The capability of fungi to degrade lignocellulose containing raw materials is due to their highly effective enzymatic system. Along with the hydrolytic enzymes consisting of cellulases and hemicellulases, responsible for polysaccharide degradation, they have a unique nonenzymatic oxidative system which together with ligninolytic enzymes is responsible for lignin modification and degradation. An overview of the enzymes classification is given by the Carbohydrate-Active enZymes (CAZy) database as the major database for the identification of the lignocellulolytic enzymes by their amino acid sequence similarity. Finally, the recently discovered novel class of recalcitrant polysaccharide degraders-lytic polysaccharide monooxygenases (LPMOs) are presented, because of these enzymes importance in the cellulose degradation process.
Collapse
Affiliation(s)
- Martina Andlar
- Department of Biochemical EngineeringFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| | - Tonči Rezić
- Department of Biochemical EngineeringFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| | - Nenad Marđetko
- Department of Biochemical EngineeringFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| | - Daniel Kracher
- Department of Food Sciences and TechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Roland Ludwig
- Department of Food Sciences and TechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Božidar Šantek
- Department of Biochemical EngineeringFaculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
| |
Collapse
|
12
|
Marinović M, Aguilar-Pontes MV, Zhou M, Miettinen O, de Vries RP, Mäkelä MR, Hildén K. Temporal transcriptome analysis of the white-rot fungus Obba rivulosa shows expression of a constitutive set of plant cell wall degradation targeted genes during growth on solid spruce wood. Fungal Genet Biol 2017; 112:47-54. [PMID: 28754284 DOI: 10.1016/j.fgb.2017.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
The basidiomycete white-rot fungus Obba rivulosa, a close relative of Gelatoporia (Ceriporiopsis) subvermispora, is an efficient degrader of softwood. The dikaryotic O. rivulosa strain T241i (FBCC949) has been shown to selectively remove lignin from spruce wood prior to depolymerization of plant cell wall polysaccharides, thus possessing potential in biotechnological applications such as pretreatment of wood in pulp and paper industry. In this work, we studied the time-course of the conversion of spruce by the genome-sequenced monokaryotic O. rivulosa strain 3A-2, which is derived from the dikaryon T241i, to get insight into transcriptome level changes during prolonged solid state cultivation. During 8-week cultivation, O. rivulosa expressed a constitutive set of genes encoding putative plant cell wall degrading enzymes. High level of expression of the genes targeted towards all plant cell wall polymers was detected at 2-week time point, after which majority of the genes showed reduced expression. This implicated non-selective degradation of lignin by the O. rivulosa monokaryon and suggests high variation between mono- and dikaryotic strains of the white-rot fungi with respect to their abilities to convert plant cell wall polymers.
Collapse
Affiliation(s)
- Mila Marinović
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Maria Victoria Aguilar-Pontes
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Otto Miettinen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland; Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miia R Mäkelä
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Kristiina Hildén
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
13
|
Grąz M, Jarosz-Wilkołazka A, Janusz G, Mazur A, Wielbo J, Koper P, Żebracki K, Kubik-Komar A. Transcriptome-based analysis of the saprophytic fungus Abortiporus biennis – response to oxalic acid. Microbiol Res 2017; 199:79-88. [DOI: 10.1016/j.micres.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/30/2017] [Accepted: 03/10/2017] [Indexed: 01/23/2023]
|
14
|
Chatha SAS, Asgher M, Iqbal HMN. Enzyme-based solutions for textile processing and dye contaminant biodegradation-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14005-14018. [PMID: 28401390 DOI: 10.1007/s11356-017-8998-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/05/2017] [Indexed: 02/05/2023]
Abstract
The textile industry, as recognized conformist and stake industry in the world's economy, is facing serious environmental challenges. In numerous industries, in practice, various chemical-based processes from initial sizing to final washing are fascinating harsh environment concerns. Some of these chemicals are corrosive to equipment and cause serious damage itself. Therefore, in the twenty-first century, chemical and allied industries quest a paradigm transition from traditional chemical-based concepts to a greener, sustainable, and environmentally friendlier catalytic alternative, both at the laboratory and industrial scales. Bio-based catalysis offers numerous benefits in the context of biotechnological industry and environmental applications. In recent years, bio-based processing has received particular interest among the scientist for inter- and multi-disciplinary investigations in the areas of natural and engineering sciences for the application in biotechnology sector at large and textile industries in particular. Different enzymatic processes such as chemical substitution have been developed or in the process of development for various textile wet processes. In this context, the present review article summarizes current developments and highlights those areas where environment-friendly enzymatic textile processing might play an increasingly important role in the textile industry. In the first part of the review, a special focus has been given to a comparative discussion of the chemical-based "classical/conventional" treatments and the modern enzyme-based treatment processes. Some relevant information is also reported to identify the major research gaps to be worked out in future.
Collapse
Affiliation(s)
- Shahzad Ali Shahid Chatha
- Natural Products/Synthetic Chemistry Laboratory, Department of Applied Chemistry & Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L, Mexico.
| |
Collapse
|
15
|
Zhu Y, Mahaney J, Jellison J, Cao J, Gressler J, Hoffmeister D, Goodell B. Fungal variegatic acid and extracellular polysaccharides promote the site-specific generation of reactive oxygen species. J Ind Microbiol Biotechnol 2016; 44:329-338. [PMID: 28032229 DOI: 10.1007/s10295-016-1889-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/14/2016] [Indexed: 01/19/2023]
Abstract
This study aims to clarify the role of variegatic acid (VA) in fungal attack by Serpula lacrymans, and also the generation and scavenging of reactive oxygen species (ROS) by the fungus. VA promotes a mediated Fenton reaction to generated ROS after oxalate solubilizes oxidized forms of iron. The fungal extracellular matrix (ECM) β-glucan scavenged ROS, and we propose this as a mechanism to protect the fungal hyphae while ROS generation is promoted to deconstruct the lignocellulose cell wall. A relatively high pH (4.4) also favored Fe(III) transfer from oxalate to VA as opposed to a lower pH (2.2) conditions, suggesting a pH-dependent Fe(III) transfer to VA employed by S. lacrymans. This permits ROS generation within the higher pH of the cell wall, while limiting ROS production near the fungal hyphae, while β-glucan from the fungal ECM scavenges ROS in the more acidic environments surrounding the fungal hyphae.
Collapse
Affiliation(s)
- Yuan Zhu
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China.,Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA, USA
| | - James Mahaney
- Edward Via Virginia College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Jody Jellison
- Center for Agriculture, Food and the Environment, 319 Stockbridge Hall, University of Massachusetts, Amherst, MA, USA
| | - Jinzhen Cao
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China.
| | - Julia Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Barry Goodell
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Chmelová D, Ondrejovič M. Purification and characterization of extracellular laccase produced by Ceriporiopsis subvermispora and decolorization of triphenylmethane dyes. J Basic Microbiol 2016; 56:1173-1182. [PMID: 27577103 DOI: 10.1002/jobm.201600152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/06/2016] [Indexed: 11/08/2022]
Abstract
Laccases of white-rot fungi provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. The aim of this study was production, characterization, and application of laccases from the white-rot fungus Ceriporiopsis subvermispora ATCC 90467 for decolorization of triphenylmethane dyes that could remain persistent in wastewater. Laccase was purified from a C. subvermispora culture by a four-step method resulting high specific activity of 2,571 U g-1 , 88-fold higher than crude laccase. Purified laccase (molecular weight 45 kDa) had the optimum activity at pH 2.0 and the optimum temperature 50 °C using ABTS as chromogenic substrate. Laccases efficiently decolorized triphenylmethane dyes such as Malachite Green (87.8%), Bromocresol Purple (71.6%), and Methyl Violet (68.1%) without redox mediator. However, decolorization percentage of hardly degradable triphenylmethane dyes such as Phenol Red, Bromophenol Blue, and Brilliant Blue R-250 was increased the presence of some low-molecular weight compounds (natural or synthetic redox mediators). Purified laccases were resistant to Mg2+ , Ca2+ , Ba2+ , Mn2+ , Fe2+ , Cu2+ , Zn2+ , and Sn2+ (10 mmol L-1 ). These findings suggest that laccases from C. subvermispora are able to decolorize triphenylmethane dyes without the negative influence of metal ions that can be found in wastewater.
Collapse
Affiliation(s)
- Daniela Chmelová
- Faculty of Natural Sciences, Department of Biotechnologies, University of SS. Cyril and Methodius, Trnava, Slovak Republic
| | - Miroslav Ondrejovič
- Faculty of Natural Sciences, Department of Biotechnologies, University of SS. Cyril and Methodius, Trnava, Slovak Republic
| |
Collapse
|
17
|
Ma J, Zhang K, Huang M, Hector SB, Liu B, Tong C, Liu Q, Zeng J, Gao Y, Xu T, Liu Y, Liu X, Zhu Y. Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:211. [PMID: 27761153 PMCID: PMC5054592 DOI: 10.1186/s13068-016-0623-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/24/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lignocellulolytic bacteria have revealed to be a promising source for biofuel production, yet the underlying mechanisms are still worth exploring. Our previous study inferred that the highly efficient lignocellulose degradation by bacterium Pantoea ananatis Sd-1 might involve Fenton chemistry (Fe2+ + H2O2 + H+ → Fe3+ + OH· + H2O), similar to that of white-rot and brown-rot fungi. The aim of this work is to investigate the existence of this Fenton-based oxidation mechanism in the rice straw degradation process of P. ananatis Sd-1. RESULTS After 3 days incubation of unpretreated rice straw with P. ananatis Sd-1, the percentage in weight reduction of rice straw as well as its cellulose, hemicellulose, and lignin components reached 46.7, 43.1, 42.9, and 37.9 %, respectively. The addition of different hydroxyl radical scavengers resulted in a significant decline (P < 0.001) in rice straw degradation. Pyrolysis gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy analysis revealed the consistency of chemical changes of rice straw components that exists between P. ananatis Sd-1 and Fenton reagent treatment. In addition to the increased total iron ion concentration throughout the rice straw decomposition process, the Fe3+-reducing capacity of P. ananatis Sd-1 was induced by rice straw and predominantly contributed by aromatic compounds metabolites. The transcript levels of the glucose-methanol-choline oxidoreductase gene related to hydrogen peroxide production were significantly up-regulated (at least P < 0.01) in rice straw cultures. Higher activities of GMC oxidoreductase and less hydrogen peroxide concentration in rice straw cultures relative to glucose cultures may be responsible for increasing rice straw degradation, which includes Fenton-like reactions. CONCLUSIONS Our results confirmed the Fenton chemistry-assisted degradation model in P. ananatis Sd-1. We are among the first to show that a Fenton-based oxidation mechanism exists in a bacteria degradation system, which provides a new perspective for how natural plant biomass is decomposed by bacteria. This degradative system may offer an alternative approach to the fungi system for lignocellulosic biofuels production.
Collapse
Affiliation(s)
- Jiangshan Ma
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Keke Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Mei Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Stanton B. Hector
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
- DNA Sequencing Unit, Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - Bin Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Chunyi Tong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Qian Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Ting Xu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Ying Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|
18
|
|
19
|
Khilyas IV, Ziganshin AM, Pannier AJ, Gerlach R. Effect of ferrihydrite on 2,4,6-trinitrotoluene biotransformation by an aerobic yeast. Biodegradation 2012; 24:631-44. [DOI: 10.1007/s10532-012-9611-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
20
|
Yadav S, Srivastava AK, Singh DP, Arora DK. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein. World J Microbiol Biotechnol 2012; 28:3197-206. [PMID: 22864600 DOI: 10.1007/s11274-012-1130-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 07/11/2012] [Indexed: 11/28/2022]
Abstract
Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10 mM of oxalic acid whereas only 15 isolates were grow at 50 mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23 %) after 60 min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.
Collapse
Affiliation(s)
- Shivani Yadav
- National Bureau of Agriculturally Important Microorganisms, Mau Nath Bhanjan, Uttar Pradesh 275101, India.
| | | | | | | |
Collapse
|
21
|
Wan C, Li Y. Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.04.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Mäkelä MR, Hildén K, Lundell TK. Oxalate decarboxylase: biotechnological update and prevalence of the enzyme in filamentous fungi. Appl Microbiol Biotechnol 2010; 87:801-14. [PMID: 20464388 DOI: 10.1007/s00253-010-2650-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/26/2010] [Accepted: 04/26/2010] [Indexed: 12/17/2022]
Abstract
Oxalate decarboxylase (ODC) is a manganese-containing, multimeric enzyme of the cupin protein superfamily. ODC is one of the three enzymes identified to decompose oxalic acid and oxalate, and within ODC catalysis, oxalate is split into formate and CO(2). This primarily intracellular enzyme is found in fungi and bacteria, and currently the best characterized enzyme is the Bacillus subtilis OxdC. Although the physiological role of ODC is yet unidentified, the feasibility of this enzyme in diverse biotechnological applications has been recognized for a long time. ODC could be exploited, e.g., in diagnostics, therapeutics, process industry, and agriculture. So far, the sources of ODC enzyme have been limited including only a few fungal and bacterial species. Thus, there is potential for identification and cloning of new ODC variants with diverse biochemical properties allowing e.g. more enzyme fitness to process applications. This review gives an insight to current knowledge on the biochemical characteristics of ODC, and the relevance of oxalate-converting enzymes in biotechnological applications. Particular emphasis is given to fungal enzymes and the inter-connection of ODC to fungal metabolism of oxalic acid.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology, Viikki Biocenter 1, P.O.B. 56, 00014, Helsinki, Finland.
| | | | | |
Collapse
|
23
|
Linoleic acid peroxidation and lignin degradation by enzymes produced by Ceriporiopsis subvermispora grown on wood or in submerged liquid cultures. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Xu C, Ma F, Zhang X. Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. J Biosci Bioeng 2009; 108:372-5. [DOI: 10.1016/j.jbiosc.2009.04.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/28/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
|
25
|
Tanaka H, Koike K, Itakura S, Enoki A. Degradation of wood and enzyme production by Ceriporiopsis subvermispora. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Izcapa-Treviño C, Loera O, Tomasini-Campocosio A, Esparza-García F, Salazar-Montoya JA, Díaz-Cervantes MD, Rodríguez-Vázquez R. Fenton (H2O2/Fe) reaction involved in Penicillium sp. culture for DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane)] degradation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2009; 44:798-804. [PMID: 20183092 DOI: 10.1080/03601230903238368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The purpose of this work was to demonstrate that a Fenton (H(2)O(2)/Fe) reaction was involved in DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane)] degradation in a culture of Penicillium sp. spiked with FeSO(4). A commercial DDT mixture (10% DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene], 30% o,p-DDT and 60% of p,p' -DDT) of 10 mg L(-1) was used. Hydrogen peroxide (H(2)O(2)), tartaric acid and oxalic acid were identified at 18 h in culture media, with and without added DDT; this correlated positively with lowering of pH from 5.8 to 2.7. Lower concentrations of oxalic acid and H(2)O(2) (7.9 and 52.6 mg L(-1), respectively) occurred in media with DDT at 30 h, in comparison to that one without DDT mixture (27.9 and 65.3 mg L(-1), respectively), at this time there was maximum degradation (87.7, 91.7 and 94.2%) for DDE, o,p-DDT and p,p'-DDT, respectively. We propose that the degradation of the DDT mixture by Penicillium sp. was through a Fenton reaction (H(2)O(2)/Fe) under acidic conditions produced in situ during the fungal culture amended with FeSO(4).
Collapse
Affiliation(s)
- Cecilia Izcapa-Treviño
- Departament of Biotechnology and Bioengineering, Center of Research and Advanced Studies of the National Polytechnic Institute, México
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Asgher M, Bhatti HN, Ashraf M, Legge RL. Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 2008; 19:771-83. [DOI: 10.1007/s10532-008-9185-3] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 03/14/2008] [Indexed: 11/28/2022]
|
29
|
Fackler K, Schwanninger M, Gradinger C, Hinterstoisser B, Messner K. Qualitative and quantitative changes of beech wood degraded by wood-rotting basidiomycetes monitored by Fourier transform infrared spectroscopic methods and multivariate data analysis. FEMS Microbiol Lett 2007; 271:162-9. [PMID: 17466029 DOI: 10.1111/j.1574-6968.2007.00712.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Beech wood (Fagus sylvatica L.) veneers were cultivated with white and brown rot fungi for up to 10 weeks. Fungal wood modification was traced with Fourier transform near infrared (FT-NIR) and Fourier transform mid infrared (FT-MIR) methods. Partial least square regression (PLSR) models to predict the total lignin content before and after fungal decay in the range between 17.0% and 26.6% were developed for FT-MIR transmission spectra as well as for FT-NIR reflectance spectra. Weight loss of the decayed samples between 0% and 38.2% could be estimated from the wood surface using individual PLSR models for white rot and brown rot fungi, and from a model including samples subjected to both degradation types.
Collapse
Affiliation(s)
- Karin Fackler
- Competence Center for Wood Composites and Wood Chemistry (Wood K plus), Linz, Austria.
| | | | | | | | | |
Collapse
|
30
|
Vicentim MP, Ferraz A. Enzyme production and chemical alterations of Eucalyptus grandis wood during biodegradation by Ceriporiopsis subvermispora in cultures supplemented with Mn2+, corn steep liquor and glucose. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Abstract
Various aspects of the participation of Fenton chemistry in biology and medicine are reviewed. Accumulated evidence shows that both hydroxyl radical and ferryl [Fe(IV)=O]2+ can be formed under a variety of Fenton and Fenton-like reactions. Some examples of metal-independent hydroxyl radical production are included. Extracellular Fenton reaction is illustrated by the white rot and brown rot wood-decaying fungi. The natural and practical utilization of catechol-driven Fenton reaction is also presented.
Collapse
|
32
|
Aguiar A, Ferraz A. Fe(3+)- and Cu(2+)-reduction by phenol derivatives associated with Azure B degradation in Fenton-like reactions. CHEMOSPHERE 2007; 66:947-54. [PMID: 16839591 DOI: 10.1016/j.chemosphere.2006.05.067] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 05/29/2006] [Accepted: 05/30/2006] [Indexed: 05/10/2023]
Abstract
Several phenol derivatives were evaluated regarding their capacities for Fe(3+) and Cu(2+) reduction. Selected compounds were assayed in Fenton-like reactions to degrade Azure B. 3,4-Dihydroxyphenylacetic, 2,5-dihydroxyterephtalic, gallic, chromotropic and 3-hydroxyanthranilic acids were the most efficient reducers of both metallic ions. The reaction system composed of 3-hydroxyanthranilic acid/Fe(3+)/H(2)O(2) was able to degrade Azure B at higher levels than the conventional Fenton reaction (87% and 75% of decolorization after 20min reaction, respectively). Gallic and syringic acids, catechol and vanillin induced Azure B degradations at lower levels as compared with conventional Fenton reaction. Azure B was not degraded in the presence of 10% (v/v) methanol or ethanol, which are OH radical scavengers, confirming the participation of this radical in the degradation reactions. Iron-containing reactions consumed substantially more H(2)O(2) than reactions containing copper. In iron-containing reactions, even the systems that caused a limited degradation of the dye consumed high concentrations of H(2)O(2). On the other hand, the reactions containing Fe(3+), H(2)O(2) and 3-hydroxyanthranilic acid or 3,4-dihydroxyphenylacetic acid were the most efficient on degradation of Azure B and also presented the highest H(2)O(2) consumption. These results indicate that H(2)O(2) consumption occurs even when the dye is not extensively degraded, suggesting that part of the generated OH radicals reacts with the own phenol derivative instead of Azure B.
Collapse
Affiliation(s)
- André Aguiar
- Departamento de Biotecnologia, Faculdade de Engenharia Química de Lorena, CP 116, 12600-970 Lorena, SP, Brazil
| | | |
Collapse
|
33
|
Elissetche JP, Ferraz A, Freer J, Mendonça R, Rodríguez J. Thiobarbituric acid reactive substances, Fe3+reduction and enzymatic activities in cultures ofGanoderma australegrowing onDrimys winteriwood. FEMS Microbiol Lett 2006; 260:112-8. [PMID: 16790026 DOI: 10.1111/j.1574-6968.2006.00304.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ganoderma australe is a basidiomycete responsible for a natural process of selective and extensive lignin degradation. Fatty acids, thiobarbituric acid reactive substances (TBARS), Fe3+-reduction and enzymatic activities were monitored in cultures of G. australe growing on Drimys winteri wood chips. Linoleic acid was de novo synthesized, and steadily increased during 12 weeks of cultivation. Part of the unsaturated fatty acids underwent peroxidation as TBARS accumulated with biodegradation time. TBARS accumulation was proportional to the wood weight and component losses. Manganese-dependent peroxidase and lignin peroxidase were not detected in the culture extracts, whereas laccase-induced oxidation of syringaldazine peaked after 2 weeks (104+/-9 micromol oxidized min(-1) kg(-1) of dry wood), subsequently decreasing. On the other hand, nonenzymatic Fe3+-reducing activity increased as a function of cultivation time and could be involved in the initiation of lipid peroxidation.
Collapse
Affiliation(s)
- Juan-Pedro Elissetche
- Renewable Resources Laboratory, Biotechnology Center, Universidad de Concepción, Concepción, Chile
| | | | | | | | | |
Collapse
|