1
|
Ahmad M, Ahmed I, Akhtar T, Amir M, Parveen S, Narayan E, Iqbal H, Rehman SU. Strategies and innovations for combatting diseases in animals (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2024; 6:55. [DOI: 10.3892/wasj.2024.270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Affiliation(s)
- Muhammad Ahmad
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Ishtiaq Ahmed
- La Trobe Rural Health School, Albury‑Wodonga Campus, La Trobe University, Wodonga, Victoria 3690, Australia
| | - Tayyaba Akhtar
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Amir
- School of Health and Society, Faculty of Arts, Social Sciences and Humanities, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Shakeela Parveen
- Department of Zoology, Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Edward Narayan
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland 4343, Australia
| | - Hafiz Iqbal
- Facultad de Agronomía, Campus Ciencias Agropecuarias, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo León, C.P. 66050, Mexico
| | - Saif Ur Rehman
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
2
|
Ogi-Gittins I, Hart WS, Song J, Nash RK, Polonsky J, Cori A, Hill EM, Thompson RN. A simulation-based approach for estimating the time-dependent reproduction number from temporally aggregated disease incidence time series data. Epidemics 2024; 47:100773. [PMID: 38781911 DOI: 10.1016/j.epidem.2024.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Tracking pathogen transmissibility during infectious disease outbreaks is essential for assessing the effectiveness of public health measures and planning future control strategies. A key measure of transmissibility is the time-dependent reproduction number, which has been estimated in real-time during outbreaks of a range of pathogens from disease incidence time series data. While commonly used approaches for estimating the time-dependent reproduction number can be reliable when disease incidence is recorded frequently, such incidence data are often aggregated temporally (for example, numbers of cases may be reported weekly rather than daily). As we show, commonly used methods for estimating transmissibility can be unreliable when the timescale of transmission is shorter than the timescale of data recording. To address this, here we develop a simulation-based approach involving Approximate Bayesian Computation for estimating the time-dependent reproduction number from temporally aggregated disease incidence time series data. We first use a simulated dataset representative of a situation in which daily disease incidence data are unavailable and only weekly summary values are reported, demonstrating that our method provides accurate estimates of the time-dependent reproduction number under such circumstances. We then apply our method to two outbreak datasets consisting of weekly influenza case numbers in 2019-20 and 2022-23 in Wales (in the United Kingdom). Our simple-to-use approach will allow accurate estimates of time-dependent reproduction numbers to be obtained from temporally aggregated data during future infectious disease outbreaks.
Collapse
Affiliation(s)
- I Ogi-Gittins
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK; Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| | - W S Hart
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - J Song
- Communicable Disease Surveillance Centre, Health Protection Division, Public Health Wales, Cardiff CF10 4BZ, UK
| | - R K Nash
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London W2 1PG, UK
| | - J Polonsky
- Geneva Centre of Humanitarian Studies, University of Geneva, Geneva 1205, Switzerland
| | - A Cori
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College, London W2 1PG, UK
| | - E M Hill
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK; Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| | - R N Thompson
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK.
| |
Collapse
|
3
|
Doran JWG, Thompson RN, Yates CA, Bowness R. Mathematical methods for scaling from within-host to population-scale in infectious disease systems. Epidemics 2023; 45:100724. [PMID: 37976680 DOI: 10.1016/j.epidem.2023.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/29/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Mathematical modellers model infectious disease dynamics at different scales. Within-host models represent the spread of pathogens inside an individual, whilst between-host models track transmission between individuals. However, pathogen dynamics at one scale affect those at another. This has led to the development of multiscale models that connect within-host and between-host dynamics. In this article, we systematically review the literature on multiscale infectious disease modelling according to PRISMA guidelines, dividing previously published models into five categories governing their methodological approaches (Garira (2017)), explaining their benefits and limitations. We provide a primer on developing multiscale models of infectious diseases.
Collapse
Affiliation(s)
- James W G Doran
- Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom.
| | - Robin N Thompson
- Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4 7AL, United Kingdom; Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, CV4 7AL, United Kingdom; Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Christian A Yates
- Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Ruth Bowness
- Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
4
|
Sessions Z, Bobrowski T, Martin HJ, Beasley JMT, Kothari A, Phares T, Li M, Alves VM, Scotti MT, Moorman NJ, Baric R, Tropsha A, Muratov EN. Praemonitus praemunitus: can we forecast and prepare for future viral disease outbreaks? FEMS Microbiol Rev 2023; 47:fuad048. [PMID: 37596064 PMCID: PMC10532129 DOI: 10.1093/femsre/fuad048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023] Open
Abstract
Understanding the origins of past and present viral epidemics is critical in preparing for future outbreaks. Many viruses, including SARS-CoV-2, have led to significant consequences not only due to their virulence, but also because we were unprepared for their emergence. We need to learn from large amounts of data accumulated from well-studied, past pandemics and employ modern informatics and therapeutic development technologies to forecast future pandemics and help minimize their potential impacts. While acknowledging the complexity and difficulties associated with establishing reliable outbreak predictions, herein we provide a perspective on the regions of the world that are most likely to be impacted by future outbreaks. We specifically focus on viruses with epidemic potential, namely SARS-CoV-2, MERS-CoV, DENV, ZIKV, MAYV, LASV, noroviruses, influenza, Nipah virus, hantaviruses, Oropouche virus, MARV, and Ebola virus, which all require attention from both the public and scientific community to avoid societal catastrophes like COVID-19. Based on our literature review, data analysis, and outbreak simulations, we posit that these future viral epidemics are unavoidable, but that their societal impacts can be minimized by strategic investment into basic virology research, epidemiological studies of neglected viral diseases, and antiviral drug discovery.
Collapse
Affiliation(s)
- Zoe Sessions
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Tesia Bobrowski
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Holli-Joi Martin
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Jon-Michael T Beasley
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Aneri Kothari
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Trevor Phares
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
- School of Chemistry, University of Louisville, 2320 S Brook St, Louisville, KY 40208, United States
| | - Michael Li
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Vinicius M Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Marcus T Scotti
- Department of Pharmaceutical Sciences, Federal University of Paraiba, Campus I Lot. Cidade Universitaria, PB, 58051-900, Brazil
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina, 116 Manning Drive, Chapel Hill, NC 27599, United States
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina, 401 Pittsboro St, Chapel Hill, NC 27599, United States
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| |
Collapse
|
5
|
Hoyer-Leitzel A, Iams S, Haslam-Hyde A, Zeeman M, Fefferman N. An immuno-epidemiological model for transient immune protection: A case study for viral respiratory infections. Infect Dis Model 2023; 8:855-864. [PMID: 37502609 PMCID: PMC10369473 DOI: 10.1016/j.idm.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/14/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
The dynamics of infectious disease in a population critically involves both within-host pathogen replication and between host pathogen transmission. While modeling efforts have recently explored how within-host dynamics contribute to shaping population transmission, fewer have explored how ongoing circulation of an epidemic infectious disease can impact within-host immunological dynamics. We present a simple, influenza-inspired model that explores the potential for re-exposure during a single, ongoing outbreak to shape individual immune response and epidemiological potential in non-trivial ways. We show how even a simplified system can exhibit complex ongoing dynamics and sensitive thresholds in behavior. We also find epidemiological stochasticity likely plays a critical role in reinfection or in the maintenance of individual immunological protection over time.
Collapse
Affiliation(s)
- A. Hoyer-Leitzel
- Department of Mathematics and Statistics, Mount Holyoke College, 50 College St, South Hadley, MA, 01075, USA
| | - S.M. Iams
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, USA
| | - A.J. Haslam-Hyde
- Department of Mathematics and Statistics, Boston University, USA
| | - M.L. Zeeman
- Department of Mathematics, Bowdoin College, USA
| | - N.H. Fefferman
- Dept of Mathematics & Dept of Ecology and Evolutionary Biology & NIMBioS, University of Tennessee, Knoxville, USA
| |
Collapse
|
6
|
Chen KF, Feng TW, Wu CC, Yunusa I, Liu SH, Yeh CF, Han ST, Mao CY, Harika D, Rothman R, Pekosz A. Diagnostic accuracy of clinical signs and symptoms of COVID-19: A systematic review and meta-analysis to investigate the different estimates in a different stage of the pandemic outbreak. J Glob Health 2023; 13:06026. [PMID: 37441773 PMCID: PMC10344460 DOI: 10.7189/jogh.13.06026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Background The coronavirus (COVID-19) pandemic caused enormous adverse socioeconomic impacts worldwide. Evidence suggests that the diagnostic accuracy of clinical features of COVID-19 may vary among different populations. Methods We conducted a systematic review and meta-analysis of studies from PubMed, Embase, Cochrane Library, Google Scholar, and the WHO Global Health Library for studies evaluating the accuracy of clinical features to predict and prognosticate COVID-19. We used the National Institutes of Health Quality Assessment Tool to evaluate the risk of bias, and the random-effects approach to obtain pooled prevalence, sensitivity, specificity, and likelihood ratios. Results Among the 189 included studies (53 659 patients), fever, cough, diarrhoea, dyspnoea, and fatigue were the most reported predictors. In the later stage of the pandemic, the sensitivity in predicting COVID-19 of fever and cough decreased, while the sensitivity of other symptoms, including sputum production, sore throat, myalgia, fatigue, dyspnoea, headache, and diarrhoea, increased. A combination of fever, cough, fatigue, hypertension, and diabetes mellitus increases the odds of having a COVID-19 diagnosis in patients with a positive test (positive likelihood ratio (PLR) = 3.06)) and decreases the odds in those with a negative test (negative likelihood ratio (NLR) = 0.59)). A combination of fever, cough, sputum production, myalgia, fatigue, and dyspnea had a PLR = 10.44 and an NLR = 0.16 in predicting severe COVID-19. Further updating the umbrella review (1092 studies, including 3 342 969 patients) revealed the different prevalence of symptoms in different stages of the pandemic. Conclusions Understanding the possible different distributions of predictors is essential for screening for potential COVID-19 infection and severe outcomes. Understanding that the prevalence of symptoms may change with time is important to developing a prediction model.
Collapse
Affiliation(s)
- Kuan-Fu Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tsai-Wei Feng
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chin-Chieh Wu
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ismaeel Yunusa
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina College of Pharmacy, Columbia, South Carolina, USA
- Harvard T.H Chan School of Public Health, Boston, Massachusetts, USA
| | - Su-Hsun Liu
- Health Management Center, Far Eastern Memorial Hospital, Taipei, Taiwan
- School of Medicine, International Health Program, National Yang Ming University, Taipei, Taiwan
| | - Chun-Fu Yeh
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Tsung Han
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Yang Mao
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Dasari Harika
- Harvard T.H Chan School of Public Health, Boston, Massachusetts, USA
| | - Richard Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Lovell-Read FA, Parnell S, Cunniffe NJ, Thompson RN. Using 'sentinel' plants to improve early detection of invasive plant pathogens. PLoS Comput Biol 2023; 19:e1010884. [PMID: 36730434 PMCID: PMC9928126 DOI: 10.1371/journal.pcbi.1010884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/14/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Infectious diseases of plants present an ongoing and increasing threat to international biosecurity, with wide-ranging implications. An important challenge in plant disease management is achieving early detection of invading pathogens, which requires effective surveillance through the implementation of appropriate monitoring programmes. However, when monitoring relies on visual inspection as a means of detection, surveillance is often hindered by a long incubation period (delay from infection to symptom onset) during which plants may be infectious but not displaying visible symptoms. 'Sentinel' plants-alternative susceptible host species that display visible symptoms of infection more rapidly-could be introduced to at-risk populations and included in monitoring programmes to act as early warning beacons for infection. However, while sentinel hosts exhibit faster disease progression and so allow pathogens to be detected earlier, this often comes at a cost: faster disease progression typically promotes earlier onward transmission. Here, we construct a computational model of pathogen transmission to explore this trade-off and investigate how including sentinel plants in monitoring programmes could facilitate earlier detection of invasive plant pathogens. Using Xylella fastidiosa infection in Olea europaea (European olive) as a current high profile case study, for which Catharanthus roseus (Madagascan periwinkle) is a candidate sentinel host, we apply a Bayesian optimisation algorithm to determine the optimal number of sentinel hosts to introduce for a given sampling effort, as well as the optimal division of limited surveillance resources between crop and sentinel plants. Our results demonstrate that including sentinel plants in monitoring programmes can reduce the expected prevalence of infection upon outbreak detection substantially, increasing the feasibility of local outbreak containment.
Collapse
Affiliation(s)
| | - Stephen Parnell
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Robin N. Thompson
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
8
|
OUEMBA TASSÉ AJ, TSANOU B, LUBUMA J, WOUKENG JEANLOUIS, SIGNING FRANCIS. EBOLA VIRUS DISEASE DYNAMICS WITH SOME PREVENTIVE MEASURES: A CASE STUDY OF THE 2018–2020 KIVU OUTBREAK. J BIOL SYST 2022. [DOI: 10.1142/s0218339022500048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To fight against Ebola virus disease, several measures have been adopted. Among them, isolation, safe burial and vaccination occupy a prominent place. In this paper, we present a model which takes into account these three control strategies as well as the indirect transmission through a polluted environment. The asymptotic behavior of our model is achieved. Namely, we determine a threshold value [Formula: see text] of the control reproduction number [Formula: see text], below which the disease is eliminated in the long run. Whenever the value of [Formula: see text] ranges from [Formula: see text] and 1, we prove the existence of a backward bifurcation phenomenon, which corresponds to the case, where a locally asymptotically stable positive equilibrium co-exists with the disease-free equilibrium, which is also locally asymptotically stable. The existence of this bifurcation complicates the control of Ebola, since the requirement of [Formula: see text] below one, although necessary, is no longer sufficient for the elimination of Ebola, more efforts need to be deployed. When the value of [Formula: see text] is greater than one, we prove the existence of a unique endemic equilibrium, locally asymptotically stable. That is the disease may persist and become endemic. Numerically, we fit our model to the reported data for the 2018–2020 Kivu Ebola outbreak which occurred in Democratic Republic of Congo. Through the sensitivity analysis of the control reproduction number, we prove that the transmission rates of infected alive who are outside hospital are the most influential parameters. Numerically, we explore the usefulness of isolation, safe burial combined with vaccination and investigate the importance to combine the latter control strategies to the educational campaigns or/and case finding.
Collapse
Affiliation(s)
- A. J. OUEMBA TASSÉ
- Department of Mathematics and Computer Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | - B. TSANOU
- Department of Mathematics and Computer Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
- Department of Science, Mathematics and Applied Mathematics, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
- IRD Sorbonne University, UMMISCO, F-93143, Bondy, France
| | - J. LUBUMA
- School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa
| | - JEAN LOUIS WOUKENG
- Department of Mathematics and Computer Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | - FRANCIS SIGNING
- Department of Mathematics and Computer Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| |
Collapse
|
9
|
Hart WS, Maini PK, Thompson RN. High infectiousness immediately before COVID-19 symptom onset highlights the importance of continued contact tracing. eLife 2021; 10:e65534. [PMID: 33899740 PMCID: PMC8195606 DOI: 10.7554/elife.65534] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/25/2021] [Indexed: 01/03/2023] Open
Abstract
Background Understanding changes in infectiousness during SARS-COV-2 infections is critical to assess the effectiveness of public health measures such as contact tracing. Methods Here, we develop a novel mechanistic approach to infer the infectiousness profile of SARS-COV-2-infected individuals using data from known infector-infectee pairs. We compare estimates of key epidemiological quantities generated using our mechanistic method with analogous estimates generated using previous approaches. Results The mechanistic method provides an improved fit to data from SARS-CoV-2 infector-infectee pairs compared to commonly used approaches. Our best-fitting model indicates a high proportion of presymptomatic transmissions, with many transmissions occurring shortly before the infector develops symptoms. Conclusions High infectiousness immediately prior to symptom onset highlights the importance of continued contact tracing until effective vaccines have been distributed widely, even if contacts from a short time window before symptom onset alone are traced. Funding Engineering and Physical Sciences Research Council (EPSRC).
Collapse
Affiliation(s)
- William S Hart
- Mathematical Institute, University of OxfordOxfordUnited Kingdom
| | - Philip K Maini
- Mathematical Institute, University of OxfordOxfordUnited Kingdom
| | - Robin N Thompson
- Mathematics Institute, University of WarwickCoventryUnited Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of WarwickCoventryUnited Kingdom
| |
Collapse
|
10
|
Linton NM, Akhmetzhanov AR, Nishiura H. Localized end-of-outbreak determination for coronavirus disease 2019 (COVID-19): examples from clusters in Japan. Int J Infect Dis 2021; 105:286-292. [PMID: 33662600 PMCID: PMC7919508 DOI: 10.1016/j.ijid.2021.02.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES End-of-outbreak declarations are an important component of outbreak response because they indicate that public health and social interventions may be relaxed or lapsed. Our study aimed to assess end-of-outbreak probabilities for clusters of coronavirus disease 2019 (COVID-19) cases detected during the first wave of the COVID-19 pandemic in Japan. METHODS A statistical model for end-of-outbreak determination, which accounted for reporting delays for new cases, was computed. Four clusters, representing different social contexts and time points during the first wave of the epidemic, were selected and their end-of-outbreak probabilities were evaluated. RESULTS The speed of end-of-outbreak determination was most closely tied to outbreak size. Notably, accounting underascertainment of cases led to later end-of-outbreak determinations. In addition, end-of-outbreak determination was closely related to estimates of case dispersionk and the effective reproduction number Re. Increasing local transmission (Re>1) leads to greater uncertainty in the probability estimates. CONCLUSIONS When public health measures are effective, lowerRe (less transmission on average) and larger k (lower risk of superspreading) will be in effect, and end-of-outbreak determinations can be declared with greater confidence. The application of end-of-outbreak probabilities can help distinguish between local extinction and low levels of transmission, and communicating these end-of-outbreak probabilities can help inform public health decision making with regard to the appropriate use of resources.
Collapse
Affiliation(s)
- Natalie M Linton
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan; Kyoto University School of Public Health, Yoshidakonoecho, Sakyoku, Kyoto, 606-8501, Japan.
| | - Andrei R Akhmetzhanov
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan; College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei, 10055, Taiwan.
| | - Hiroshi Nishiura
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan; Kyoto University School of Public Health, Yoshidakonoecho, Sakyoku, Kyoto, 606-8501, Japan.
| |
Collapse
|
11
|
Janik E, Ceremuga M, Niemcewicz M, Bijak M. Dangerous Pathogens as a Potential Problem for Public Health. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E591. [PMID: 33172013 PMCID: PMC7694656 DOI: 10.3390/medicina56110591] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022]
Abstract
Pathogens are various organisms, such as viruses, bacteria, fungi, and protozoa, which can cause severe illnesses to their hosts. Throughout history, pathogens have accompanied human populations and caused various epidemics. One of the most significant outbreaks was the Black Death, which occurred in the 14th century and caused the death of one-third of Europe's population. Pathogens have also been studied for their use as biological warfare agents by the former Soviet Union, Japan, and the USA. Among bacteria and viruses, there are high priority agents that have a significant impact on public health. Bacillus anthracis, Francisella tularensis, Yersinia pestis, Variola virus, Filoviruses (Ebola, Marburg), Arenoviruses (Lassa), and influenza viruses are included in this group of agents. Outbreaks and infections caused by them might result in social disruption and panic, which is why special operations are needed for public health preparedness. Antibiotic-resistant bacteria that significantly impede treatment and recovery of patients are also valid threats. Furthermore, recent events related to the massive spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an example of how virus-induced diseases cannot be ignored. The impact of outbreaks, such as SARS-CoV-2, have had far-reaching consequences beyond public health. The economic losses due to lockdowns are difficult to estimate, but it would take years to restore countries to pre-outbreak status. For countries affected by the 2019 coronavirus disease (COVID-19), their health systems have been overwhelmed, resulting in an increase in the mortality rate caused by diseases or injuries. Furthermore, outbreaks, such as SARS-CoV-2, will induce serious, wide-ranging (and possibly long-lasting) psychological problems among, not only health workers, but ordinary citizens (this is due to isolation, quarantine, etc.). The aim of this paper is to present the most dangerous pathogens, as well as general characterizations, mechanisms of action, and treatments.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.)
| |
Collapse
|
12
|
Thompson RN, Gilligan CA, Cunniffe NJ. Will an outbreak exceed available resources for control? Estimating the risk from invading pathogens using practical definitions of a severe epidemic. J R Soc Interface 2020; 17:20200690. [PMID: 33171074 PMCID: PMC7729054 DOI: 10.1098/rsif.2020.0690] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Forecasting whether or not initial reports of disease will be followed by a severe epidemic is an important component of disease management. Standard epidemic risk estimates involve assuming that infections occur according to a branching process and correspond to the probability that the outbreak persists beyond the initial stochastic phase. However, an alternative assessment is to predict whether or not initial cases will lead to a severe epidemic in which available control resources are exceeded. We show how this risk can be estimated by considering three practically relevant potential definitions of a severe epidemic; namely, an outbreak in which: (i) a large number of hosts are infected simultaneously; (ii) a large total number of infections occur; and (iii) the pathogen remains in the population for a long period. We show that the probability of a severe epidemic under these definitions often coincides with the standard branching process estimate for the major epidemic probability. However, these practically relevant risk assessments can also be different from the major epidemic probability, as well as from each other. This holds in different epidemiological systems, highlighting that careful consideration of how to classify a severe epidemic is vital for accurate epidemic risk quantification.
Collapse
Affiliation(s)
- R. N. Thompson
- Mathematical Institute, University of Oxford, Oxford, UK
- Christ Church, University of Oxford, Oxford, UK
| | - C. A. Gilligan
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - N. J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Hart WS, Maini PK, Yates CA, Thompson RN. A theoretical framework for transitioning from patient-level to population-scale epidemiological dynamics: influenza A as a case study. J R Soc Interface 2020; 17:20200230. [PMID: 32400267 DOI: 10.1098/rsif.2020.0230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multi-scale epidemic forecasting models have been used to inform population-scale predictions with within-host models and/or infection data collected in longitudinal cohort studies. However, most multi-scale models are complex and require significant modelling expertise to run. We formulate an alternative multi-scale modelling framework using a compartmental model with multiple infected stages. In the large-compartment limit, our easy-to-use framework generates identical results compared to previous more complicated approaches. We apply our framework to the case study of influenza A in humans. By using a viral dynamics model to generate synthetic patient-level data, we explore the effects of limited and inaccurate patient data on the accuracy of population-scale forecasts. If infection data are collected daily, we find that a cohort of at least 40 patients is required for a mean population-scale forecasting error below 10%. Forecasting errors may be reduced by including more patients in future cohort studies or by increasing the frequency of observations for each patient. Our work, therefore, provides not only an accessible epidemiological modelling framework but also an insight into the data required for accurate forecasting using multi-scale models.
Collapse
Affiliation(s)
- W S Hart
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - P K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - C A Yates
- Centre for Mathematical Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - R N Thompson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK.,Christ Church, University of Oxford, Saint Aldate's, Oxford OX1 1DP, UK
| |
Collapse
|
14
|
Thompson RN, Brooks-Pollock E. Detection, forecasting and control of infectious disease epidemics: modelling outbreaks in humans, animals and plants. Philos Trans R Soc Lond B Biol Sci 2020; 374:20190038. [PMID: 31056051 DOI: 10.1098/rstb.2019.0038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The 1918 influenza pandemic is one of the most devastating infectious disease epidemics on record, having caused approximately 50 million deaths worldwide. Control measures, including prohibiting non-essential gatherings as well as closing cinemas and music halls, were applied with varying success and limited knowledge of transmission dynamics. One hundred years later, following developments in the field of mathematical epidemiology, models are increasingly used to guide decision-making and devise appropriate interventions that mitigate the impacts of epidemics. Epidemiological models have been used as decision-making tools during outbreaks in human, animal and plant populations. However, as the subject has developed, human, animal and plant disease modelling have diverged. Approaches have been developed independently for pathogens of each host type, often despite similarities between the models used in these complementary fields. With the increased importance of a One Health approach that unifies human, animal and plant health, we argue that more inter-disciplinary collaboration would enhance each of the related disciplines. This pair of theme issues presents research articles written by human, animal and plant disease modellers. In this introductory article, we compare the questions pertinent to, and approaches used by, epidemiological modellers of human, animal and plant pathogens, and summarize the articles in these theme issues. We encourage future collaboration that transcends disciplinary boundaries and links the closely related areas of human, animal and plant disease epidemic modelling. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Collapse
Affiliation(s)
- Robin N Thompson
- 1 Mathematical Institute, University of Oxford , Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG , UK.,2 Department of Zoology, University of Oxford , Peter Medawar Building, South Parks Road, Oxford OX1 3SY , UK.,3 Christ Church, University of Oxford , St Aldates, Oxford OX1 1DP , UK
| | - Ellen Brooks-Pollock
- 4 Bristol Veterinary School, University of Bristol , Langford BS40 5DU , UK.,5 National Institute for Health Research, Health Protection Research Unit in Evaluation of Interventions, Bristol Medical School , Bristol BS8 2BN , UK
| |
Collapse
|
15
|
Simulation and numerical solution of fractional order Ebola virus model with novel technique. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Thompson RN, Stockwin JE, van Gaalen RD, Polonsky JA, Kamvar ZN, Demarsh PA, Dahlqwist E, Li S, Miguel E, Jombart T, Lessler J, Cauchemez S, Cori A. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics 2019; 29:100356. [PMID: 31624039 PMCID: PMC7105007 DOI: 10.1016/j.epidem.2019.100356] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Accurate estimation of the parameters characterising infectious disease transmission is vital for optimising control interventions during epidemics. A valuable metric for assessing the current threat posed by an outbreak is the time-dependent reproduction number, i.e. the expected number of secondary cases caused by each infected individual. This quantity can be estimated using data on the numbers of observed new cases at successive times during an epidemic and the distribution of the serial interval (the time between symptomatic cases in a transmission chain). Some methods for estimating the reproduction number rely on pre-existing estimates of the serial interval distribution and assume that the entire outbreak is driven by local transmission. Here we show that accurate inference of current transmissibility, and the uncertainty associated with this estimate, requires: (i) up-to-date observations of the serial interval to be included, and; (ii) cases arising from local transmission to be distinguished from those imported from elsewhere. We demonstrate how pathogen transmissibility can be inferred appropriately using datasets from outbreaks of H1N1 influenza, Ebola virus disease and Middle-East Respiratory Syndrome. We present a tool for estimating the reproduction number in real-time during infectious disease outbreaks accurately, which is available as an R software package (EpiEstim 2.2). It is also accessible as an interactive, user-friendly online interface (EpiEstim App), permitting its use by non-specialists. Our tool is easy to apply for assessing the transmission potential, and hence informing control, during future outbreaks of a wide range of invading pathogens.
Collapse
Affiliation(s)
- R N Thompson
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK; Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK; Christ Church, University of Oxford, St Aldates, Oxford OX1 1DP, UK.
| | - J E Stockwin
- Lady Margaret Hall, University of Oxford, Norham Gardens, Oxford OX2 6QA, UK
| | - R D van Gaalen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, the Netherlands
| | - J A Polonsky
- World Health Organization, Avenue Appia, Geneva 1202, Switzerland; Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, Geneva 1211, Switzerland
| | - Z N Kamvar
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, Faculty of Medicine, London W2 1PG, UK
| | - P A Demarsh
- The Surveillance Lab, McGill University, 1140 Pine Avenue West, Montreal H3A 1A3, Canada; Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, 130 Colonnade Road, Ottawa, Ontario, K1A 0K9, Canada
| | - E Dahlqwist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - S Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - E Miguel
- MIVEGEC, IRD, University of Montpellier, CNRS, Montpellier, France
| | - T Jombart
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, Faculty of Medicine, London W2 1PG, UK; Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - J Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - S Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris 75015, France
| | - A Cori
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, Faculty of Medicine, London W2 1PG, UK
| |
Collapse
|
17
|
Thompson RN, Stockwin JE, van Gaalen RD, Polonsky JA, Kamvar ZN, Demarsh PA, Dahlqwist E, Li S, Miguel E, Jombart T, Lessler J, Cauchemez S, Cori A. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics 2019. [PMID: 31624039 DOI: 10.5281/zenodo.3685977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Accurate estimation of the parameters characterising infectious disease transmission is vital for optimising control interventions during epidemics. A valuable metric for assessing the current threat posed by an outbreak is the time-dependent reproduction number, i.e. the expected number of secondary cases caused by each infected individual. This quantity can be estimated using data on the numbers of observed new cases at successive times during an epidemic and the distribution of the serial interval (the time between symptomatic cases in a transmission chain). Some methods for estimating the reproduction number rely on pre-existing estimates of the serial interval distribution and assume that the entire outbreak is driven by local transmission. Here we show that accurate inference of current transmissibility, and the uncertainty associated with this estimate, requires: (i) up-to-date observations of the serial interval to be included, and; (ii) cases arising from local transmission to be distinguished from those imported from elsewhere. We demonstrate how pathogen transmissibility can be inferred appropriately using datasets from outbreaks of H1N1 influenza, Ebola virus disease and Middle-East Respiratory Syndrome. We present a tool for estimating the reproduction number in real-time during infectious disease outbreaks accurately, which is available as an R software package (EpiEstim 2.2). It is also accessible as an interactive, user-friendly online interface (EpiEstim App), permitting its use by non-specialists. Our tool is easy to apply for assessing the transmission potential, and hence informing control, during future outbreaks of a wide range of invading pathogens.
Collapse
Affiliation(s)
- R N Thompson
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK; Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK; Christ Church, University of Oxford, St Aldates, Oxford OX1 1DP, UK.
| | - J E Stockwin
- Lady Margaret Hall, University of Oxford, Norham Gardens, Oxford OX2 6QA, UK
| | - R D van Gaalen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, the Netherlands
| | - J A Polonsky
- World Health Organization, Avenue Appia, Geneva 1202, Switzerland; Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, Geneva 1211, Switzerland
| | - Z N Kamvar
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, Faculty of Medicine, London W2 1PG, UK
| | - P A Demarsh
- The Surveillance Lab, McGill University, 1140 Pine Avenue West, Montreal H3A 1A3, Canada; Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, 130 Colonnade Road, Ottawa, Ontario, K1A 0K9, Canada
| | - E Dahlqwist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - S Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - E Miguel
- MIVEGEC, IRD, University of Montpellier, CNRS, Montpellier, France
| | - T Jombart
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, Faculty of Medicine, London W2 1PG, UK; Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - J Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - S Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris 75015, France
| | - A Cori
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, Faculty of Medicine, London W2 1PG, UK
| |
Collapse
|