1
|
Onat F, Andersson M, Çarçak N. The Role of Glial Cells in the Pathophysiology of Epilepsy. Cells 2025; 14:94. [PMID: 39851521 PMCID: PMC11763453 DOI: 10.3390/cells14020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly impacting individuals worldwide. Current treatments are often ineffective for a third of patients and can cause severe side effects, necessitating new therapeutic approaches. Glial cells, particularly astrocytes, microglia, and oligodendrocytes, are emerging as crucial targets in epilepsy management. Astrocytes regulate neuronal homeostasis, excitability, and synaptic plasticity, playing key roles in maintaining the blood-brain barrier (BBB) and mediating neuroinflammatory responses. Dysregulated astrocyte functions, such as reactive astrogliosis, can lead to abnormal neuronal activity and seizure generation. They release gliotransmitters, cytokines, and chemokines that may exacerbate or mitigate seizures. Microglia, the innate immune cells of the CNS, contribute to neuroinflammation, glutamate excitotoxicity, and the balance between excitatory and inhibitory neurotransmission, underscoring their dual role in seizure promotion and protection. Meanwhile, oligodendrocytes, primarily involved in myelination, also modulate axonal excitability and contribute to the neuron-glia network underlying seizure pathogenesis. Understanding the dynamic interactions of glial cells with neurons provides promising avenues for novel epilepsy therapies. Targeting these cells may lead to improved seizure control and better clinical outcomes, offering hope for patients with refractory epilepsy.
Collapse
Affiliation(s)
- Filiz Onat
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
| | - My Andersson
- Department of Experimental Medicine, Faculty of Medicine, Lund University, 221 00 Lund, Sweden;
| | - Nihan Çarçak
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34452 Istanbul, Türkiye
| |
Collapse
|
2
|
Dervinis M, Crunelli V. Spike-and-wave discharges of absence seizures in a sleep waves-constrained corticothalamic model. CNS Neurosci Ther 2024; 30:e14204. [PMID: 37032628 PMCID: PMC10915988 DOI: 10.1111/cns.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
AIMS Recurrent network activity in corticothalamic circuits generates physiological and pathological EEG waves. Many computer models have simulated spike-and-wave discharges (SWDs), the EEG hallmark of absence seizures (ASs). However, these models either provided detailed simulated activity only in a selected territory (i.e., cortical or thalamic) or did not test whether their corticothalamic networks could reproduce the physiological activities that are generated by these circuits. METHODS Using a biophysical large-scale corticothalamic model that reproduces the full extent of EEG sleep waves, including sleep spindles, delta, and slow (<1 Hz) waves, here we investigated how single abnormalities in voltage- or transmitter-gated channels in the neocortex or thalamus led to SWDs. RESULTS We found that a selective increase in the tonic γ-aminobutyric acid type A receptor (GABA-A) inhibition of first-order thalamocortical (TC) neurons or a selective decrease in cortical phasic GABA-A inhibition is sufficient to generate ~4 Hz SWDs (as in humans) that invariably start in neocortical territories. Decreasing the leak conductance of higher-order TC neurons leads to ~7 Hz SWDs (as in rodent models) while maintaining sleep spindles at 7-14 Hz. CONCLUSION By challenging key features of current mechanistic views, this simulated ictal corticothalamic activity provides novel understanding of ASs and makes key testable predictions.
Collapse
Affiliation(s)
- Martynas Dervinis
- Neuroscience Division, School of BioscienceCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
- Present address:
School of Physiology, Pharmacology and NeuroscienceBiomedical BuildingBristolBS8 1TDUK
| | - Vincenzo Crunelli
- Neuroscience Division, School of BioscienceCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| |
Collapse
|
3
|
Çarçak N, Onat F, Sitnikova E. Astrocytes as a target for therapeutic strategies in epilepsy: current insights. Front Mol Neurosci 2023; 16:1183775. [PMID: 37583518 PMCID: PMC10423940 DOI: 10.3389/fnmol.2023.1183775] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Filiz Onat
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Altered GABA A Receptor Expression in the Primary Somatosensory Cortex of a Mouse Model of Genetic Absence Epilepsy. Int J Mol Sci 2022; 23:ijms232415685. [PMID: 36555327 PMCID: PMC9778655 DOI: 10.3390/ijms232415685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Absence seizures are hyperexcitations within the cortico-thalamocortical (CTC) network, however the underlying causative mechanisms at the cellular and molecular level are still being elucidated and appear to be multifactorial. Dysfunctional feed-forward inhibition (FFI) is implicated as one cause of absence seizures. Previously, we reported altered excitation onto parvalbumin-positive (PV+) interneurons in the CTC network of the stargazer mouse model of absence epilepsy. In addition, downstream changes in GABAergic neurotransmission have also been identified in this model. Our current study assessed whether dysfunctional FFI affects GABAA receptor (GABAAR) subunit expression in the stargazer primary somatosensory cortex (SoCx). Global tissue expression of GABAAR subunits α1, α3, α4, α5, β2, β3, γ2 and δ were assessed using Western blotting (WB), while biochemically isolated subcellular fractions were assessed for the α and δ subunits. We found significant reductions in tissue and synaptic expression of GABAAR α1, 18% and 12.2%, respectively. However, immunogold-cytochemistry electron microscopy (ICC-EM), conducted to assess GABAAR α1 specifically at synapses between PV+ interneurons and their targets, showed no significant difference. These data demonstrate a loss of phasic GABAAR α1, indicating altered GABAergic inhibition which, coupled with dysfunctional FFI, could be one mechanism contributing to the generation or maintenance of absence seizures.
Collapse
|
5
|
Akyuz E, Ozenen C, Pinyazhko OR, Poshyvak OB, Godlevsky LS. Cerebellar contribution to absence epilepsy. Neurosci Lett 2021; 761:136110. [PMID: 34256107 DOI: 10.1016/j.neulet.2021.136110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/18/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
The new aggregate data analyses revealed the earlier missing role of cerebellum long-term electrical stimulation in the absence epilepsy. Neurophysiologic data gained by authors favor that cerebellar serial deep brain stimulation (DBS) (100 Hz) causes the transformation of penicillin-induced cortical focal discharges into prolonged 3,5-3,75 sec oscillations resembling spike-wave discharges (SWD) in cats. Such SWDs were not organized in the form of bursts and persisted continuously after stimulation. Therefore, the appearance of prolonged periods of SWD is regarded as a tonic cerebellar influence upon pacemaker of SWD and might be caused by the long-lasting DBS-induced increase of GABA-ergic extrasynaptic inhibition in the forebrain networks. The absence seizure facilitation caused by cerebellar DBS was discussed with the reviewed data on optogenetic stimulation, neuronal activity of cerebellar structures, and imaging data.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Faculty of International Medicine, University of Health Sciences, Istanbul, Turkey.
| | - Cansu Ozenen
- Bolu Abant Izzet Baysal University, Faculty of Medicine, Bolu, Turkey
| | - Oleh R Pinyazhko
- Pharmacology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine; Department of Civilization Diseases and Regenerative Medicine, WSIiZ, Rzeszow, Poland
| | - Olesya B Poshyvak
- Pharmacology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Leonid S Godlevsky
- Department of Biophysics, Informatics and Medical Devices, Odesa National Medical University, 2, Valikhovsky Lane, Odesa 65082, Ukraine.
| |
Collapse
|
6
|
Adotevi N, Su A, Peiris D, Hassan M, Leitch B. Altered Neurotransmitter Expression in the Corticothalamocortical Network of an Absence Epilepsy Model with impaired Feedforward Inhibition. Neuroscience 2021; 467:73-80. [PMID: 34048799 DOI: 10.1016/j.neuroscience.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
The episodes of brief unconsciousness in patients with childhood absence epilepsy are a result of corticothalamocortical circuitry dysfunction. This dysfunction may arise from multifactorial mechanisms in patients from different genetic backgrounds. In previous studies using the epileptic stargazer mutant mouse, which experience frequent absence seizures, we reported a deficit in AMPAR-mediated feed-forward inhibition of parvalbumin-containing (PV+) interneurons. Currently, in order to determine the downstream effects of this impairment on neurotransmitter expression, we performed HPLC of tissue lysates and post-embedding electron microscopy from the cortical and thalamic regions. We report region-specific alterations in GABA expression, but not of glutamate, and most prominently at PV+ synaptic terminals. These results suggest that impaired feed forward inhibition may occur via reduced activation of these interneurons and concomitant decreased GABAergic signaling. Further investigations into GABAergic control of corticothalamocortical network activity could be key in our understanding of absence seizure pathogenesis.
Collapse
Affiliation(s)
- Nadia Adotevi
- Department of Anatomy, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Aini Su
- Department of Anatomy, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Danushi Peiris
- Department of Anatomy, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Muhammad Hassan
- Department of Anatomy, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Beulah Leitch
- Department of Anatomy, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Celli R, Wall MJ, Santolini I, Vergassola M, Di Menna L, Mascio G, Cannella M, van Luijtelaar G, Pittaluga A, Ciruela F, Bruno V, Nicoletti F, Ngomba RT. Pharmacological activation of mGlu5 receptors with the positive allosteric modulator VU0360172, modulates thalamic GABAergic transmission. Neuropharmacology 2020; 178:108240. [PMID: 32768418 DOI: 10.1016/j.neuropharm.2020.108240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Previous studies have shown that injection of the mGlu5 receptor positive allosteric modulator (PAM) VU0360172 into either the thalamus or somatosensory cortex markedly reduces the frequency of spike-and-wave discharges (SWDs) in the WAG/Rij model of absence epilepsy. Here we have investigated the effects of VU0360172 on GABA transport in the thalamus and somatosensory cortex, as possible modes of action underlying the suppression of SWDs. Systemic VU0360172 injections increase GABA uptake in thalamic synaptosomes from epileptic WAG/Rij rats. Consistent with this observation, VU0360172 could also enhance thalamic GAT-1 protein expression, depending on the dosing regimen. This increase in GAT-1 expression was also observed in the thalamus from non-epileptic rats (presymptomatic WAG/Rij and Wistar) and appeared to occur selectively in neurons. The tonic GABAA receptor current present in ventrobasal thalamocortical neurons was significantly reduced by VU0360172 consistent with changes in GAT-1 and GABA uptake. The in vivo effects of VU0360172 (reduction in tonic GABA current and increase in GAT-1 expression) could be reproduced in vitro by treating thalamic slices with VU0360172 for at least 1 h and appeared to be dependent on the activation of PLC. Thus, the effects of VU0360172 do not require an intact thalamocortical circuit. In the somatosensory cortex, VU0360172 reduced GABA uptake but did not cause significant changes in GAT-1 protein levels. These findings reveal a novel mechanism of regulation mediated by mGlu5 receptors, which could underlie the powerful anti-absence effect of mGlu5 receptor enhancers in animal models.
Collapse
Affiliation(s)
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | | | | | | | - Francisco Ciruela
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Valeria Bruno
- I.R.C.C.S. Neuromed, Pozzilli, Italy; Departments of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, Pozzilli, Italy; Departments of Physiology and Pharmacology, University Sapienza, Rome, Italy.
| | | |
Collapse
|
8
|
Spike-and-Wave Discharges Are Not Pathological Sleep Spindles, Network-Level Aspects of Age-Dependent Absence Seizure Development in Rats. eNeuro 2020; 7:ENEURO.0253-19.2019. [PMID: 31862790 PMCID: PMC6944477 DOI: 10.1523/eneuro.0253-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 12/28/2022] Open
Abstract
Spike-and-wave discharges (SWDs) of absence epilepsy are considered as pathologic alterations of sleep spindles; however, their network-level relationship has never been convincingly revealed. In order to observe the development and generalization of the thalamocortical SWDs and the concomitant alterations of sleep related oscillations, we performed local field potential (LFP) and single unit recordings in rats for three months during their maturation. We found that while SWDs and spindles look similar in young, they become different with maturation and shift to appear in different brain states. Thus, despite being generated by the same network, they are likely two distinct manifestations of the thalamocortical activity. We show that while spindles are already mainly global oscillations, SWDs appear mainly only focally in young. They become capable to generalize later with maturation, when the out-of-focus brain regions develop a decreased inhibitory/excitatory balance. These results suggest that a hyperexcitable focus is not sufficient alone to drive generalized absence seizures. Importantly, we also found the gradual age dependent disappearance of sleep spindles coinciding with the simultaneous gradual emergence of spike and waves, which both could be reversed by the proper dosing of ethosuximide (ETX). Based on these observations we conclude that the absence seizure development might be a multi-step process, which might involve the functional impairment of cortical interneurons and network-level changes that negatively affect sleep quality.
Collapse
|
9
|
Higashikubo B, Moore CI. Systematic examination of the impact of depolarization duration on thalamic reticular nucleus firing in vivo. Neuroscience 2017; 368:187-198. [PMID: 28965837 DOI: 10.1016/j.neuroscience.2017.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/09/2023]
Abstract
The thalamic reticular nucleus (TRN) is optimally positioned to regulate information processing and state dynamics in dorsal thalamus. Distinct inputs depolarize TRN on multiple time scales, including thalamocortical afferents, corticothalamic 'feedback', and neuromodulation. Here, we systematically tested the concurrent and after-effects of depolarization duration on TRN firing in vivo using selective optogenetic drive. In VGAT-ChR2 mice, we isolated TRN single units (SU: N = 100 neurons) that responded at brief latency (≤5 ms) to stimulation. These units, and multi-unit activity (MUA) on corresponding electrodes, were analyzed in detail. Consistent with prior findings in relay neurons, after light cessation, burst-like events occurred in 74% of MUA sites, and 16% of SU. Increasing optical duration from 2 to 330 ms enhanced this burst probability, and decreased the latency to the first burst after stimulation. During stimulation, neurons demonstrated a 'plateau' firing response lasting 20-30 ms in response to light, but significant heterogeneity existed in the minimal stimuli required to drive this response. Two distinct types were evident, more sensitive 'non-linear' neurons that were driven to the plateau response by 2 or 5 ms pulses, versus 'linear' neurons that fired proportionally to optical duration, and reached the plateau with ∼20-ms optical drive. Non-linear neurons showed higher evoked firing rates and burst probability, but spontaneous rate did not differ between types. These findings provide direct predictions for TRN responses to a range of natural depolarizing inputs, and a guide for the optical control of this key structure in studies of network function and behavior.
Collapse
Affiliation(s)
- Bryan Higashikubo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Neuroscience, Brown University, Providence, RI 02912-1978, USA
| | - Christopher I Moore
- Brown Institute for Brain Science, Brown University, Providence, RI 02912-1978, USA; Department of Neuroscience, Brown University, Providence, RI 02912-1978, USA.
| |
Collapse
|
10
|
Christian CA. Mom Genes: A Role for Loss of Maternal Ube3a in GABAergic Neurons in Angelman Syndrome. Epilepsy Curr 2017; 17:237-238. [PMID: 29225531 PMCID: PMC5716120 DOI: 10.5698/1535-7597.17.4.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Dossi E, Vasile F, Rouach N. Human astrocytes in the diseased brain. Brain Res Bull 2017; 136:139-156. [PMID: 28212850 PMCID: PMC5766741 DOI: 10.1016/j.brainresbull.2017.02.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/23/2022]
Abstract
Astrocytes are key active elements of the brain that contribute to information processing. They not only provide neurons with metabolic and structural support, but also regulate neurogenesis and brain wiring. Furthermore, astrocytes modulate synaptic activity and plasticity in part by controlling the extracellular space volume, as well as ion and neurotransmitter homeostasis. These findings, together with the discovery that human astrocytes display contrasting characteristics with their rodent counterparts, point to a role for astrocytes in higher cognitive functions. Dysfunction of astrocytes can thereby induce major alterations in neuronal functions, contributing to the pathogenesis of several brain disorders. In this review we summarize the current knowledge on the structural and functional alterations occurring in astrocytes from the human brain in pathological conditions such as epilepsy, primary tumours, Alzheimer's disease, major depressive disorder and Down syndrome. Compelling evidence thus shows that dysregulations of astrocyte functions and interplay with neurons contribute to the development and progression of various neurological diseases. Targeting astrocytes is thus a promising alternative approach that could contribute to the development of novel and effective therapies to treat brain disorders.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
12
|
Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy. Neurochem Res 2016; 42:1724-1734. [DOI: 10.1007/s11064-016-2105-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
|
13
|
Benedek K, Berényi A, Gombkötő P, Piilgaard H, Lauritzen M. Neocortical gamma oscillations in idiopathic generalized epilepsy. Epilepsia 2016; 57:796-804. [PMID: 26996827 DOI: 10.1111/epi.13355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Absence seizures in patients with idiopathic generalized epilepsy (IGE) may in part be explained by a decrease in phasic GABAA (type-A γ-aminobutyric acid) receptor function, but the mechanisms are only partly understood. Here we studied the relation between ictal and interictal spike-wave discharges (SWDs) and electroencephalography (EEG) gamma oscillatory activity (30-60 Hz) in patients with IGE. METHODS EEG recordings were obtained of 14 children with IGE (mean age, 8.5 ± 5 years) and 14 age- and sex-matched controls. Time-frequency analysis of each seizure and seizure-free control epochs was performed and cross-coherences of neocortical gamma oscillations were calculated to describe interictal and ictal characteristics of generalized seizures. RESULTS SWDs were characterized with an abrupt increase of oscillatory activity of 3-4 and 13-60 Hz, peaking at 3-4 and 30-60 Hz, and with a simultaneous decrease in the 8-12 Hz frequency band. The rise in EEG gamma oscillations was short-lasting and decreased before activity declined at lower frequency ranges. Compared to control patients, patients with epilepsy also showed higher interictal values of mean coherence of gamma activity, but this interictal increase was not significant after post hoc analysis. SIGNIFICANCE Our data support the hypothesis that gamma oscillatory activity increase concomitantly with rises in activity of lower EEG frequencies during absence seizures and that the activity starts to cease earlier than lower EEG frequencies. The data did not support a change in gamma activity preceding the 3-4 Hz SWDs. SWDs are hypothetically generated by the synchronous interaction between the thalamus and the cortex, whereas the production of gamma activity is the result of activity in local inhibitory networks. Thus, the modification of SWD by gamma activity may be understood in terms of the cellular and synaptic mechanisms involved.
Collapse
Affiliation(s)
- Krisztina Benedek
- Department of Clinical Neurophysiology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Antal Berényi
- Neuroscience Institute, New York University Medical Center, New York, New York, U.S.A.,Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, U.S.A.,Department of Physiology, MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, University of Szeged, Szeged, Hungary
| | - Péter Gombkötő
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, U.S.A
| | - Henning Piilgaard
- Department of Clinical Neurophysiology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Martin Lauritzen
- Department of Clinical Neurophysiology, Rigshospitalet Glostrup, Glostrup, Denmark.,Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.,Center for Healthy Aging, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
14
|
Zhao X, Robinson PA. Generalized seizures in a neural field model with bursting dynamics. J Comput Neurosci 2015; 39:197-216. [PMID: 26282528 DOI: 10.1007/s10827-015-0571-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/02/2015] [Accepted: 07/26/2015] [Indexed: 11/27/2022]
Abstract
The mechanisms underlying generalized seizures are explored with neural field theory. A corticothalamic neural field model that has accounted for multiple brain activity phenomena and states is used to explore changes leading to pathological seizure states. It is found that absence seizures arise from instabilities in the system and replicate experimental studies in numerous animal models and clinical studies.
Collapse
Affiliation(s)
- X Zhao
- School of Physics, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Center for Integrative Brain Function, University of Sydney, NSW, 2006, Australia.
- Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales, 2037, Australia.
- Cooperative Research Center for Alertness, Safety, and Productivity, University of Sydney, NSW, 2006, Australia.
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, NSW, 2006, Australia
- Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales, 2037, Australia
- Cooperative Research Center for Alertness, Safety, and Productivity, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
15
|
Abstract
Electrophysiological experiments have long revealed the existence of two-way transitions between absence and tonic-clonic epileptic seizures in the cerebral cortex. Based on a modified spatially-extended Taylor & Baier neural field model, we here propose a computational framework to mathematically describe the transition dynamics between these epileptic seizures. We first demonstrate the existence of various transition types that are induced by disinhibitory functions between two inhibitory variables in an isolated Taylor & Baier model. Moreover, we show that these disinhibition-induced transitions can lead to stable tonic-clonic oscillations as well as periodic spike with slow-wave discharges, which are the hallmark of absence seizures. We also observe fascinating dynamical states, such as periodic 2-spike with slow-wave discharges, tonic death, bursting oscillations, as well as saturated firing. Most importantly, we identify paths that represent physiologically plausible transitions between absence and tonic-clonic seizures in the modified spatially-extended Taylor & Baier model.
Collapse
|
16
|
Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases. Mol Pharmacol 2015; 88:203-17. [PMID: 25904555 PMCID: PMC4468639 DOI: 10.1124/mol.115.097998] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases.
Collapse
Affiliation(s)
- Hongjie Yuan
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Chian-Ming Low
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Olivia A Moody
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Andrew Jenkins
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| | - Stephen F Traynelis
- Departments of Pharmacology (H.Y., A.J., S.F.T.) and Anesthesiology (O.A.M., A.J.), Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia; and Departments of Pharmacology and Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore Graduate School for Integrative Sciences and Engineering, and Neurobiology/Ageing Programme, National University of Singapore, Singapore (C.-M.L.)
| |
Collapse
|
17
|
Kuhlmann L, Grayden DB, Wendling F, Schiff SJ. Role of multiple-scale modeling of epilepsy in seizure forecasting. J Clin Neurophysiol 2015; 32:220-6. [PMID: 26035674 PMCID: PMC4455036 DOI: 10.1097/wnp.0000000000000149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over the past three decades, a number of seizure prediction, or forecasting, methods have been developed. Although major achievements were accomplished regarding the statistical evaluation of proposed algorithms, it is recognized that further progress is still necessary for clinical application in patients. The lack of physiological motivation can partly explain this limitation. Therefore, a natural question is raised: can computational models of epilepsy be used to improve these methods? Here, we review the literature on the multiple-scale neural modeling of epilepsy and the use of such models to infer physiologic changes underlying epilepsy and epileptic seizures. The authors argue how these methods can be applied to advance the state-of-the-art in seizure forecasting.
Collapse
Affiliation(s)
- Levin Kuhlmann
- NeuroEngineering Laboratory, Department of Electrical & Electronic Engineering, The University of Melbourne, VIC 3010, Australia
- Brain Dynamics Unit, Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Hawthorn VIC 3122, Australia
| | - David B. Grayden
- NeuroEngineering Laboratory, Department of Electrical & Electronic Engineering, The University of Melbourne, VIC 3010, Australia
- Centre for Neural Engineering, The University of Melbourne, VIC 3010, Australia
- Bionics Institute, 384 Albert St, East Melbourne, VIC 3002, Australia
- St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3002, Australia
| | - Fabrice Wendling
- INSERM, U1099, Rennes, F-35000, France
- Université de Rennes, LTSI, F-35000, France
| | - Steven J. Schiff
- Center for Neural Engineering, Departments of Engineering Science and Mechanics, Neurosurgery, and Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
18
|
Lam H, Ekong U, Xiao B, Ouyang G, Liu H, Chan K, Ho Ling S. Variable weight neural networks and their applications on material surface and epilepsy seizure phase classifications. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Chung PCS, Boehrer A, Stephan A, Matifas A, Scherrer G, Darcq E, Befort K, Kieffer BL. Delta opioid receptors expressed in forebrain GABAergic neurons are responsible for SNC80-induced seizures. Behav Brain Res 2015; 278:429-34. [PMID: 25447299 PMCID: PMC4382405 DOI: 10.1016/j.bbr.2014.10.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/12/2014] [Accepted: 10/21/2014] [Indexed: 01/01/2023]
Abstract
The delta opioid receptor (DOR) has raised much interest for the development of new therapeutic drugs, particularly to treat patients suffering from mood disorders and chronic pain. Unfortunately, the prototypal DOR agonist SNC80 induces mild epileptic seizures in rodents. Although recently developed agonists do not seem to show convulsant properties, mechanisms and neuronal circuits that support DOR-mediated epileptic seizures remain to be clarified. DORs are expressed throughout the nervous system. In this study we tested the hypothesis that SNC80-evoked seizures stem from DOR activity at the level of forebrain GABAergic transmission, whose inhibition is known to facilitate the development of epileptic seizures. We generated a conditional DOR knockout mouse line, targeting the receptor gene specifically in GABAergic neurons of the forebrain (Dlx-DOR). We measured effects of SNC80 (4.5, 9, 13.5 and 32 mg/kg), ARM390 (10, 30 and 60 mg/kg) or ADL5859 (30, 100 and 300 mg/kg) administration on electroencephalograms (EEGs) recorded in Dlx-DOR mice and their control littermates (Ctrl mice). SNC80 produced dose-dependent seizure events in Ctrl mice, but these effects were not detected in Dlx-DOR mice. As expected, ARM390 and ADL5859 did not trigger any detectable change in mice from both genotypes. These results demonstrate for the first time that SNC80-induced DOR activation induces epileptic seizures via direct inhibition of GABAergic forebrain neurons, and supports the notion of differential activities between first and second-generation DOR agonists.
Collapse
Affiliation(s)
- Paul Chu Sin Chung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Annie Boehrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Aline Stephan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Audrey Matifas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Katia Befort
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Brigitte L Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France; Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
van Luijtelaar G, Onat FY, Gallagher MJ. Animal models of absence epilepsies: what do they model and do sex and sex hormones matter? Neurobiol Dis 2014; 72 Pt B:167-79. [PMID: 25132554 DOI: 10.1016/j.nbd.2014.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/28/2022] Open
Abstract
While epidemiological data suggest a female prevalence in human childhood- and adolescence-onset typical absence epilepsy syndromes, the sex difference is less clear in adult-onset syndromes. In addition, although there are more females than males diagnosed with typical absence epilepsy syndromes, there is a paucity of studies on sex differences in seizure frequency and semiology in patients diagnosed with any absence epilepsy syndrome. Moreover, it is unknown if there are sex differences in the prevalence or expression of atypical absence epilepsy syndromes. Surprisingly, most studies of animal models of absence epilepsy either did not investigate sex differences, or failed to find sex-dependent effects. However, various rodent models for atypical syndromes such as the AY9944 model (prepubertal females show a higher incidence than prepubertal males), BN model (also with a higher prevalence in males) and the Gabra1 deletion mouse in the C57BL/6J strain offer unique possibilities for the investigation of the mechanisms involved in sex differences. Although the mechanistic bases for the sex differences in humans or these three models are not yet known, studies of the effects of sex hormones on seizures have offered some possibilities. The sex hormones progesterone, estradiol and testosterone exert diametrically opposite effects in genetic absence epilepsy and pharmacologically-evoked convulsive types of epilepsy models. In addition, acute pharmacological effects of progesterone on absence seizures during proestrus are opposite to those seen during pregnancy. 17β-Estradiol has anti-absence seizure effects, but it is only active in atypical absence models. It is speculated that the pro-absence action of progesterone, and perhaps also the delayed pro-absence action of testosterone, are mediated through the neurosteroid allopregnanolone and its structural and functional homolog, androstanediol. These two steroids increase extrasynaptic thalamic tonic GABAergic inhibition by selectively targeting neurosteroid-selective subunits of GABAA receptors (GABAARs). Neurosteroids also modulate the expression of GABAAR containing the γ2, α4, and δ subunits. It is hypothesized that differences in subunit expression during pregnancy and ovarian cycle contribute to the opposite effects of progesterone in these two hormonal states.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Donders Centre of Cognition, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Filiz Yilmaz Onat
- Department of Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
21
|
Letts VA, Beyer BJ, Frankel WN. Hidden in plain sight: spike-wave discharges in mouse inbred strains. GENES BRAIN AND BEHAVIOR 2014; 13:519-26. [PMID: 24861780 DOI: 10.1111/gbb.12142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/07/2014] [Accepted: 05/17/2014] [Indexed: 11/28/2022]
Abstract
Twenty-seven inbred strains of mice were tested for spike-wave discharge (SWD) activity by video-electroencephalographic recordings over a 24-h recording period. Eight strains had reproducible, frequent SWDs, including five strains (C57BLKS/J, CBA/J, DBA/1J, NOR/LtJ, SM/J) previously undiagnosed for this distinctive phenotype. Eighteen other strains exhibited no such activity. Spike-wave discharges usually occurred while the subject was motionless, and in a significant number of annotated instances coincided with an arrest of the subject's relatively unrestrained locomotor activity, which resumed immediately after the discharge ended. In all five new strains, SWDs were suppressed by ethosuximide administration. From the genealogy of inbred strains, we suggest that two ancestors, A and DBA, transmitted genotypes required for SWD in all positive strains. Together these strains with SWDs provide new opportunities to understand the genetic core susceptibility of this distinctive electroencephalographic activity and to explore its relationship to absence epilepsy, a human disorder for which few genes are known.
Collapse
Affiliation(s)
- V A Letts
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | |
Collapse
|
22
|
Using Permutation Entropy to Measure the Changes in EEG Signals During Absence Seizures. ENTROPY 2014. [DOI: 10.3390/e16063049] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Paydar A, Lee B, Gangadharan G, Lee S, Hwang EM, Shin HS. Extrasynaptic GABAA receptors in mediodorsal thalamic nucleus modulate fear extinction learning. Mol Brain 2014; 7:39. [PMID: 24886120 PMCID: PMC4066285 DOI: 10.1186/1756-6606-7-39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/23/2014] [Indexed: 11/14/2022] Open
Abstract
Background The gamma-amino-butyric acid (GABA) system is a critical mediator of fear extinction process. GABA can induce “phasic” or “tonic” inhibition in neurons through synaptic or extrasynaptic GABAA receptors, respectively. However, role of the thalamic “tonic GABA inhibition” in cognition has not been explored. We addressed this issue in extinction of conditioned fear in mice. Results Here, we show that GABAA receptors in the mediodorsal thalamic nucleus (MD) modulate fear extinction. Microinjection of gabazine, a GABAA receptor antagonist, into the MD decreased freezing behavior in response to the conditioned stimulus and thus facilitated fear extinction. Interestingly, microinjection of THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol), a preferential agonist for the δ-subunit of extrasynaptic GABAA receptors, into the MD attenuated fear extinction. In the opposite direction, an MD-specific knock-out of the extrasynaptic GABAA receptors facilitated fear extinction. Conclusions Our results suggest that “tonic GABA inhibition” mediated by extrasynaptic GABAA receptors in MD neurons, suppresses fear extinction learning. These results raise a possibility that pharmacological control of tonic mode of GABAA receptor activation may be a target for treatment of anxiety disorders like post-traumatic stress disorder.
Collapse
Affiliation(s)
| | | | | | | | | | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 70, Yusung-daero 1689-gil, Yusung-gu, Daejeon 305-811, Republic of Korea.
| |
Collapse
|
24
|
Kandratavicius L, Balista PA, Lopes-Aguiar C, Ruggiero RN, Umeoka EH, Garcia-Cairasco N, Bueno-Junior LS, Leite JP. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat 2014; 10:1693-705. [PMID: 25228809 PMCID: PMC4164293 DOI: 10.2147/ndt.s50371] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epilepsy is a chronic neurological condition characterized by recurrent seizures that affects millions of people worldwide. Comprehension of the complex mechanisms underlying epileptogenesis and seizure generation in temporal lobe epilepsy and other forms of epilepsy cannot be fully acquired in clinical studies with humans. As a result, the use of appropriate animal models is essential. Some of these models replicate the natural history of symptomatic focal epilepsy with an initial epileptogenic insult, which is followed by an apparent latent period and by a subsequent period of chronic spontaneous seizures. Seizures are a combination of electrical and behavioral events that are able to induce chemical, molecular, and anatomic alterations. In this review, we summarize the most frequently used models of chronic epilepsy and models of acute seizures induced by chemoconvulsants, traumatic brain injury, and electrical or sound stimuli. Genetic models of absence seizures and models of seizures and status epilepticus in the immature brain were also examined. Major uses and limitations were highlighted, and neuropathological, behavioral, and neurophysiological similarities and differences between the model and the human equivalent were considered. The quest for seizure mechanisms can provide insights into overall brain functions and consciousness, and animal models of epilepsy will continue to promote the progress of both epilepsy and neurophysiology research.
Collapse
Affiliation(s)
- Ludmyla Kandratavicius
- Department of Neurosciences and Behavior, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Priscila Alves Balista
- Department of Neurosciences and Behavior, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Cleiton Lopes-Aguiar
- Department of Neurosciences and Behavior, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rafael Naime Ruggiero
- Department of Neurosciences and Behavior, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Eduardo Henrique Umeoka
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Joao Pereira Leite
- Department of Neurosciences and Behavior, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
25
|
Zheng TW, O'Brien TJ, Kulikova SP, Reid CA, Morris MJ, Pinault D. Acute effect of carbamazepine on corticothalamic 5-9-Hz and thalamocortical spindle (10-16-Hz) oscillations in the rat. Eur J Neurosci 2013; 39:788-99. [PMID: 24308357 DOI: 10.1111/ejn.12441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/21/2013] [Accepted: 11/04/2013] [Indexed: 11/28/2022]
Abstract
A major side effect of carbamazepine (CBZ), a drug used to treat neurological and neuropsychiatric disorders, is drowsiness, a state characterized by increased slow-wave oscillations with the emergence of sleep spindles in the electroencephalogram (EEG). We conducted cortical EEG and thalamic cellular recordings in freely moving or lightly anesthetized rats to explore the impact of CBZ within the intact corticothalamic (CT)-thalamocortical (TC) network, more specifically on CT 5-9-Hz and TC spindle (10-16-Hz) oscillations. Two to three successive 5-9-Hz waves were followed by a spindle in the cortical EEG. A single systemic injection of CBZ (20 mg/kg) induced a significant increase in the power of EEG 5-9-Hz oscillations and spindles. Intracellular recordings of glutamatergic TC neurons revealed 5-9-Hz depolarizing wave-hyperpolarizing wave sequences prolonged by robust, rhythmic spindle-frequency hyperpolarizing waves. This hybrid sequence occurred during a slow hyperpolarizing trough, and was at least 10 times more frequent under the CBZ condition than under the control condition. The hyperpolarizing waves reversed at approximately -70 mV, and became depolarizing when recorded with KCl-filled intracellular micropipettes, indicating that they were GABAA receptor-mediated potentials. In neurons of the GABAergic thalamic reticular nucleus, the principal source of TC GABAergic inputs, CBZ augmented both the number and the duration of sequences of rhythmic spindle-frequency bursts of action potentials. This indicates that these GABAergic neurons are responsible for the generation of at least the spindle-frequency hyperpolarizing waves in TC neurons. In conclusion, CBZ potentiates GABAA receptor-mediated TC spindle oscillations. Furthermore, we propose that CT 5-9-Hz waves can trigger TC spindles.
Collapse
Affiliation(s)
- Thomas W Zheng
- Neuropsychologie cognitive et physiopathologie de la schizophrénie, INSERM U1114, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), NeuroPole de Strasbourg, Faculté de médecine, Université de Strasbourg, INSERM U1114, 11 rue Humann, Strasbourg, 67085, France; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | |
Collapse
|
26
|
Maheshwari A, Nahm WK, Noebels JL. Paradoxical proepileptic response to NMDA receptor blockade linked to cortical interneuron defect in stargazer mice. Front Cell Neurosci 2013; 7:156. [PMID: 24065886 PMCID: PMC3776135 DOI: 10.3389/fncel.2013.00156] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/29/2013] [Indexed: 11/13/2022] Open
Abstract
Paradoxical seizure exacerbation by anti-epileptic medication is a well-known clinical phenomenon in epilepsy, but the cellular mechanisms remain unclear. One possibility is enhanced network disinhibition by unintended suppression of inhibitory interneurons. We investigated this hypothesis in the stargazer mouse model of absence epilepsy, which bears a mutation in stargazin, an AMPA receptor trafficking protein. If AMPA signaling onto inhibitory GABAergic neurons is impaired, their activation by glutamate depends critically upon NMDA receptors. Indeed, we find that stargazer seizures are exacerbated by NMDA receptor blockade with CPP (3-[(R)-2-carboxypiperazin-4-yl]-prop-2-enyl-1-phosphonic acid) and MK-801, whereas other genetic absence epilepsy models are sensitive to these antagonists. To determine how an AMPA receptor trafficking defect could lead to paradoxical network activation, we analyzed stargazin and AMPA receptor localization and found that stargazin is detected exclusively in parvalbumin-positive (PV +) fast-spiking interneurons in somatosensory cortex, where it is co-expressed with the AMPA receptor subunit GluA4. PV + cortical interneurons in stargazer show a near twofold decrease in the dendrite:soma GluA4 expression ratio compared to wild-type (WT) littermates. We explored the functional consequence of this trafficking defect on network excitability in neocortical slices. Both NMDA receptor antagonists suppressed 0 Mg 2+-induced network discharges in WT but augmented bursting in stargazer cortex. Interneurons mediate this paradoxical response, since the difference between genotypes was masked by GABA receptor blockade. Our findings provide a cellular locus for AMPA receptor-dependent signaling defects in stargazer cortex and define an interneuron-dependent mechanism for paradoxical seizure exacerbation in absence epilepsy.
Collapse
Affiliation(s)
- Atul Maheshwari
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine Houston, TX, USA
| | | | | |
Collapse
|
27
|
Mina F, Benquet P, Pasnicu A, Biraben A, Wendling F. Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects. Front Comput Neurosci 2013; 7:94. [PMID: 23882212 PMCID: PMC3712286 DOI: 10.3389/fncom.2013.00094] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 06/23/2013] [Indexed: 11/23/2022] Open
Abstract
A number of studies showed that deep brain stimulation (DBS) can modulate the activity in the epileptic brain and that a decrease of seizures can be achieved in “responding” patients. In most of these studies, the choice of stimulation parameters is critical to obtain desired clinical effects. In particular, the stimulation frequency is a key parameter that is difficult to tune. A reason is that our knowledge about the frequency-dependant mechanisms according to which DBS indirectly impacts the dynamics of pathological neuronal systems located in the neocortex is still limited. We address this issue using both computational modeling and intracerebral EEG (iEEG) data. We developed a macroscopic (neural mass) model of the thalamocortical network. In line with already-existing models, it includes interconnected neocortical pyramidal cells and interneurons, thalamocortical cells and reticular neurons. The novelty was to introduce, in the thalamic compartment, the biophysical effects of direct stimulation. Regarding clinical data, we used a quite unique data set recorded in a patient (drug-resistant epilepsy) with a focal cortical dysplasia (FCD). In this patient, DBS strongly reduced the sustained epileptic activity of the FCD for low-frequency (LFS, < 2 Hz) and high-frequency stimulation (HFS, > 70 Hz) while intermediate-frequency stimulation (IFS, around 50 Hz) had no effect. Signal processing, clustering, and optimization techniques allowed us to identify the necessary conditions for reproducing, in the model, the observed frequency-dependent stimulation effects. Key elements which explain the suppression of epileptic activity in the FCD include: (a) feed-forward inhibition and synaptic short-term depression of thalamocortical connections at LFS, and (b) inhibition of the thalamic output at HFS. Conversely, modeling results indicate that IFS favors thalamic oscillations and entrains epileptic dynamics.
Collapse
Affiliation(s)
- Faten Mina
- INSERM, U1099, Universite de Rennes 1 Rennes, France ; Laboratoire Traitement du Signal et de L'Image, Université de Rennes 1 Rennes, France
| | | | | | | | | |
Collapse
|
28
|
Ouyang G, Li J, Liu X, Li X. Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis. Epilepsy Res 2012; 104:246-52. [PMID: 23245676 DOI: 10.1016/j.eplepsyres.2012.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 10/01/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
Understanding the transition of brain activities towards an absence seizure, called pre-epileptic seizure, is a challenge. In this study, multiscale permutation entropy (MPE) is proposed to describe dynamical characteristics of electroencephalograph (EEG) recordings on different absence seizure states. The classification ability of the MPE measures using linear discriminant analysis is evaluated by a series of experiments. Compared to a traditional multiscale entropy method with 86.1% as its classification accuracy, the classification rate of MPE is 90.6%. Experimental results demonstrate there is a reduction of permutation entropy of EEG from the seizure-free state to the seizure state. Moreover, it is indicated that the dynamical characteristics of EEG data with MPE can identify the differences among seizure-free, pre-seizure and seizure states. This also supports the view that EEG has a detectable change prior to an absence seizure.
Collapse
Affiliation(s)
- Gaoxiang Ouyang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | | | | | | |
Collapse
|
29
|
Sánchez Fernández I, Loddenkemper T, Peters JM, Kothare SV. Electrical status epilepticus in sleep: clinical presentation and pathophysiology. Pediatr Neurol 2012; 47:390-410. [PMID: 23127259 DOI: 10.1016/j.pediatrneurol.2012.06.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/20/2012] [Indexed: 10/27/2022]
Abstract
Electrical status epilepticus in sleep involves an electroencephalographic pattern where interictal epileptiform activity is potentiated in the transition from wakefulness to sleep. Near-continuous spikes and waves that occupy a significant proportion of nonrapid eye movement sleep appear as a result of sleep-potentiated epileptiform activity. This electroencephalographic pattern appears in different electroclinical syndromes that present three common characteristics with different degrees of severity: seizures, sleep-potentiated epileptiform activity, and neuropsychologic regression. Continuous spikes and waves during sleep comprise the severest epileptic encephalopathy in the electroclinical spectrum. Landau-Kleffner syndrome presents with intermediate severity. Some "benign" pediatric focal epileptic syndromes represent the mildest end of this continuum. Based on published data, we provide a framework for clinical and electrical events. The underlying mechanisms leading to sleep potentiation of epileptiform activity in electrical status epilepticus in sleep are incompletely understood. A genetic basis or acquired early developmental insult may disrupt the normal maturation of neuronal networks. These factors may dynamically alter normal processes of brain development, leading to an age-related pattern of electroclinical expression of electrical status epilepticus in sleep.
Collapse
Affiliation(s)
- Iván Sánchez Fernández
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
30
|
Mader EC, Villemarette-Pittman NR, Kashirny SV, Santana-Gould L, Olejniczak PW. Typical Spike-and-Wave Activity in Hypoxic-Ischemic Brain Injury and its Implications for Classifying Nonconvulsive Status Epilepticus. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2012; 5:99-106. [PMID: 22844199 PMCID: PMC3399402 DOI: 10.4137/ccrep.s9861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Introduction Typical spike-and-wave activity (TSWA) in the electroencephalogram (EEG) indicates idiopathic generalized epilepsy (IGE). IGE-related nonconvulsive status epilepticus (NCSE) is typically an absence status epilepticus (ASE). ASE and TSWA respond dramatically to benzodiazepines. Patients with no history of seizure/epilepsy may develop ASE “de novo” in the context of an acute brain disorder. However, we are aware of only one previous case of de novo ASE with TSWA in hypoxic-ischemic brain injury. Case presentation A 65-year-old man, with congestive heart failure and history of substance abuse, survived cardiorespiratory arrest after 18 minutes of cardiopulmonary resuscitation. Post-resuscitation, the patient was in coma with intact brainstem function. Toxicology was positive for cocaine and marijuana. Eyelid myoclonus suggested NCSE, which was initially treated with lorazepam and fosphenytoin. EEG monitoring showed sustained TSWA confirming NCSE and demonstrating de novo ASE (the patient and his family never had seizure/epilepsy). The TSWA was resistant to lorazepam, levetiracetam, and low-dose midazolam; it was eliminated only with midazolam at a dose that resulted in burst-suppression (≥1.2 mg/kg/hour). Conclusion This is an unusual case of TSWA and hypoxic-ischemic brain injury in a patient with no history of seizure/epilepsy. The TSWA was relatively resistant to benzodiazepines suggesting that cerebral hypoxia-ischemia spared the thalamocortical apparatus generating TSWA but impaired the cortical/thalamic inhibitory circuits where benzodiazepines act to suppress TSWA. Albeit rare, ‘post-hypoxic’ TSWA offers us some valuable insights for classifying and managing nonconvulsive status epilepticus.
Collapse
Affiliation(s)
- Edward C Mader
- Louisiana State University Health Sciences Center, Epilepsy Center of Excellence, 1542 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|