1
|
Valente KD, Sampaio LB, Vincentiis S, Pinto ALR, Montenegro MA. Tuberous Sclerosis Complex: An updated in the treatment of epilepsy for early careers. Epilepsy Behav 2025; 167:110396. [PMID: 40174488 DOI: 10.1016/j.yebeh.2025.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
Tuberous Sclerosis Complex (TSC) is a rare autosomal dominant disorder that is characterized by multisystem involvement and significant neurological manifestations. TSC1 and TSC2 pathogenic variants lead to hyperactivation of the mammalian target of rapamycin (mTOR) pathway, which disrupts cellular growth and differentiation. Epilepsy, affecting 85-90% of individuals with TSC, often presents within the first year of life and is commonly resistant to conventional therapies. This paper provides a comprehensive overview of the diagnostic criteria, pathophysiology, and current treatment strategies for TSC-associated epilepsy, including pharmacological approaches such as vigabatrin, cannabidiol, and mTOR inhibitors, as well as non-pharmacological interventions such as ketogenic diet and epilepsy surgery. Preventive strategies, highlighted by robust trials, delay seizure onset and reduce its severity but have a limited impact on neurodevelopmental outcomes. Challenges include the heterogeneity of cortical tubers, suboptimal seizure control with existing therapies, and underutilization of neuropsychiatric care for TSC-associated neuropsychiatric disorders. Advances in biomarkers, precision medicine, and surgical techniques have paved the way for personalized treatment approaches. Future research providing earlier detection strategies and integrating therapies targeting both the neurological and behavioral dimensions of TSC is ongoing. By addressing these needs, clinicians and researchers can enhance the quality of life and developmental outcomes of individuals with TSC.
Collapse
Affiliation(s)
- Kette D Valente
- Clinic Hospital of the University of São Paulo Medical School (HCFMUSP), Brazil; LIM 21 - Faculty of Medicine University of São Paulo (FMUSP), Brazil.
| | | | - Silvia Vincentiis
- LIM 21 - Faculty of Medicine University of São Paulo (FMUSP), Brazil
| | | | | |
Collapse
|
2
|
Kim SY. Insights into Tuberous Sclerosis Complex : From Genes to Clinics. J Korean Neurosurg Soc 2025; 68:321-337. [PMID: 40090343 PMCID: PMC12062541 DOI: 10.3340/jkns.2025.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder caused by pathogenic variants of TSC1 or TSC2 genes, leading to dysregulation of the mammalian target of rapamycin (mTOR) pathway. This dysregulation results in the formation of organ-specific tumors and neurological manifestations such as seizures, intellectual disability, and developmental delays. These characteristic clinical features are crucial for diagnosis, and genetic testing is playing an increasingly significant role. Long-term disease monitoring and appropriate interventions by multidisciplinary experts, including the use of mTOR inhibitors and promising therapeutic agents based on disease pathomechanisms, are essential for effective TSC management and improved clinical outcomes.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children’s Hospital, Seoul, Korea
| |
Collapse
|
3
|
Na JH, Lee H, Lee YM. Clinical Efficacy and Safety of the Ketogenic Diet in Patients with Genetic Confirmation of Drug-Resistant Epilepsy. Nutrients 2025; 17:979. [PMID: 40290041 PMCID: PMC11945077 DOI: 10.3390/nu17060979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
Drug-resistant epilepsy (DRE) affects 20-30% of patients with epilepsy who fail to achieve seizure control with antiseizure medications, posing a significant therapeutic challenge. In this narrative review, we examine the clinical efficacy and safety of the classic ketogenic diet (cKD) and its variants, including the modified Atkins diet (MAD), medium-chain triglyceride diet (MCTD), and low glycemic index treatment (LGIT), in patients with genetically confirmed drug-resistant epilepsy. These diets induce a metabolic shift from glucose to ketones, enhance mitochondrial function, modulate neurotransmitter balance, and exert anti-inflammatory effects. However, genetic factors strongly influence the efficacy and safety of the cKD, with absolute indications including glucose transporter type 1 deficiency syndrome (GLUT1DS) and pyruvate dehydrogenase complex deficiency (PDCD). Preferred adjunctive applications of the KD include genetic epilepsies, such as SCN1A-related Dravet syndrome, TSC1/TSC2-related tuberous sclerosis complex, and UBE3A-related Angelman syndrome. However, because of the risk of metabolic decompensation, the cKD is contraindicated in patients with pathogenic variants of pyruvate carboxylase and SLC22A5. Recent advancements in precision medicine suggest that genetic and microbiome profiling may refine patient selection and optimize KD-based dietary interventions. Genome-wide association studies and multiomics approaches have identified key metabolic pathways influencing the response to the cKD, and these pave the way for individualized treatment strategies. Future research should integrate genomic, metabolomic, and microbiome data to develop biomarker-driven dietary protocols with improved efficacy and safety. As dietary therapies continue to evolve, a personalized medical approach is essential to maximize their clinical utility for genetic epilepsy and refractory epilepsy syndromes.
Collapse
Affiliation(s)
| | | | - Young-Mock Lee
- Departments of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (J.-H.N.); (H.L.)
| |
Collapse
|
4
|
Samanta D. Evolving treatment strategies for early-life seizures in Tuberous Sclerosis Complex: A review and treatment algorithm. Epilepsy Behav 2024; 161:110123. [PMID: 39488094 DOI: 10.1016/j.yebeh.2024.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Tuberous sclerosis Complex (TSC) is a genetic disorder characterized by multisystem involvement, with epilepsy affecting 80-90% of patients, often beginning in infancy. Early-life seizures in TSC are associated with poor neurodevelopmental outcomes, underscoring the importance of timely and effective management. This review explores the evolving treatment landscape for TSC-associated seizures in young children, focusing on three recently approved or license-expanded therapies: vigabatrin, everolimus, and cannabidiol. The efficacy and safety profiles of these treatments are examined based on clinical trials and real-world evidence, with a focus on their use in treating seizures in young children. The preemptive use of vigabatrin in clinical studies has also been carefully reviewed. A treatment algorithm is proposed, emphasizing early diagnosis, prompt initiation of appropriate therapy, and a stepwise approach to managing both infantile spasms and focal seizures. The algorithm incorporates these newer therapies alongside traditional antiseizure medications and non-pharmacological approaches. Challenges in optimizing treatment strategies, minimizing side effects, and improving long-term outcomes are discussed. This review aims to guide clinicians in navigating the complex landscape of early-life seizures associated with TSC, ultimately striving for improved seizure control and better developmental outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
5
|
Arredondo KH, Jülich K, Roach ES. Tuberous sclerosis complex: Diagnostic features, surveillance, and therapeutic strategies. Semin Pediatr Neurol 2024; 51:101155. [PMID: 39389658 DOI: 10.1016/j.spen.2024.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
Tuberous sclerosis complex (TSC) is a rare neurocutaneous disorder of mTOR pathway dysregulation resulting from pathogenic variants in the TSC1 or TSC2 genes. Expression of this disorder may involve abnormal tissue growth and dysfunction within the brain, kidneys, heart, lungs, eyes, skin, bones, and teeth. Neurological manifestations can include subependymal giant cell astrocytomas (SEGAs), high rates of infantile spasms, drug-resistant epilepsy, developmental delay, cognitive impairment, autism spectrum disorder, and other neurobehavioral manifestations. Here we review the potential clinical manifestations of TSC by system, recommended diagnostic and surveillance testing, genetic testing, currently available therapeutic options, and considerations for education and social support resources given the unique challenges of this multi-system disorder.
Collapse
Affiliation(s)
- Kristen H Arredondo
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX.
| | - Kristina Jülich
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX.
| | - E Steve Roach
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX.
| |
Collapse
|
6
|
Cameron T, Allan K, Kay Cooper. The use of ketogenic diets in children living with drug-resistant epilepsy, glucose transporter 1 deficiency syndrome and pyruvate dehydrogenase deficiency: A scoping review. J Hum Nutr Diet 2024; 37:827-846. [PMID: 38838079 DOI: 10.1111/jhn.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The ketogenic diet (KD) is a high fat, moderate protein and very low carbohydrate diet. It can be used as a medical treatment for drug-resistant epilepsy (DRE), glucose transporter 1 deficiency syndrome and pyruvate dehydrogenase deficiency. The aim of this scoping review was to map the KD literature, with a focus on epilepsy and associated metabolic conditions, to summarise the current evidence-base and identify any gaps. METHODS This review was conducted using JBI scoping review methodological guidance and the PRISMA extension for scoping reviews reporting guidance. A comprehensive literature search was conducted in September 2021 and updated in February 2024 using MEDLINE, CINAHL, AMED, EmBASE, CAB Abstracts, Scopus and Food Science Source databases. RESULTS The initial search yielded 2721 studies and ultimately, data were extracted from 320 studies that fulfilled inclusion criteria for the review. There were five qualitative studies, and the remainder were quantitative, including 23 randomised controlled trials (RCTs) and seven quasi-experimental studies. The USA published the highest number of KD studies followed by China, South Korea and the UK. Most studies focused on the classical KD and DRE. The studies key findings suggest that the KD is efficacious, safe and tolerable. CONCLUSIONS There are opportunities available to expand the scope of future KD research, particularly to conduct high-quality RCTs and further qualitative research focused on the child's needs and family support to improve the effectiveness of KDs.
Collapse
Affiliation(s)
- Tracy Cameron
- Royal Aberdeen Children's Hospital, NHS Grampian, Aberdeen, Scotland, UK
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| | - Karen Allan
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| | - Kay Cooper
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
- Scottish Centre for Evidence-based, Multi-professional Practice: A JBI Centre of Excellence, Aberdeen, Scotland, UK
| |
Collapse
|
7
|
Winczewska-Wiktor A, Braszka M, Harada-Laszlo M, Badura-Stronka M, Kaczmarek I, Starczewska M, Wencel-Warot A, Steinborn B, Jamsheer A. Evaluating the efficacy of a ketogenic diet in managing drug resistant paediatric DEDPC5-related epilepsy. Epilepsy Behav 2024; 150:109535. [PMID: 38118233 DOI: 10.1016/j.yebeh.2023.109535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/22/2023]
Abstract
AIM To evaluate the effectiveness of the ketogenic diet treatment in a cohort of patients with drug-resistant epilepsy with a mutation in the DEPDC5 gene. MATERIALS AND METHODS We followed four paediatric patients with drug resistant DEPDC5-related epilepsy through a ketogenic diet (KD) treatment course. We analyzed the following parameters of their clinical profiles: past medical history, clinical characteristics of seizure morphology, EEG records pre- and post-KD treatment, the results of MRI head and neurological and psychological examinations (pre-treatment and throughout treatment course). We evaluated the effectiveness of previous therapeutic approaches and the current treatment with ketogenic diet alongside results of neuroimaging studies. Effect of KD on co-morbid behavioural and psychiatric symptoms, as well as adverse effects from KD were also assessed. RESULTS In three patients, the introduction of the ketogenic diet resulted in the cessation of seizures, while in 1 patient with co-morbid cortical dysplasia, epileptic seizures of lesser severity returned after an initial seizure-free period of several weeks. Further, 1 patient was able to transition to a KD-only treatment regimen. The remaining patients were able to reduce the number of antiseizure medicine (ASM) to a monotherapy. In all cases we observed improvements in EEG results. Our cohort included one patient whose MRI head showed cortical dysplasia. However, no patients demonstrated any neurological signs in neurological examination. Psychological examination showed normal intellectual development in all patients, although behavioral disorders and difficulties at school were observed. The introduction of KD treatment correlated with improvement in school performance and improved behavioral regulation. No clinically significant adverse events were observed. CONCLUSIONS KD seems to be both effective and well tolerated in young patients with DEPDC5-related epilepsy, both as a monotherapy and as an adjunct to ASM. We recommend an early adoption of this therapeutic approach in this patient demographic. Our results demonstrate that the positive effects of KD treatment encompass improvements in general functioning, particularly in the context of school performance and behavior, in addition to the achievement of good seizure control.
Collapse
Affiliation(s)
| | - Małgorzata Braszka
- University College London Medical School, 74 Huntly School WC1E6DE, London, United Kingdom
| | - Mia Harada-Laszlo
- University College London Medical School, 74 Huntly School WC1E6DE, London, United Kingdom
| | | | - Izabela Kaczmarek
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poland
| | - Monika Starczewska
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poland
| | | | - Barbara Steinborn
- Department of Developmental Neurology, Poznan University of Medical Sciences, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poland.
| |
Collapse
|
8
|
Vitale G, Terrone G, Vitale S, Vitulli F, Aiello S, Bravaccio C, Pisano S, Bove I, Rizzo F, Seetahal-Maraj P, Wiese T. The Evolving Landscape of Therapeutics for Epilepsy in Tuberous Sclerosis Complex. Biomedicines 2023; 11:3241. [PMID: 38137462 PMCID: PMC10741146 DOI: 10.3390/biomedicines11123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multisystem genetic disorder characterized by benign tumor growth in multiple organs, including the brain, kidneys, heart, eyes, lungs, and skin. Pathogenesis stems from mutations in either the TSC1 or TSC2 gene, which encode the proteins hamartin and tuberin, respectively. These proteins form a complex that inhibits the mTOR pathway, a critical regulator of cell growth and proliferation. Disruption of the tuberin-hamartin complex leads to overactivation of mTOR signaling and uncontrolled cell growth, resulting in hamartoma formation. Neurological manifestations are common in TSC, with epilepsy developing in up to 90% of patients. Seizures tend to be refractory to medical treatment with anti-seizure medications. Infantile spasms and focal seizures are the predominant seizure types, often arising in early childhood. Drug-resistant epilepsy contributes significantly to morbidity and mortality. This review provides a comprehensive overview of the current state of knowledge regarding the pathogenesis, clinical manifestations, and treatment approaches for epilepsy and other neurological features of TSC. While narrative reviews on TSC exist, this review uniquely synthesizes key advancements across the areas of TSC neuropathology, conventional and emerging pharmacological therapies, and targeted treatments. The review is narrative in nature, without any date restrictions, and summarizes the most relevant literature on the neurological aspects and management of TSC. By consolidating the current understanding of TSC neurobiology and evidence-based treatment strategies, this review provides an invaluable reference that highlights progress made while also emphasizing areas requiring further research to optimize care and outcomes for TSC patients.
Collapse
Affiliation(s)
- Giovanni Vitale
- Neuroscience and Rare Diseases, Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), F. Hoffmann–La Roche, 4070 Basel, Switzerland
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Samuel Vitale
- School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy;
| | - Francesca Vitulli
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, University of Naples Federico II, 80138 Naples, Italy (I.B.)
| | - Salvatore Aiello
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Carmela Bravaccio
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Simone Pisano
- Department of Translational Medical Sciences, Child and Adolescent Neuropsychiatry, University of Naples Federico II, 80138 Naples, Italy; (G.T.); (C.B.)
| | - Ilaria Bove
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, University of Naples Federico II, 80138 Naples, Italy (I.B.)
| | - Francesca Rizzo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy;
| | | | - Thomas Wiese
- Neuroscience and Rare Diseases, Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), F. Hoffmann–La Roche, 4070 Basel, Switzerland
| |
Collapse
|
9
|
Previtali R, Prontera G, Alfei E, Nespoli L, Masnada S, Veggiotti P, Mannarino S. Paradigm shift in the treatment of tuberous sclerosis: Effectiveness of everolimus. Pharmacol Res 2023; 195:106884. [PMID: 37549757 DOI: 10.1016/j.phrs.2023.106884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterised by abnormal cell proliferation and differentiation that affects multiple organs and can lead to the growth of hamartomas. Tuberous sclerosis complex is caused by the disinhibition of the protein mTOR (mammalian target of rapamycin). In the past, various therapeutic approaches, even if only symptomatic, have been attempted to improve the clinical effects of this disease. While all of these therapeutic strategies are useful and are still used and indicated, they are symptomatic therapies based on the individual symptoms of the disease and therefore not fully effective in modifying long-term outcomes. A new therapeutic approach is the introduction of allosteric inhibitors of mTORC1, which allow restoration of metabolic homeostasis in mutant cells, potentially eliminating most of the clinical manifestations associated with Tuberous sclerosis complex. Everolimus, a mammalian target of the rapamycin inhibitor, is able to reduce hamartomas, correcting the specific molecular defect that causes Tuberous sclerosis complex. In this review, we report the findings from the literature on the use of everolimus as an effective and safe drug in the treatment of TSC manifestations affecting various organs, from the central nervous system to the heart.
Collapse
Affiliation(s)
- Roberto Previtali
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Giorgia Prontera
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enrico Alfei
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy
| | - Luisa Nespoli
- Pediatric Cardiology Unit, Department of Pediatric, Buzzi Children's Hospital, Milan, Italy
| | - Silvia Masnada
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Savina Mannarino
- Pediatric Cardiology Unit, Department of Pediatric, Buzzi Children's Hospital, Milan, Italy.
| |
Collapse
|
10
|
Santangelo A, Corsello A, Spolidoro GCI, Trovato CM, Agostoni C, Orsini A, Milani GP, Peroni DG. The Influence of Ketogenic Diet on Gut Microbiota: Potential Benefits, Risks and Indications. Nutrients 2023; 15:3680. [PMID: 37686712 PMCID: PMC10489661 DOI: 10.3390/nu15173680] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The ketogenic diet (KD) restricts carbohydrate consumption, leading to an increase in ketone bodies, such as acetoacetate, β-hydroxybutyrate, and acetone, which are utilized as energy substrates. This dietary approach impacts several biochemical processes, resulting in improved clinical management of various disorders, particularly in childhood. However, the exact mechanisms underlying the efficacy of KD remain unclear. Interestingly, KD may also impact the gut microbiota, which plays a pivotal role in metabolism, nutrition, and the development of the immune and nervous systems. KD has gained popularity for its potential benefits in weight loss, blood sugar control, and certain neurological conditions. This narrative review sums up KD-related studies published over 30 years. While short-term studies have provided valuable insights into the effects of KD on the gut microbiota, persistent uncertainties surround its long-term efficacy and potential for inducing dysbiosis. The significant influence of KD on epigenetic mechanisms, intracellular pathways, and gut microbial composition underscores its potential as a therapeutic choice. However, a judicious consideration of the potential risks associated with the strict adherence to a low-carbohydrate, high-fat, and high-protein regimen over prolonged periods is imperative. As KDs gain popularity among the adolescent and young adult demographic for weight management, it becomes imperative to undertake additional research to comprehensively assess their impact on nutritional status and gut microbiota, ensuring a holistic and sustainable approach to medical nutrition.
Collapse
Affiliation(s)
- Andrea Santangelo
- Department of Pediatrics, Santa Chiara Hospital, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.S.); (A.O.); (D.G.P.)
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
| | - Giulia Carla Immacolata Spolidoro
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
| | - Chiara Maria Trovato
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, 00165 Rome, Italy;
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessandro Orsini
- Department of Pediatrics, Santa Chiara Hospital, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.S.); (A.O.); (D.G.P.)
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Diego Giampietro Peroni
- Department of Pediatrics, Santa Chiara Hospital, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.S.); (A.O.); (D.G.P.)
| |
Collapse
|
11
|
Corsello A, Trovato CM, Di Profio E, Cardile S, Campoy C, Zuccotti G, Verduci E, Diamanti A. Ketogenic diet in children and adolescents: The effects on growth and nutritional status. Pharmacol Res 2023; 191:106780. [PMID: 37088260 DOI: 10.1016/j.phrs.2023.106780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023]
Abstract
The ketogenic diet is known to be a possible adjuvant treatment in several medical conditions, such as in patients with severe or drug-resistant forms of epilepsy. Its use has recently been increasing among adolescents and young adults due to its supposed weight-loss effect, mediated by lipolysis and lowered insulin levels. However, there are still no precise indications on the possible use of ketogenic diets in pediatric age for weight loss. This approach has also recently been proposed for other types of disorder such as inherited metabolic disorders, Prader-Willi syndrome, and some specific types of cancers. Due to its unbalanced ratio of lipids, carbohydrates and proteins, a clinical evaluation of possible side effects with a strict evaluation of growth and nutritional status is essential in all patients following a long-term restrictive diet such as the ketogenic one. The prophylactic use of micronutrients supplementation should be considered before starting any ketogenic diet. Lastly, while there is sufficient literature on possible short-term side effects of ketogenic diets, their possible long-term impact on growth and nutritional status is not yet fully understood, especially when started in pediatric age.
Collapse
Affiliation(s)
- Antonio Corsello
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Chiara Maria Trovato
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy
| | - Sabrina Cardile
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Cristina Campoy
- Department of Pediatrics, School of Medicine, University of Granada, Granada, Spain; EURISTIKOS Excellence Centre for Pediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain; Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Institute of Health Carlos III, Madrid, Spain
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy; Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy.
| | - Antonella Diamanti
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| |
Collapse
|
12
|
Singh A, Hadjinicolaou A, Peters JM, Salussolia CL. Treatment-Resistant Epilepsy and Tuberous Sclerosis Complex: Treatment, Maintenance, and Future Directions. Neuropsychiatr Dis Treat 2023; 19:733-748. [PMID: 37041855 PMCID: PMC10083014 DOI: 10.2147/ndt.s347327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a neurogenetic disorder that affects multiple organ systems, including the heart, kidneys, eyes, skin, and central nervous system. The neurologic manifestations have the highest morbidity and mortality, in particular in children. Clinically, patients with TSC often present with new-onset seizures within the first year of life. TSC-associated epilepsy is often difficult to treat and refractory to multiple antiseizure medications. Refractory TSC-associated epilepsy is associated with increased risk of neurodevelopmental comorbidities, including developmental delay, intellectual disability, autism spectrum disorder, and attention hyperactivity disorder. An increasing body of research suggests that early, effective treatment of TSC-associated epilepsy during critical neurodevelopmental periods can potentially improve cognitive outcomes. Therefore, it is important to treat TSC-associated epilepsy aggressively, whether it be with pharmacological therapy, surgical intervention, and/or neuromodulation. This review discusses current and future pharmacological treatments for TSC-associated epilepsy, as well as the importance of early surgical evaluation for refractory epilepsy in children with TSC and consideration of neuromodulatory interventions in young adults.
Collapse
Affiliation(s)
- Avantika Singh
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aristides Hadjinicolaou
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jurriaan M Peters
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Catherine L Salussolia
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Correspondence: Catherine L Salussolia, 3 Blackfan Circle, Center for Life Sciences 14060, Boston, MA, 02115, USA, Tel +617-355-7970, Email
| |
Collapse
|
13
|
Advances in the genetics and neuropathology of tuberous sclerosis complex: edging closer to targeted therapy. Lancet Neurol 2022; 21:843-856. [PMID: 35963265 DOI: 10.1016/s1474-4422(22)00213-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 12/23/2022]
|
14
|
Genetic pathogenesis of the epileptogenic lesions in Tuberous Sclerosis Complex: Therapeutic targeting of the mTOR pathway. Epilepsy Behav 2022; 131:107713. [PMID: 33431351 DOI: 10.1016/j.yebeh.2020.107713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic multisystem disease due to the mutation in one of the two genes TSC1 and TSC2, affecting several organs and systems and carrying a significant risk of early onset and refractory seizures. The pathogenesis of this complex disorder is now well known, with most of TSC-related manifestations being a consequence of the overactivation of the mammalian Target of Rapamycin (mTOR) complex. The discovery of this underlying mechanism paved the way for the use of a class of drugs called mTOR inhibitors including rapamycin and everolimus and specifically targeting this pathway. Rapamycin has been widely used in different animal models of TSC-related epilepsy and proved to be able not only to suppress seizures but also to prevent the development of epilepsy, thus demonstrating an antiepileptogenic potential. In some models, it also showed some benefit on neuropsychiatric manifestations associated with TSC. Everolimus has recently been approved by the US Food and Drug Administration and the European Medical Agency for the treatment of refractory seizures associated with TSC starting from the age of 2 years. It demonstrated a clear benefit when compared to placebo on reducing the frequency of different seizure types and exerting a higher effect in younger children. In conclusion, mTOR cascade can be a potentially major cause of TSC-associated epilepsy and neurodevelopmental disability, and additional research should investigate if early suppression of abnormal mTOR signal with mTOR inhibitors before seizure onset can be a more efficient approach and an effective antiepileptogenic and disease-modifying strategy in infants with TSC.
Collapse
|
15
|
Fang Y, Li D, Wang M, Zhao X, Duan J, Gu Q, Li B, Zha J, Mei D, Bian G, Zhang M, Zhang H, Hu J, Yang L, Yu L, Li H, Liao J. Ketogenic Diet Therapy for Drug-Resistant Epilepsy and Cognitive Impairment in Children With Tuberous Sclerosis Complex. Front Neurol 2022; 13:863826. [PMID: 35685742 PMCID: PMC9171393 DOI: 10.3389/fneur.2022.863826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is a rare disease with a high risk of epilepsy and cognitive impairment in children. Ketogenic diet (KD) therapy has been consistently reported to be beneficial to TSC patients. In this study, we aimed to investigate the efficacy and safety of KD in the treatment of drug-resistant epilepsy and cognitive impairment in children with TSC. METHODS In this multicenter study, 53 children (33 males and 20 females) with drug-resistant epilepsy or cognitive impairment caused by TSC were retrospectively recruited from 10 hospitals from January 1, 2010, to December 31, 2020. Intention-to-treat analysis was used to evaluate seizure reduction and cognition improvement as outcomes after KD therapy. RESULTS Of the 53 TSC patients included, 51 failed to be seizure-free with an average of 5.0 (range, 4-6) different anti-seizure medications (ASMs), before KD therapy. Although the other two patients achieved seizure freedom before KD, they still showed psychomotor development delay and electroencephalogram (EEG) abnormalities. At 1, 3, 6, and 12 months after the KD therapy, 51 (100%), 46 (90.2%), 35 (68.6%), and 16 patients (31.4%) remained on the diet therapy, respectively. At these time points, there were 26 (51.0%), 24 (47.1%), 22 (43.1%) and 13 patients (25.5%) having ≥50% reductions in seizure, including 11 (21.6%), 12 (23.5%), 9 (17.6%) and 3 patients (5.9%) achieving seizure freedom. In addition, of 51 patients with psychomotor retardation, 36 (36 of 51, 70.6%) showed cognitive and behavioral improvements. During the KD therapy, no serious side effects occurred in any patient. The most common side effects were gastrointestinal disturbance (20 of 53, 37.7%) and hyperlipidemia (6 of 53, 11.3%). The side effects were gradually relieved after adjustment of the ketogenic ratio and symptomatic treatment. CONCLUSION KD is an effective and safe treatment for TSC-related drug-resistant epilepsy and cognitive impairment in children. KD can reduce seizure frequency and may potentially improve cognition and behavior.
Collapse
Affiliation(s)
- Yu Fang
- Shenzhen Children's Hospital, China Medical University, Shenzhen, China
| | - Dan Li
- Department of Pediatric, Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| | - Man Wang
- Epilepsy Center, Shanghai Neuromedical Center, Shanghai, China
| | - Xia Zhao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Jing Duan
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Qiang Gu
- Department of Pediatric, First Hospital, Peking University, Beijing, China
| | - Baomin Li
- Qilu Hospital, Shandong University, Jinan, China
| | - Jian Zha
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Guangbo Bian
- Department of Pediatric Neurorehabilitation, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Man Zhang
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Huiting Zhang
- Shenzhen Children's Hospital, China Medical University, Shenzhen, China
| | - Junjie Hu
- Department of Neurology, Shantou University Medical College Shenzhen Children's Hospital, Shenzhen, China
| | - Liu Yang
- Department of Pediatric, Guangdong Women and Children Hospital, Guangzhou, China
| | - Lifei Yu
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Hua Li
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
16
|
Nabavi Nouri M, Zak M, Jain P, Whitney R. Epilepsy Management in Tuberous Sclerosis Complex: Existing and Evolving Therapies and Future Considerations. Pediatr Neurol 2022; 126:11-19. [PMID: 34740132 DOI: 10.1016/j.pediatrneurol.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare autosomal dominant condition that affects multiple body systems. Disruption of the mammalian target of rapamycin (mTOR) pathway results in abnormal cell growth, proliferation, protein synthesis, and cell differentiation and migration in TSC. In the central nervous system, mTOR disruption is also believed to influence neuronal excitability and promote epileptogenesis. Epilepsy is the most common neurological manifestation of TSC and affects 80% to 90% of individuals with high rates of treatment resistance (up to 75%). The onset of epilepsy in the majority of individuals with TSC occurs before the age of two years, which is a critical time in neurodevelopment. Both medically refractory epilepsy and early-onset epilepsy are associated with intellectual disability in TSC, while seizure control and remission are associated with lower rates of cognitive impairment. Our current knowledge of the treatment of epilepsy in TSC has expanded immensely over the last decade. Several new therapies such as preemptive vigabatrin therapy in infants, cannabidiol, and mTOR inhibitors have emerged in recent years for the treatment of epilepsy in TSC. This review will provide clinicians with a comprehensive overview of the pharmacological and nonpharmacological therapies available for the treatment of epilepsy related to TSC.
Collapse
Affiliation(s)
- Maryam Nabavi Nouri
- Division of Neurology, Department of Pediatrics, Western University, London, Ontario, Canada
| | - Maria Zak
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
17
|
Hampton C, Benjamin R. Managing Epilepsy in Neurocutaneous Disorders. NEUROCUTANEOUS DISORDERS 2022:515-525. [DOI: 10.1007/978-3-030-87893-1_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Shlomovitz O, Ben-Zeev B, Pleniceanu O, Greenberger S, Lahav E, Mini S, Tzadok M. An Israeli tuberous sclerosis cohort: the efficacy of different anti-epileptic strategies. Childs Nerv Syst 2021; 37:3827-3833. [PMID: 34491422 DOI: 10.1007/s00381-021-05348-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022]
Abstract
AIM We aimed to describe the experience of a large single-center cohort for the clinical, radiological, and genetic characteristics, as well as to determine the efficacy of different anti-epileptic strategies in children and adults with tuberous sclerosis complex (TSC). METHODS We carried out a historical cohort study on 91 TSC patients treated in a single center between 2008 and 2018. RESULTS Our cohort comprised 46 males and 45 females, with a median age of 15.6 years at the last follow-up. Mean follow-up time was 2.5 ± 0.75-5.5 years (range 0-9.5 years). Of those tested, a disease-causing mutation was identified in 90% of patients, 53% in TSC2, and 37% in TSC1. Epilepsy prevalence was similar among TSC1 and TSC2 mutated patients. The most common radiological finding were cortical tubers in 95% of patients, while subependymal giant cell astrocytoma (SEGA) were detected in 36% of patients. Notably, infantile spasms (IS) were diagnosed in 29%, with SEGA representing the only finding significantly different in prevalence between those with and without IS (62% vs. 28%, respectively, p = 0.009). Lastly, we did not find any difference in efficacy between three anti-epileptic treatments: Vagus nerve stimulation (VNS), CBD-based products, and the ketogenic diet, all showing approximately 30%-40% response rates. SIGNIFICANCE Altogether, we provide a comprehensive description of our experience in treating TSC, which could serve to expand current knowledge of the disease and its treatments.
Collapse
Affiliation(s)
- Omer Shlomovitz
- Department of Pediatrics B, Sheba Medical Center, Tel-Hashomer and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Bruria Ben-Zeev
- Pediatric Neurology Units, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Ramat Gan, Israel
| | - Oren Pleniceanu
- Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shoshana Greenberger
- Dermatology Department, Pediatric Dermatology Service, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Einat Lahav
- Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Ramat Gan, Israel
| | - Sharon Mini
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Institute of Nephrology and Hypertension, Sheba medical center, Ramat Gan, Israel
| | - Michal Tzadok
- Pediatric Neurology Units, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Ramat Gan, Israel
| |
Collapse
|
19
|
Nabbout R, Kuchenbuch M, Chiron C, Curatolo P. Pharmacotherapy for Seizures in Tuberous Sclerosis Complex. CNS Drugs 2021; 35:965-983. [PMID: 34417984 DOI: 10.1007/s40263-021-00835-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2021] [Indexed: 01/18/2023]
Abstract
Epilepsy is one of the main symptoms affecting the lives of individuals with tuberous sclerosis complex (TSC), causing a high rate of morbidity. Individuals with TSC can present with various types of seizures, epilepsies, and epilepsy syndromes that can coexist or appear in relation to age. Focal epilepsy is the most frequent epilepsy type with two developmental and epileptic encephalopathies: infantile spasms syndrome and Lennox-Gastaut syndrome. Active screening and early management of epilepsy is recommended in individuals with TSC to limit its consequences and its impact on quality of life, cognitive outcome and the economic burden of the disease. The progress in the knowledge of the mechanisms underlying epilepsy in TSC has paved the way for new concepts in the management of epilepsy related to TSC. In addition, we are moving from traditional "reactive" and therapeutic choices with current antiseizure medications used after the onset of seizures, to a proactive approach, aimed at predicting and preventing epileptogenesis and the onset of epilepsy with vigabatrin, and to personalized treatments with mechanistic therapies, namely mechanistic/mammalian target of rapamycin inhibitors. Indeed, epilepsy linked to TSC is one of the only epilepsies for which a predictive and preventive approach can delay seizure onset and improve seizure response. However, the efficacy of such interventions on long-term cognitive and psychiatric outcomes is still under investigation.
Collapse
Affiliation(s)
- Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Université de Paris, 149 rue de Sèvres, 75015, Paris, France.
- UMR 1163, Institut National de la Santé et de la Recherche Médicale (INSERM), Imagine Institute, Université de Paris, Paris, France.
| | - Mathieu Kuchenbuch
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Université de Paris, 149 rue de Sèvres, 75015, Paris, France
- UMR 1163, Institut National de la Santé et de la Recherche Médicale (INSERM), Imagine Institute, Université de Paris, Paris, France
| | - Catherine Chiron
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Université de Paris, 149 rue de Sèvres, 75015, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1141, Neurospin, Gif sur Yvette, France
| | - Paolo Curatolo
- Department of System Medicine, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
20
|
Schubert-Bast S, Strzelczyk A. Review of the treatment options for epilepsy in tuberous sclerosis complex: towards precision medicine. Ther Adv Neurol Disord 2021; 14:17562864211031100. [PMID: 34349839 PMCID: PMC8290505 DOI: 10.1177/17562864211031100] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder caused by mutations in the TSC1 or TSC2 genes, which encode proteins that antagonise the mammalian isoform of the target of rapamycin complex 1 (mTORC1) - a key mediator of cell growth and metabolism. TSC is characterised by the development of benign tumours in multiple organs, together with neurological manifestations including epilepsy and TSC-associated neuropsychiatric disorders (TAND). Epilepsy occurs frequently and is associated with significant morbidity and mortality; however, the management is challenging due to the intractable nature of the seizures. Preventative epilepsy treatment is a key aim, especially as patients with epilepsy may be at a higher risk of developing severe cognitive and behavioural impairment. Vigabatrin given preventatively reduces the risk and severity of epilepsy although the benefits for TAND are inconclusive. These promising results could pave the way for evaluating other treatments in a preventative capacity, especially those that may address the underlying pathophysiology of TSC, including everolimus, cannabidiol and the ketogenic diet (KD). Everolimus is an mTOR inhibitor approved for the adjunctive treatment of refractory TSC-associated seizures that has demonstrated significant reductions in seizure frequency compared with placebo, improvements that were sustained after 2 years of treatment. Highly purified cannabidiol, recently approved in the US as Epidiolex® for TSC-associated seizures in patients ⩾1 years of age, and the KD, may also participate in the regulation of the mTOR pathway. This review focusses on the pivotal clinical evidence surrounding these potential targeted therapies that may form the foundation of precision medicine for TSC-associated epilepsy, as well as other current treatments including anti-seizure drugs, vagus nerve stimulation and surgery. New future therapies are also discussed, together with the potential for preventative treatment with targeted therapies. Due to advances in understanding the molecular genetics and pathophysiology, TSC represents a prototypic clinical syndrome for studying epileptogenesis and the impact of precision medicine.
Collapse
Affiliation(s)
- Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Department of Neuropediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Goethe-University Frankfurt, Schleusenweg 2–16, Frankfurt am Main, 60528, Germany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
21
|
A Concise Review of Ketogenic Dietary Interventions in the Management of Rare Diseases. J Nutr Metab 2021; 2021:6685581. [PMID: 33628494 PMCID: PMC7899763 DOI: 10.1155/2021/6685581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 11/20/2022] Open
Abstract
Dietary interventions are now being used as an adjunct therapy in the treatment of rare diseases. One such method is the high-fat, moderate-protein, and very low-carbohydrate diet which produces ketosis and therefore called the ketogenic diet. Some of the more common conditions that are treated with this method are pharmacoresistant epilepsy, infantile spasms, glycogen storage diseases, and other forms of rare metabolic disturbances. With this review, we look at different uses of the ketogenic diet in treating rare diseases and the recommendations based on current evidence.
Collapse
|
22
|
Padureanu V, Dragoescu O, Stoenescu VE, Padureanu R, Pirici I, Cimpeanu RC, Dalia D, Mihailovici AR, Tomescu P. Management of a Patient with Tuberous Sclerosis with Urological Clinical Manifestations. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:369. [PMID: 32718027 PMCID: PMC7466204 DOI: 10.3390/medicina56080369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 11/18/2022]
Abstract
The tuberous sclerosis complex (TSC) is highly variable as far as its clinical presentation is concerned. For the implementation of appropriate medical surveillance and treatment, an accurate diagnosis is compulsory. TSC may affect the heart, skin, kidneys, central nervous system (epileptic seizures and nodular intracranial tumors-tubers), bones, eyes, lungs, blood vessels and the gastrointestinal tract. The aim of this paper is to report renal manifestations as first clinical signs suggestive of TSC diagnosis. A 20-year-old patient was initially investigated for hematuria, dysuria and colicky pain in the left lumbar region. The ultrasound examination of the kidney showed bilateral hyperechogenic kidney structures and pyelocalyceal dilatation, both suggestive of bilateral obstructive lithiasis, complicated by uretero-hydronephrosis. The computer tomography (CT) scan of the kidney showed irregular kidney margins layout, undifferentiated images between cortical and medullar structures, with non-homogenous round components, suggestive of kidney angiomyolipomas, bilateral renal cortical retention cysts, images of a calculous component in the right middle calyceal branches and a smaller one on the left side. The clinical manifestations and imaging findings (skull and abdominal and pelvis CT scans) sustained the diagnosis.
Collapse
Affiliation(s)
- Vlad Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Octavian Dragoescu
- Department of Urology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (O.D.); (V.E.S.); (P.T.)
| | - Victor Emanuel Stoenescu
- Department of Urology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (O.D.); (V.E.S.); (P.T.)
| | - Rodica Padureanu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ionica Pirici
- Department of Anatomy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - Dop Dalia
- Department of Pediatrics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Paul Tomescu
- Department of Urology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (O.D.); (V.E.S.); (P.T.)
| |
Collapse
|