1
|
Bredeck G, Schins RPF. Models to evaluate the pulmonary toxicity of desert dust and what we have learned from them so far: a mini-review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03891-9. [PMID: 40156611 DOI: 10.1007/s00210-025-03891-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/05/2025] [Indexed: 04/01/2025]
Abstract
Millions of people worldwide are exposed to aerosolised desert dust and are at risk of the adverse respiratory health effects it causes. This mini-review gives an overview of the study types that can be used to assess the respiratory toxicity of desert dust and the insights gained from these studies. We highlight the main advantages and disadvantages of epidemiological, in vivo, and in vitro studies. Regarding in vitro studies, we discuss models of increasing complexity, i.e., traditional submerged cell cultures, air-liquid interface cultures, organ-on-a-chip models, organoids, and precision-cut lung slices. Epidemiological studies have shown increased short-term mortality and exacerbated acute and chronic respiratory diseases after desert dust events. In contrast, a connection to the onset of chronic diseases is more difficult to prove. In vivo and in vitro studies have particularly addressed the cellular and molecular effects of desert dust. It was found that desert dust activates immune cells and induces the expression of inflammatory cytokines and oxidative stress markers. The specific effects and their extent vary between dust samples from different sources. The investigation of the role of the composition is still immature and needs further effort including more extensive screenings. The advancement of easy-to-handle and realistic pulmonary in vitro models is required to automate screenings, support mechanistic insights, and enable the assessment of long-term exposure scenarios. In agreement with striving to develop new approach methodologies, such advancements can reduce and replace animal experiments and strongly benefit the translatability of research outcomes to human health protection.
Collapse
Affiliation(s)
- Gerrit Bredeck
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
2
|
Sagawa T, Ichinose T, Honda A, Kuroda E, Ishikawa R, Miyasaka N, Nagao M, Okuda T, Kawahito Y, Takano H. Acceleration of acute lung inflammation by IL-1α released through cell death of alveolar macrophages upon phagocytosis of fine Asian sand dust particles. ENVIRONMENT INTERNATIONAL 2024; 194:109178. [PMID: 39662280 DOI: 10.1016/j.envint.2024.109178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Asian sand dust (ASD), a significant desert sand dust, contains sub-2.5 µm fine particles and adversely affects human health, particularly exacerbating respiratory diseases. Despite this, the intricate physiological responses triggered by inhaled ASD particles remain incompletely understood. This study aimed to comprehensively examine the respiratory effects of ASD, focusing on the spatial distribution of inhaled ASD fine particles within the lungs and the immediate physiological responses they incite. Intratracheal administration of ASD fine particles in mice resulted in efficient phagocytosis by alveolar macrophages (AMs), leading to subsequent neutrophilic inflammation. A subset of ASD-phagocytosed AMs underwent necroptosis, releasing interleukin-1α (IL-1α), causing an increase in chemokines and neutrophils. These responses occurred rapidly within hours of exposure, with endotoxin in ASD particles contributing to the process. Despite variations in desert sand dust composition based on collection locale and timing, this study's findings provide a foundational basis for understanding the biological effects of desert sand dust. Insights gained into the biological responses to desert sand dust hold promise for developing preventive measures such as air purifiers, and therapeutic agents such as IL-1α neutralizing antibodies, antibacterial agents and cell death inhibitors for human diseases associated with such environmental exposures.
Collapse
Affiliation(s)
- Tomoya Sagawa
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan; Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Takamichi Ichinose
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Akiko Honda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Etsushi Kuroda
- Department of Immunology, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Raga Ishikawa
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Natsuko Miyasaka
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Megumi Nagao
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Yutaka Kawahito
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan; Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto, Japan; Research Institute for Coexistence and Health Science, Kyoto University of Advanced Science, Kyoto, Japan
| |
Collapse
|
3
|
Pak SW, Kim WI, Lee SJ, Park SH, Cho YK, Kim JS, Kim JC, Kim SH, Shin IS. TXNIP regulates pulmonary inflammation induced by Asian sand dust. Redox Biol 2024; 78:103421. [PMID: 39520910 PMCID: PMC11671764 DOI: 10.1016/j.redox.2024.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Asian sand dust (ASD), a seasonal dust storm originating from the deserts of China and Mongolia, affects Korea and Japan during the spring, carrying soil particles and a variety of biochemical components. Exposure to ASD has been associated with the onset and exacerbation of respiratory disorders, although the underlying mechanisms remain unclear. This study investigates ASD-induced pulmonary toxicity and its mechanistic pathways, focusing on the role of thioredoxin-interacting protein (TXNIP). Using TXNIP knock-out (KO) mice and adeno-associated virus (AAV)-mediated TXNIP overexpression transgenic mice, we explored how TXNIP modulates ASD-induced pulmonary inflammation. Mice were exposed to ASD via intranasal administration on days 1, 3, and 5 to induce inflammation. ASD exposure led to significant pulmonary inflammation, evidenced by increased inflammatory cell counts and elevated cytokine levels in bronchoalveolar lavage fluid, as well as heightened protein expression of the TXNIP/NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome. TXNIP KO mice exhibited attenuated airway inflammation and downregulation of the NLRP3 inflammasome compared to wild-type controls, while AAV-mediated TXNIP overexpression mice showed exacerbated inflammatory responses, including elevated NLRP3 inflammasome expression, compared to AAV-GFP controls. These findings suggest that TXNIP is a key regulator of ASD-induced pulmonary inflammation.
Collapse
Affiliation(s)
- So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sin-Hyang Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si, Chungbuk, 28503, Republic of Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup-si, Jeonbuk, 53212, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
4
|
Xia F, Chen Z, Tian E, Mo J. A super sandstorm altered the abundance and composition of airborne bacteria in Beijing. J Environ Sci (China) 2024; 144:35-44. [PMID: 38802236 DOI: 10.1016/j.jes.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 05/29/2024]
Abstract
Sandstorm, which injects generous newly emerging microbes into the atmosphere covering cities, adversely affects the air quality in built environments. However, few studies have examined the change of airborne bacteria during severe sandstorm events. In this work, we analyzed the airborne bacteria during one of the strongest sandstorms in East Asia on March 15th, 2021, which affected large areas of China and Mongolia. The characteristics of the sandstorm were compared with those of the subsequent clean and haze days. The composition of the bacterial community of air samples was investigated using quantitative polymerase chain reaction (qPCR) and high-throughput sequencing technology. During the sandstorm, the particulate matter (PM) concentration and bacterial richness were extremely high (PM2.5: 207 µg/m3; PM10: 1630 µg/m3; 5700 amplicon sequence variants/m3). In addition, the sandstorm brought 10 pathogenic bacterial genera to the atmosphere, posing a grave hazard to human health. As the sandstorm subsided, small bioaerosols (0.65-1.1 µm) with a similar bacterial community remained suspended in the atmosphere, bringing possible long-lasting health risks.
Collapse
Affiliation(s)
- Fanxuan Xia
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan 523808, China; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jinhan Mo
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen 518060, China; Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education, Beijing 100084, China
| |
Collapse
|
5
|
Lemou A, Rabhi L, Ladji R, Nicolas JB, Bonnaire N, Sciare J, Yassaa N. Sources of PM 10 ionic species in the South-West Mediterranean (Algeria). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49514-49528. [PMID: 39080165 DOI: 10.1007/s11356-024-34449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
The contents of water-soluble major's ions (MSA, Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, and Ca2+) in the PM10 particle fraction were investigated thanks to detailed measurements of the main chemical constituents of PM10 in remote coastal areas in Bou-Ismail; in the South-West of the Mediterranean Sea (Algeria), during a 2-year period; from July 2011 to August 2013, under the framework of the ChArMEx project (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr ). The total water-soluble ion concentrations in PM10 at the Bou-Ismail measurement station varied from 3.3 µg/m3 (July 2011) to 49.6 µg/m3 (March 2012). The annual mean mass concentrations of ions in the PM10 particulate fraction were Cl- > Na+ > SO42- > Mg2+ > NO3- > Ca2+ > K+ > NH4+ > Oxalate. The change in potassium nss-K + concentrations in PM10 over the course of a year reveals that biomass burning (BB) has an effect on three separate seasons: the beginning of winter (February and March), the end of summer (August), and the autumn (September and October). The origin periods of biomass burning BB identified employing the mapping of hotspots and fires during periods of August and September 2011, 2012, and 2013 underlined the important fires in the surrounding areas of the Mediterranean Sea (Sardinia Islands from Italy, Corsica from France).
Collapse
Affiliation(s)
- Abdelkader Lemou
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algeria.
- Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols - (URAPC-MFS/ CRAPC), 11 Chemin Doudou Mokhtar, Ben Aknoun, Alger, Algeria.
- Laboratoire analyse Organique Fonctionnelle, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, Bab-Ezzouar, 16111, Alger, Algérie.
| | - Lyes Rabhi
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algeria
- Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols - (URAPC-MFS/ CRAPC), 11 Chemin Doudou Mokhtar, Ben Aknoun, Alger, Algeria
- Laboratoire analyse Organique Fonctionnelle, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, Bab-Ezzouar, 16111, Alger, Algérie
| | - Riad Ladji
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algeria
- Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols - (URAPC-MFS/ CRAPC), 11 Chemin Doudou Mokhtar, Ben Aknoun, Alger, Algeria
| | - Jose B Nicolas
- LSCE, Laboratoire des sciences du climat et de l'environnement, CEA Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France
| | - Nicolas Bonnaire
- LSCE, Laboratoire des sciences du climat et de l'environnement, CEA Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France
| | - Jean Sciare
- The Cyprus Institute, Energy, Environment and Water Research Center, Nicosia, Cyprus
| | - Noureddine Yassaa
- Laboratoire analyse Organique Fonctionnelle, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, Bab-Ezzouar, 16111, Alger, Algérie
- Commissariat aux Energies Renouvelables et à l'Efficacité Energétique, CEREFE, 23 Rue Docteur Slimane Asselah, Telemly, Algiers, Algeria
| |
Collapse
|
6
|
Bredeck G, Dos S Souza EJ, Wigmann C, Fomba KW, Herrmann H, Schins RPF. The influence of long-range transported Saharan dust on the inflammatory potency of ambient PM 2.5 and PM 10. ENVIRONMENTAL RESEARCH 2024; 252:119008. [PMID: 38663670 DOI: 10.1016/j.envres.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Although desert dust promotes morbidity and mortality, it is exempt from regulations. Its health effects have been related to its inflammatory properties, which can vary between source regions. It remains unclear which constituents cause this variability. Moreover, whether long-range transported desert dust potentiates the hazardousness of local particulate matter (PM) is still unresolved. We aimed to assess the influence of long-range transported desert dust on the inflammatory potency of PM2.5 and PM10 collected in Cape Verde and to examine associated constituents. During a reference period and two Saharan dust events, 63 PM2.5 and PM10 samples were collected at four sampling stations. The content of water-soluble ions, elements, and organic and elemental carbon was measured in all samples and endotoxins in PM10 samples. The PM-induced release of inflammatory cytokines from differentiated THP-1 macrophages was evaluated. The association of interleukin (IL)-1β release with PM composition was assessed using principal component (PC) regressions. PM2.5 from both dust events and PM10 from one event caused higher IL-1β release than PM from the reference period. PC regressions indicated an inverse relation of IL-1β release with sea spray ions in both size fractions and organic and elemental carbon in PM2.5. The PC with the higher regression coefficient suggested that iron and manganese may contribute to PM2.5-induced IL-1β release. Only during the reference period, endotoxin content strongly differed between sampling stations and correlated with inflammatory potency. Our results demonstrate that long-range transported desert dust amplifies the hazardousness of local air pollution and suggest that, in PM2.5, iron and manganese may be important. Our data indicate that endotoxins are contained in local and long-range transported PM10 but only explain the variability in inflammatory potency of local PM10. The increasing inflammatory potency of respirable and inhalable PM from desert dust events warrants regulatory measures and risk mitigation strategies.
Collapse
Affiliation(s)
- Gerrit Bredeck
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Auf'm Hennekamp 50, Germany
| | - Eduardo J Dos S Souza
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Permoserstr. 15, Germany
| | - Claudia Wigmann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Auf'm Hennekamp 50, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Permoserstr. 15, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Permoserstr. 15, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Auf'm Hennekamp 50, Germany.
| |
Collapse
|
7
|
Skevaki C, Nadeau KC, Rothenberg ME, Alahmad B, Mmbaga BT, Masenga GG, Sampath V, Christiani DC, Haahtela T, Renz H. Impact of climate change on immune responses and barrier defense. J Allergy Clin Immunol 2024; 153:1194-1205. [PMID: 38309598 DOI: 10.1016/j.jaci.2024.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Climate change is not just jeopardizing the health of our planet but is also increasingly affecting our immune health. There is an expanding body of evidence that climate-related exposures such as air pollution, heat, wildfires, extreme weather events, and biodiversity loss significantly disrupt the functioning of the human immune system. These exposures manifest in a broad range of stimuli, including antigens, allergens, heat stress, pollutants, microbiota changes, and other toxic substances. Such exposures pose a direct and indirect threat to our body's primary line of defense, the epithelial barrier, affecting its physical integrity and functional efficacy. Furthermore, these climate-related environmental stressors can hyperstimulate the innate immune system and influence adaptive immunity-notably, in terms of developing and preserving immune tolerance. The loss or failure of immune tolerance can instigate a wide spectrum of noncommunicable diseases such as autoimmune conditions, allergy, respiratory illnesses, metabolic diseases, obesity, and others. As new evidence unfolds, there is a need for additional research in climate change and immunology that covers diverse environments in different global settings and uses modern biologic and epidemiologic tools.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Blandina T Mmbaga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Gileard G Masenga
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Obstetrics and Gynecology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Mass; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Harald Renz
- Institute of Laboratory Medicine, member of the German Center for Lung Research and the Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Marburg, Germany; Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia.
| |
Collapse
|
8
|
Zhang Z, Qi J, Liu Y, Ji M, Wang W, Wu W, Liu K, Huang Z. Anthropogenic impact on airborne bacteria of the Tibetan Plateau. ENVIRONMENT INTERNATIONAL 2024; 183:108370. [PMID: 38091822 DOI: 10.1016/j.envint.2023.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024]
Abstract
The Tibetan Plateau is a pristine environment with limited human disturbance, with its aerosol microbiome being primarily influenced by the monsoon and westerly circulations. Additionally, the diversity and abundance of airborne microorganisms are also affected by anthropogenic activities, such as animal farming, agriculture, and tourism, which can lead to increased risks to the ecosystem and human health. However, the impact of anthropogenic activities on airborne microbes on the Tibetan Plateau has been rarely studied. In this work, we investigated the airborne bacteria of areas with weak (rural glacier) and strong human disturbance (urban building), and found that anthropogenic activities increased the diversity of airborne bacteria, and the concentration of potential airborne pathogens. Moreover, airborne bacteria in rural aerosols demonstrated significant differences in their community structure during monsoon- and westerly-affected seasons, while this pattern was weakened in urban aerosols. Additionally, urban aerosols enriched Lactobacillus sp. (member of genus Lactobacillus), which are potential pathogens from anthropogenic sources, whereas rural aerosols enriched A. calcoaceticus (member of genus Acinetobacter) and E. thailandicus (member of genus Enterococcus), which are both speculated to be sourced from surrounding animal farming. This study evaluated the impact of human activities on airborne bacteria in the Tibetan Plateau and contributed to understanding the enrichment of airborne pathogens in natural and anthropogenic background.
Collapse
Affiliation(s)
- Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Qi
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China.
| | - Mukan Ji
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Wenqiang Wang
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wenjie Wu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongwei Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Bredeck G, Dobner J, Stahlmecke B, Fomba KW, Herrmann H, Rossi A, Schins RPF. Saharan dust induces NLRP3-dependent inflammatory cytokines in an alveolar air-liquid interface co-culture model. Part Fibre Toxicol 2023; 20:39. [PMID: 37864207 PMCID: PMC10588053 DOI: 10.1186/s12989-023-00550-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Epidemiological studies have related desert dust events to increased respiratory morbidity and mortality. Although the Sahara is the largest source of desert dust, Saharan dust (SD) has been barely examined in toxicological studies. Here, we aimed to assess the NLRP3 inflammasome-caspase-1-pathway-dependent pro-inflammatory potency of SD in comparison to crystalline silica (DQ12 quartz) in an advanced air-liquid interface (ALI) co-culture model. Therefore, we exposed ALI co-cultures of alveolar epithelial A549 cells and macrophage-like differentiated THP-1 cells to 10, 21, and 31 µg/cm² SD and DQ12 for 24 h using a Vitrocell Cloud system. Additionally, we exposed ALI co-cultures containing caspase (CASP)1-/- and NLRP3-/- THP-1 cells to SD. RESULTS Characterization of nebulized DQ12 and SD revealed that over 90% of agglomerates of both dusts were smaller than 2.5 μm. Characterization of the ALI co-culture model revealed that it produced surfactant protein C and that THP-1 cells remained viable at the ALI. Moreover, wild type, CASP1-/-, and NLRP3-/- THP-1 cells had comparable levels of the surface receptors cluster of differentiation 14 (CD14), toll-like receptor 2 (TLR2), and TLR4. Exposing ALI co-cultures to non-cytotoxic doses of DQ12 and SD did not induce oxidative stress marker gene expression. SD but not DQ12 upregulated gene expressions of interleukin 1 Beta (IL1B), IL6, and IL8 as well as releases of IL-1β, IL-6, IL-8, and tumor necrosis factor α (TNFα). Exposing wild type, CASP1-/-, and NLRP3-/- co-cultures to SD induced IL1B gene expression in all co-cultures whereas IL-1β release was only induced in wild type co-cultures. In CASP1-/- and NLRP3-/- co-cultures, IL-6, IL-8, and TNFα releases were also reduced. CONCLUSIONS Since surfactants can decrease the toxicity of poorly soluble particles, the higher potency of SD than DQ12 in this surfactant-producing ALI model emphasizes the importance of readily soluble SD components such as microbial compounds. The higher potency of SD than DQ12 also renders SD a potential alternative particulate positive control for studies addressing acute inflammatory effects. The high pro-inflammatory potency depending on NLRP3, CASP-1, and IL-1β suggests that SD causes acute lung injury which may explain desert dust event-related increased respiratory morbidity and mortality.
Collapse
Affiliation(s)
- Gerrit Bredeck
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany.
| | - Jochen Dobner
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Burkhard Stahlmecke
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), 47229, Duisburg, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Andrea Rossi
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| |
Collapse
|
10
|
Bagon BB, Lee J, Matienzo ME, Lee SJ, Pak SW, Kim K, Lee J, Lee CM, Shin IS, Moon C, Park MJ, Kim DI. Cold-induced adaptive thermogenesis is impaired by exposure of Asian sand dust in mice. J Therm Biol 2023; 116:103675. [PMID: 37517326 DOI: 10.1016/j.jtherbio.2023.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Desertification and desert sandstorms caused by the worsening global warming pose increasing risks to human health. In particular, Asian sand dust (ASD) exposure has been related to an increase in mortality and hospital admissions for respiratory diseases. In this study, we investigated the effects of ASD on metabolic tissues in comparison to diesel particulate matter (DPM) that is known to cause adverse health effects. We found that larger lipid droplets were accumulated in the brown adipose tissues (BAT) of ASD-administered but not DPM-administered mice. Thermogenic gene expression was decreased in these mice as well. When ASD-administered mice were exposed to the cold, they failed to maintain their body temperature, suggesting that the ASD administration had led to impairments in cold-induced adaptive thermogenesis. However, impaired thermogenesis was not observed in DPM-administered mice. Furthermore, mice fed a high-fat diet that were chronically administered ASD demonstrated unexplained weight loss, indicating that chronic administration of ASD could be lethal in obese mice. We further identified that ASD-induced lung inflammation was not exacerbated in uncoupling protein 1 knockout mice, whose thermogenic capacity is impaired. Collectively, ASD exposure can impair cold-induced adaptive thermogenic responses in mice and increase the risk of mortality in obese mice.
Collapse
Affiliation(s)
- Bernadette B Bagon
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Junhyeong Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Merc Emil Matienzo
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Pharmacology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Pharmacology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Keon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Jeongmin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Chang-Min Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Pharmacology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea.
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
11
|
Lim JO, Kim WI, Pak SW, Lee SJ, Park SH, Shin IS, Kim JC. Toll-like receptor 4 is a key regulator of asthma exacerbation caused by aluminum oxide nanoparticles via regulation of NF-κB phosphorylation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130884. [PMID: 36736217 DOI: 10.1016/j.jhazmat.2023.130884] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Aluminum oxide nanoparticles (Al2O3 NPs) have recently been reported to cause an inflammatory response in the lungs, and studies are being conducted on their adverse effects, especially in patients with underlying lung diseases such as asthma. However, the underlying mechanism of asthma aggravation caused by Al2O3 NPs remains unclear. This study investigated whether Al2O3 NPs exacerbate ovalbumin (OVA)-induced asthma and focused on the correlation between toll-like receptor 4 (TLR4) signaling and Al2O3 NP-induced asthma exacerbation. Al2O3 NP exposure in asthmatic mice resulted in increased inflammatory cell counts in the lungs, airway hyperresponsiveness, and increased levels of inflammatory cytokines compared with only OVA-induced mice, and excessive secretion of mucus was observed in the airways. Moreover, Al2O3 NP exposure in OVA-induced mice increased the expression levels of TLR4, phospho-nuclear transcription factor-kappa B (p-NFκB), myeloid differentiation factor 88 (MyD88), and phospho-NF kappa B inhibitor alpha (p-IκBα). Furthermore, in the lungs of TLR4 knockout mice exposed to Al2O3 NPs and in a human airway epithelial cell line with down regulated TLR4, the expression levels of MyD88, p-NFκB, and p-IκBα were decreased, and asthma-related allergic responses were reduced. Therefore, we demonstrated that TLR4 is important for aggravation of asthma induced by Al2O3 NPs, and this study provides useful information regarding as yet undiscovered novel target signaling.
Collapse
Affiliation(s)
- Je-Oh Lim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung-Hyeuk Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
12
|
Bredeck G, Busch M, Rossi A, Stahlmecke B, Fomba KW, Herrmann H, Schins RPF. Inhalable Saharan dust induces oxidative stress, NLRP3 inflammasome activation, and inflammatory cytokine release. ENVIRONMENT INTERNATIONAL 2023; 172:107732. [PMID: 36680803 DOI: 10.1016/j.envint.2023.107732] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Desert dust is increasingly recognized as a major air pollutant affecting respiratory health. Since desert dust exposure cannot be regulated, the hazardousness of its components must be understood to enable health risk mitigation strategies. Saharan dust (SD) comprises about half of the global desert dust and contains quartz, a toxic mineral dust that is known to cause severe lung diseases via oxidative stress and activation of the NLRP3 inflammasome-interleukin-1β pathway. We aimed to assess the physicochemical and microbial characteristics of SD responsible for toxic effects. Also, we studied the oxidative and pro-inflammatory potential of SD in alveolar epithelial cells and the activation of the NLRP3 inflammasome in macrophage-like cells in comparison to quartz dusts and synthetic amorphous silica (SAS). Characterization revealed that SD contained Fe, Al, trace metals, sulfate, diatomaceous earth, and endotoxin and had the capacity to generate hydroxyl radicals. We exposed A549 lung epithelial cells and wild-type and NLRP3-/- THP-1 macrophage-like cells to SD, three well-investigated quartz dusts, and SAS. SD induced oxidative stress in A549 cells after 24 h more potently than the quartz dusts. The quartz dusts and SAS upregulated interleukin 8 expression after 4 h and 24 h while SD only caused a transient upregulation. SD, the quartz dusts, and SAS induced interleukin-1β release from wild-type THP-1 cells>20-fold stronger than from NLRP3-/- THP-1 cells. Interleukin-1β release was lower for SD, in which microbial components including endotoxin were heat-destructed. In conclusion, microbial components in SD are pivotal for its toxicity. In the epithelium, the effects of SD contrasted with crystalline and amorphous silica in terms of potency and persistence. In macrophages, the strong involvement of the NLRP3 inflammasome emphasizes the acute and chronic health risks associated with desert dust exposure.
Collapse
Affiliation(s)
- Gerrit Bredeck
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Mathias Busch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Rossi
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Burkhard Stahlmecke
- Institute for Energy and Environmental Technology e.V. (IUTA), Duisburg, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
13
|
Busch M, Brouwer H, Aalderink G, Bredeck G, Kämpfer AAM, Schins RPF, Bouwmeester H. Investigating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. FRONTIERS IN TOXICOLOGY 2023; 5:1112212. [PMID: 36777263 PMCID: PMC9911716 DOI: 10.3389/ftox.2023.1112212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Plastic particles in the nanometer range-called nanoplastics-are environmental contaminants with growing public health concern. As plastic particles are present in water, soil, air and food, human exposure via intestine and lung is unavoidable, but possible health effects are still to be elucidated. To better understand the Mode of Action of plastic particles, it is key to use experimental models that best reflect human physiology. Novel assessment methods like advanced cell models and several alternative approaches are currently used and developed in the scientific community. So far, the use of cancer cell line-based models is the standard approach regarding in vitro nanotoxicology. However, among the many advantages of the use of cancer cell lines, there are also disadvantages that might favor other approaches. In this review, we compare cell line-based models with stem cell-based in vitro models of the human intestine and lung. In the context of nanoplastics research, we highlight the advantages that come with the use of stem cells. Further, the specific challenges of testing nanoplastics in vitro are discussed. Although the use of stem cell-based models can be demanding, we conclude that, depending on the research question, stem cells in combination with advanced exposure strategies might be a more suitable approach than cancer cell lines when it comes to toxicological investigation of nanoplastics.
Collapse
Affiliation(s)
- Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Hugo Brouwer
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Germaine Aalderink
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Gerrit Bredeck
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Roel P. F. Schins
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands,*Correspondence: Hans Bouwmeester,
| |
Collapse
|
14
|
Sadakane K, Ichinose T, Maki T, Nishikawa M. Co-exposure of peptidoglycan and heat-inactivated Asian sand dust exacerbates ovalbumin-induced allergic airway inflammation in mice. Inhal Toxicol 2022; 34:231-243. [PMID: 35698289 DOI: 10.1080/08958378.2022.2086650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Asian sand dust (ASD) comprises soil particles, microorganisms, and various chemical components. We examined whether peptidoglycan (PGN), a structural cell wall component of Gram-positive bacteria, exacerbates ASD-induced allergic airway inflammation in mice. METHODS The ASD (median diameter ∼4 µm) used was a certified reference material from the National Institute for Environmental Studies in Japan, derived from Gobi Desert surface soil collected in 2011. BALB/c mice were intratracheally exposed to PGN, heat-inactivated ASD (H-ASD), and ovalbumin (OVA), individually and in combination. Twenty-four hours after the final intratracheal administration, bronchoalveolar lavage fluid (BALF) and serum samples were collected. Inflammatory cell count, cytokine levels in the BALF, OVA-specific immunoglobulin levels in the serum, and pathological changes in the lungs were analyzed. RESULTS AND DISCUSSION After OVA + PGN + H-ASD treatment, the number of eosinophils, neutrophils, and macrophages in the BALF and of eosinophils in the lung tissue was significantly higher than that after OVA + PGN or OVA + H-ASD treatment. Moreover, levels of chemokines and cytokines associated with eosinophil recruitment and activation were significantly higher in the BALF of this group than in that of the OVA + PGN group, and tended to be higher than those in the OVA + H-ASD group. Pathological changes in the lungs were most severe in mice treated with OVA + PGN + H-ASD. CONCLUSIONS Our results indicate that PGN is involved in the exacerbation of ASD-induced allergic airway inflammation in mice. Thus, inhalation of ASD containing Gram-positive bacteria may trigger allergic bronchial asthma.
Collapse
Affiliation(s)
- Kaori Sadakane
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Japan
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Japan.,Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Teruya Maki
- Department of Life Science, Kindai University, Osaka, Japan
| | - Masataka Nishikawa
- Environmental Standards Section, National Institute for Environmental Studies, Ibaraki, Japan
| |
Collapse
|
15
|
Nagahawatta DP, Kim HS, Jee YH, Jayawardena TU, Ahn G, Namgung J, Yeo IK, Sanjeewa KKA, Jeon YJ. Sargachromenol Isolated from Sargassum horneri Inhibits Particulate Matter-Induced Inflammation in Macrophages through Toll-like Receptor-Mediated Cell Signaling Pathways. Mar Drugs 2021; 20:28. [PMID: 35049883 PMCID: PMC8779987 DOI: 10.3390/md20010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
Sargassum horneri is an invasive brown seaweed that grows along the shallow coastal areas of the Korean peninsula, which are potentially harmful to fisheries and natural habitats in the areas where it is accumulated. Therefore, the author attempted to evaluate the anti-inflammatory mechanism of Sargachromenol isolated from S. horneri against particulate matter (PM)-stimulated RAW 264.7 macrophages. PM is a potent inducer of respiratory diseases such as lung dysfunctions and cancers. In the present study, the anti-inflammatory properties of Sargachromenol were validated using enzyme-linked immunosorbent assay (ELISA), Western blots, and RT-qPCR experiments. According to the results, Sargachromenol significantly downregulated the PM-induced proinflammatory cytokines, Prostaglandin E2 (PGE2), and Nitric Oxide (NO) secretion via blocking downstream activation of Toll-like receptor (TLR)-mediated nuclear factor kappa B (NF-κB) and MAPKs phosphorylation. Thus, Sargachromenol is a potential candidate for innovation in various fields including pharmaceuticals, cosmeceuticals, and functional food.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (T.U.J.); (I.-K.Y.)
| | - Hyun-Soo Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33662, Korea;
| | - Young-Heun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 690-756, Korea;
| | - Thilina U. Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (T.U.J.); (I.-K.Y.)
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea;
| | - Jin Namgung
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan;
| | - In-Kyu Yeo
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (T.U.J.); (I.-K.Y.)
| | - K. K. Asanka Sanjeewa
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama 10206, Sri Lanka
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (T.U.J.); (I.-K.Y.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
16
|
Fussell JC, Kelly FJ. Mechanisms underlying the health effects of desert sand dust. ENVIRONMENT INTERNATIONAL 2021; 157:106790. [PMID: 34333291 PMCID: PMC8484861 DOI: 10.1016/j.envint.2021.106790] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 05/28/2023]
Abstract
Desertification and climate change indicate a future expansion of the global area of dry land and an increase in the risk of drought. Humans may therefore be at an ever-increasing risk of frequent exposure to, and resultant adverse health effects of desert sand dust. This review appraises a total of 52 experimental studies that have sought to identify mechanisms and intermediate endpoints underlying epidemiological evidence of an impact of desert dust on cardiovascular and respiratory health. Toxicological studies, in main using doses that reflect or at least approach real world exposures during a dust event, have demonstrated that virgin sand dust particles and dust storm particles sampled at remote locations away from the source induce inflammatory lung injury and aggravate allergen-induced nasal and pulmonary eosinophilia. Effects are orchestrated by cytokines, chemokines and antigen-specific immunoglobulin potentially via toll-like receptor/myeloid differentiation factor signaling pathways. Findings suggest that in addition to involvement of adhered chemical and biological pollutants, mineralogical components may also be implicated in the pathogenesis of human respiratory disorders during a dust event. Whilst comparisons with urban particulate matter less than 2.5 μm in diameter (PM2.5) suggest that allergic inflammatory responses are greater for microbial element-rich dust- PM2.5, aerosols generated during dust events appear to have a lower oxidative potential compared to combustion-generated PM2.5 sampled during non-dust periods. In vitro findings suggest that the significant amounts of suspended desert dust during storm periods may provide a platform to intermix with chemicals on its surfaces, thereby increasing the bioreactivity of PM2.5 during dust storm episodes, and that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere, enhancing toxicity of aerosols in urban environments. In summary, the experimental research on desert dust on respiratory endpoints go some way in clarifying the mechanistic effects of atmospheric desert dust on the upper and lower human respiratory system. In doing so, they provide support for biological plausibility of epidemiological associations between this particulate air pollutant and events including exacerbation of asthma, hospitalization for respiratory infections and seasonal allergic rhinitis.
Collapse
Affiliation(s)
- Julia C Fussell
- National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, United Kingdom.
| | - Frank J Kelly
- National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, United Kingdom
| |
Collapse
|
17
|
Sun X, Li D, Li B, Sun S, Yabo SD, Geng J, Ma L, Qi H. Exploring the disparity of inhalable bacterial communities and antibiotic resistance genes between hazy days and non-hazy days in a cold megacity in Northeast China. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122984. [PMID: 32512457 DOI: 10.1016/j.jhazmat.2020.122984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
The physicochemical properties of inhalable particles during hazy days have been extensively studied, but their biological health threats have not been well-explored. This study aimed to explore the impacts of haze pollution on airborne bacteria and antibiotic-resistance genes (ARGs) by conducting a comparative study of the bacterial community structure and functions, pathogenic compositions, and ARGs between hazy days and non-hazy days in a cold megacity in Northeast China. The results suggested that bacterial communities were shaped by local weather and customs. In this study, cold-resistant and Chinese sauerkraut-related bacterial compositions were identified as predominant genera. In the comparative analysis, higher proportions of gram-negative bacteria and pathogens were detected on hazy days than on non-hazy days. Pollutants on hazy days provided more nutrients (sulfate, nitrate and ammonium) for bacterial metabolism but also caused more bacterial cell damage and death than on non-hazy days. This study also detected increases in the sub-types and average absolute abundance of airborne resistance genes on hazy days compared to non-hazy days. The results of this study revealed that particle pollution promotes the dissemination and exchange of pathogenic bacteria and ARGs among large urban populations, which leads to a higher potential for human inhalation exposure.
Collapse
Affiliation(s)
- Xiazhong Sun
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Li
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bo Li
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shaojing Sun
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Stephen Dauda Yabo
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jialu Geng
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lixin Ma
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Qi
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
18
|
Distribution of Viable Bacteria in the Dust-Generating Natural Source Area of the Gobi Region, Mongolia. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Gobi Desert is a major source of dust events, whose frequency of occurrence and damage caused have recently significantly increased. In the present study, we investigated the types of live bacteria present in the surface soil of the Gobi Desert in Mongolia, and determined their genetic identification as well as their geographical distribution. During the survey, four different topographies (dry lake bed, wadi, well, and desert steppe) were selected, and land characteristics were monitored for moisture and temperature. The surface soil was aerobically cultured to isolate bacterial colonies, and their 16s rDNA regions were sequenced. The sequence data were identified through NCBI-BLAST analysis and generated phylogenetic trees. The results revealed two phyla and seven families of isolates from the sample points. Each isolate was characterized by their corresponding sample site. The characteristics of land use and soil surface bacteria were compared. Most of the bacteria originated from the soil, however, animal-derived bacteria were also confirmed in areas used by animals. Our findings confirmed the existence of live bacteria in the dust-generating area, suggesting that their presence could affect animal and human health. Therefore, it is necessary to further investigate dust microbes based on the One Health concept.
Collapse
|
19
|
Kelly FJ, Fussell JC. Global nature of airborne particle toxicity and health effects: a focus on megacities, wildfires, dust storms and residential biomass burning. Toxicol Res (Camb) 2020; 9:331-345. [PMID: 32905302 PMCID: PMC7467248 DOI: 10.1093/toxres/tfaa044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
Since air pollutants are difficult and expensive to control, a strong scientific underpinning to policies is needed to guide mitigation aimed at reducing the current burden on public health. Much of the evidence concerning hazard identification and risk quantification related to air pollution comes from epidemiological studies. This must be reinforced with mechanistic confirmation to infer causality. In this review we focus on data generated from four contrasting sources of particulate air pollution that result in high population exposures and thus where there remains an unmet need to protect health: urban air pollution in developing megacities, household biomass combustion, wildfires and desert dust storms. Taking each in turn, appropriate measures to protect populations will involve advocating smart cities and addressing economic and behavioural barriers to sustained adoption of clean stoves and fuels. Like all natural hazards, wildfires and dust storms are a feature of the landscape that cannot be removed. However, many efforts from emission containment (land/fire management practices), exposure avoidance and identifying susceptible populations can be taken to prepare for air pollution episodes and ensure people are out of harm's way when conditions are life-threatening. Communities residing in areas affected by unhealthy concentrations of any airborne particles will benefit from optimum communication via public awareness campaigns, designed to empower people to modify behaviour in a way that improves their health as well as the quality of the air they breathe.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, UK
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, UK
| |
Collapse
|
20
|
Yang HW, Park JH, Shin JM, Lee HM, Park IH. Asian Sand Dust Upregulates IL-6 and IL-8 via ROS, JNK, ERK, and CREB Signaling in Human Nasal Fibroblasts. Am J Rhinol Allergy 2019; 34:249-261. [PMID: 31771336 DOI: 10.1177/1945892419890267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Asian sand dust (ASD) profoundly affects respiratory health by inducing inflammation and causing upper airway inflammatory diseases. Interleukin (IL)-6 and IL-8 are pro-inflammatory mediators that are involved in upper airway inflammatory diseases. However, the effect of ASD on the production of IL-6 and IL-8 in nasal fibroblasts has not been adequately studied. We investigated the effect of ASD on the induction of pro-inflammatory mediators and its underlying mechanisms in nasal fibroblasts. Methods Real-time cytotoxicity assays were used to determine the effect of ASD on the viability of fibroblasts. Enzyme-linked immunosorbent assays and real-time polymerase chain reactions were performed to determine whether ASD induced the expression of IL-6 and IL-8. Reactive oxygen species (ROS) were quantified using 2, 7-dichlorofluorescein-diacetate and MitoSOX Red. Induction of IL-6 and IL-8 signal transduction pathways by ASD was confirmed by Western blotting. Ex vivo culture of the inferior turbinate tissue was performed to confirm the effects of ASD. Results ASD upregulated ROS levels, and this in turn promoted IL-6 and IL-8 expression through the MAPK (JNK and ERK) and CREB signaling pathways in nasal fibroblasts. However, ASD did not induce phosphorylation of p38. Specific inhibitors of each pathway (ROS, JNK, ERK, and CREB inhibitors) suppressed ASD-induced IL-6 and IL-8 upregulation. Conclusions ASD induces pro-inflammatory mediators, and the increased levels of IL-6 and IL-8 might be associated with the pathogenesis of chronic rhinosinusitis.
Collapse
Affiliation(s)
- Hyun-Woo Yang
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea
| | - Joo-Hoo Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea.,IVD Support Center, Korea University, Guro Hospital, Seoul, South Korea
| | - Jae-Min Shin
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea.,IVD Support Center, Korea University, Guro Hospital, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Heung-Man Lee
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea.,IVD Support Center, Korea University, Guro Hospital, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Il-Ho Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Devices Clinical Trials Laboratory, Korea University, Guro Hospital, Seoul, South Korea.,IVD Support Center, Korea University, Guro Hospital, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Khan MS, Deguchi Y, Matsumoto T, Nagaoka H, Yamagishi N, Wakabayashi K, Watanabe T. Relationship of Asian Dust Events with Atmospheric Endotoxin and Protein Levels in Sasebo and Kyoto, Japan, in Spring. Biol Pharm Bull 2019; 42:1713-1719. [DOI: 10.1248/bpb.b19-00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yuya Deguchi
- Faculty of Pharmaceutical Sciences, Nagasaki International University
| | | | - Hiroaki Nagaoka
- Faculty of Pharmaceutical Sciences, Nagasaki International University
| | | | - Keiji Wakabayashi
- Department of Public Health, Kyoto Pharmaceutical University
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka
| | | |
Collapse
|
22
|
Nishita‐Hara C, Hirabayashi M, Hara K, Yamazaki A, Hayashi M. Dithiothreitol-Measured Oxidative Potential of Size-Segregated Particulate Matter in Fukuoka, Japan: Effects of Asian Dust Events. GEOHEALTH 2019; 3:160-173. [PMID: 32159038 PMCID: PMC7007159 DOI: 10.1029/2019gh000189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/13/2019] [Indexed: 05/03/2023]
Abstract
Oxidative potential is an important property of particulate matter (PM) that has been regarded as a more health-relevant metric than PM mass. We investigated the oxidative potential of size-segregated PM and effects of Asian dust events in Fukuoka, western Japan. Aerosol particles with diameters smaller and larger than 2.5 μm (fine and coarse particles, respectively) were collected continually from 16 March through 26 May 2016. The oxidative potential was analyzed using dithiothreitol (DTT) assay; chemical components of PM were also found. Air-volume normalized oxidative potential quantified by DTT assay (DTTv) was significantly higher during Asian dust events than during nondust-event days. The mean DTTv of fine and coarse particles during Asian dust events were, respectively, 1.5 and 2.7 times higher than that during nonevent days. DTTv of fine particles was highly correlated with elements dominated by anthropogenic combustion sources and with the elements emitted from multiple sources including mineral dust and combustion sources. DTTv of coarse particles strongly correlated with the mineral dust derived elements, suggesting concentration of mineral dust particles as an important controlling factor especially for the oxidative potential of the coarse particles. We estimated the contributions of water-soluble transition metals to the oxidative potential of PM. Water-soluble transition metals (mainly Cu and Mn) can explain only approximately 37% and 60% of the measured oxidative potential of fine and coarse particles, respectively, suggesting substantial contributions of aerosol components other than water-soluble transition metals such as quinones and insoluble minerals.
Collapse
Affiliation(s)
- Chiharu Nishita‐Hara
- Fukuoka Institute for Atmospheric Environment and HealthFukuoka UniversityFukuokaJapan
| | | | - Keiichiro Hara
- Fukuoka Institute for Atmospheric Environment and HealthFukuoka UniversityFukuokaJapan
- Faculty of ScienceFukuoka UniversityFukuokaJapan
| | | | - Masahiko Hayashi
- Fukuoka Institute for Atmospheric Environment and HealthFukuoka UniversityFukuokaJapan
- Faculty of ScienceFukuoka UniversityFukuokaJapan
| |
Collapse
|
23
|
Sadakane K, Ichinose T, Nishikawa M. Effects of co-exposure of lipopolysaccharide and β-glucan (Zymosan A) in exacerbating murine allergic asthma associated with Asian sand dust. J Appl Toxicol 2018; 39:672-684. [PMID: 30548448 DOI: 10.1002/jat.3759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
During the 2000s, Asian sand dust (ASD) was implicated in the increasing prevalence of respiratory disorders, including asthma. We previously demonstrated that a fungus from ASD aerosol exacerbated ovalbumin (OVA)-induced airways inflammation. Exposure to heat-inactivated ASD (H-ASD) and either Zymosan A (ZymA, containing β-glucan) or lipopolysaccharide (LPS) exacerbated allergic airways inflammation in a mouse model, but the effects of co-exposure of LPS and β-glucan are unclear. We investigated the effects of co-exposure of LPS and ZymA in OVA-induced allergic airways inflammation with ASD using BALB/c mice. Exposure to OVA + LPS enhanced the recruitment of inflammatory cells to the lungs, particularly neutrophils; exposure to OVA + LPS + H-ASD potentiated this effect. Exposure to OVA + ZymA + H-ASD stimulated the recruitment of inflammatory cells to the lungs, particularly eosinophils, and serum levels of OVA-specific IgE and IgG1 antibodies, whereas exposure to OVA + ZymA did not affect most indicators of lung inflammation. Although exposure to OVA + LPS + ZymA + H-ASD affected a few allergic parameters additively or synergistically, most allergic parameters in this group indicated the same level of exposure to OVA + LPS + H-ASD or OVA + ZymA + H-ASD. These results suggest that LPS and ZymA play different roles in allergic airways inflammation with ASD; LPS mainly enhances neutrophil recruitment through H-ASD, and ZymA enhances eosinophil recruitment through H-ASD.
Collapse
Affiliation(s)
- Kaori Sadakane
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201, Japan
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201, Japan
| | - Masataka Nishikawa
- Environmental Chemistry Division, National Institute for Environmental Studies, Ibaraki, 305-8506, Japan
| |
Collapse
|
24
|
Khan MS, Coulibaly S, Matsumoto T, Yano Y, Miura M, Nagasaka Y, Shima M, Yamagishi N, Wakabayashi K, Watanabe T. Association of airborne particles, protein, and endotoxin with emergency department visits for asthma in Kyoto, Japan. Environ Health Prev Med 2018; 23:41. [PMID: 30153806 PMCID: PMC6114267 DOI: 10.1186/s12199-018-0731-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/13/2018] [Indexed: 01/23/2023] Open
Abstract
Background The health effects of biological aerosols on the respiratory system are unclear. The purpose of this study was to clarify the association of airborne particle, protein, and endotoxin with emergency department visits for asthma in Kyoto City, Japan. Methods We collected data on emergency department visits at a hospital in Kyoto from September 2014 to May 2016. Fine (aerodynamic diameter ≤ 2.5 μm) and coarse (≥ 2.5 μm) particles were collected in Kyoto, and protein and endotoxin levels were analyzed. The association of the levels of particles, protein, endotoxin, and meteorological factors (temperature, relative humidity, wind speed, and air pressure) with emergency department visits for asthma was estimated. Results There were 1 to 15 emergency department visits for asthma per week, and the numbers of visits increased in the autumn and spring, namely many weeks in September, October, and April. Weekly concentration of protein in fine particles was markedly higher than that in coarse particles, and protein concentration in fine particles was high in spring months. Weekly endotoxin concentrations in fine and coarse particles were high in autumn months, including September 2014 and 2015. Even after adjusting for meteorological factors, the concentrations of coarse particles and endotoxin in both particles were significant factors on emergency department visits for asthma. Conclusions Our results suggest that atmospheric coarse particles and endotoxin are significantly associated with an increased risk of asthma exacerbation. Electronic supplementary material The online version of this article (10.1186/s12199-018-0731-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohammad Shahriar Khan
- Department of Public Health, Kyoto Pharmaceutical University, 1 Misasagi-Shichonocho, Yamashinaku, Kyoto, 607-8412, Japan
| | - Souleymane Coulibaly
- Department of Public Health, Kyoto Pharmaceutical University, 1 Misasagi-Shichonocho, Yamashinaku, Kyoto, 607-8412, Japan
| | - Takahiro Matsumoto
- Department of Public Health, Kyoto Pharmaceutical University, 1 Misasagi-Shichonocho, Yamashinaku, Kyoto, 607-8412, Japan
| | - Yoshitaka Yano
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchcho, Yamashinaku, Kyoto, 607-8414, Japan
| | - Makoto Miura
- Rakuwakai Otowa Hospital, 2 Otowachinji-cho, Yamashinaku, Kyoto, 607-8062, Japan
| | - Yukio Nagasaka
- Rakuwakai Otowa Hospital, 2 Otowachinji-cho, Yamashinaku, Kyoto, 607-8062, Japan
| | - Masayuki Shima
- Department of Public Health, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Nobuyuki Yamagishi
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotogecho, Hirakata, Osaka, 573-0101, Japan
| | - Keiji Wakabayashi
- Department of Public Health, Kyoto Pharmaceutical University, 1 Misasagi-Shichonocho, Yamashinaku, Kyoto, 607-8412, Japan.,Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, 1 Misasagi-Shichonocho, Yamashinaku, Kyoto, 607-8412, Japan.
| |
Collapse
|
25
|
Abstract
At the northwestern edge of South America is located Ecuador. This place is a classical example of an active continental margin with widespread active volcanism. Detailed studies about the impact of volcanic ash on human health are still lacking. Therefore, the disease of exposed populations is unknown. The objective of the present investigation was to assess the biological impact of Pichincha volcanic ash on cell culture and inflammation in murine lung tissues that will contribute to the understanding of the hazards. In this study, the in vivo phase was performed in mice C57BL/6 exposed to several doses of volcanic ash (0.5, 1, and 3.75 mg/100 g mouse body weight). The body weight and survival were controlled during seven days of treatment. The expression of inflammation markers NRLP 3, caspase-1, pro-IL-1, IL-1β, IL-6, IL-8, and h-HPRT was analyzed. The in vitro phase was performed in lung cancer cells A549, peritoneal macrophages, and McCoy cells exposing them to different concentrations of volcanic ash (80, 320, and 1280 μg/cm3) to determine the cytotoxicity and the production of reactive oxygen species. The ash initiated activation of the inflammasome complex NRLP 3 and the initiation of a proinflammatory activity in the murine lung tissue depending on the concentration of this agent. The viability of A549 and McCoy cell decreased with the length of exposure and increased with the concentration of volcanic ash. The activity in superoxide dismutase decreased by about 60%, leading to the formation of reactive oxygen species. These results associated with compounds contained in Pichincha volcanic ash are considered hazardous elements which induce inflammation leading to activate inflammasome NRLP, releasing reactive oxygen species, and producing changes in cell morphology and density, all of which are expression of cytotoxicity.
Collapse
|
26
|
Kobayashi Y, Shimada A, Morita T, Inoue K, Takano H. A Pathological Study of Acute Pulmonary Toxicity Induced by Inhaled Kanto Loam Powder. Int J Mol Sci 2018; 19:ijms19020416. [PMID: 29385040 PMCID: PMC5855638 DOI: 10.3390/ijms19020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 11/16/2022] Open
Abstract
The frequency and volume of Asian sand dust (ASD) (Kosa) are increasing in Japan, and it has been reported that ASD may cause adverse respiratory effects. The pulmonary toxicity of ASD has been previously analyzed in mice exposed to ASD particles by intratracheal instillation. To study the pulmonary toxicity induced by inhalation of ASD, ICR mice were exposed by inhalation to 50 or 200 mg/m3 Kanto loam powder, which resembles ASD in elemental composition and particle size, for 6 h a day over 1, 3, 6, 9, or 15 consecutive days. Histological examination revealed that Kanto loam powder induced acute inflammation in the whole lung at all the time points examined. The lesions were characterized by infiltration of neutrophils and macrophages. The intensity of the inflammatory changes in the lung and number of neutrophils in both histological lesions and bronchoalveolar lavage fluid (BALF) appeared to increase over time. Immunohistochemical staining showed interleukin (IL)-6- and tumor necrosis factor (TNF)-α-positive macrophages and a decrease in laminin positivity in the inflammatory lesions of the lung tissues. Electron microscopy revealed vacuolar degeneration in the alveolar epithelial cells close to the Kanto loam particles. The nitric oxide level in the BALF increased over time. These results suggest that inhaled Kanto loam powder may induce diffuse and acute pulmonary inflammation, which is associated with increased expression of inflammatory cytokines and oxidative stress.
Collapse
Affiliation(s)
- Yoshimi Kobayashi
- Department of Veterinary Pathology, Tottori University, 4-101 Koyama Minami, Tottori-shi, Tottori 680-8553, Japan.
| | - Akinori Shimada
- Laboratory of Pathology, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara-shi, Kanagawa 252-5201, Japan.
| | - Takehito Morita
- Department of Veterinary Pathology, Tottori University, 4-101 Koyama Minami, Tottori-shi, Tottori 680-8553, Japan.
| | - Kenichiro Inoue
- School of Nursing, University of Shizuoka, Shizuoka-shi, Shizuoka 422-8526, Japan.
| | - Hirohisa Takano
- Department of Environmental Engineering, Kyoto University Graduate School of Engineering, Kyoto-shi, Kyoto 615-8530, Japan.
| |
Collapse
|
27
|
Maki T, Kurosaki Y, Onishi K, Lee KC, Pointing SB, Jugder D, Yamanaka N, Hasegawa H, Shinoda M. Variations in the structure of airborne bacterial communities in Tsogt-Ovoo of Gobi desert area during dust events. AIR QUALITY, ATMOSPHERE, & HEALTH 2017; 10:249-260. [PMID: 28356997 PMCID: PMC5348566 DOI: 10.1007/s11869-016-0430-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/16/2016] [Indexed: 05/15/2023]
Abstract
Asian dust events transport the airborne bacteria in Chinese desert regions as well as mineral particles and influence downwind area varying biological ecosystems and climate changes. However, the airborne bacterial dynamics were rarely investigated in the Gobi desert area, where dust events are highly frequent. In this study, air samplings were sequentially performed at a 2-m high above the ground at the sampling site located in desert area (Tsogt-Ovoo of Gobi desert; Mongolia 44.2304°N, 105.1700°E). During the dust event days, the bacterial cells and mineral particles increased to more than tenfold of concentrations. MiSeq sequencing targeting 16S ribosomal DNA revealed that the airborne bacteria in desert area mainly belonged to the classes Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Bacilli, Alpha-proteobacteria, Beta-proteobacteria, and Gamma-proteobacteria. The bacterial community structures were different between dust events and non-dust events. The air samples collected at the dust events indicated high abundance rates of Alpha-proteobacteria, which were reported to dominate on the leaf surfaces of plants or in the saline lake environments. After the dust events, the members of Firmicutes (Bacilli) and Bacteroidetes, which are known to form endospore and attach with coarse particles, respectively, increased their relative abundances in the air samples. Presumably, the bacterial compositions and diversities in atmosphere significantly vary during dust events, which carry some particles from grassland (phyllo-sphere), dry lake, and sand surfaces, as well as some bacterial populations such as Firmicutes and Bacteroidetes maintain in the atmosphere for longer time.
Collapse
Affiliation(s)
- Teruya Maki
- College of Science and Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192 Japan
| | - Yasunori Kurosaki
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori, 680-0001 Japan
| | - Kazunari Onishi
- Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 4093898 Japan
| | - Kevin C. Lee
- School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142 New Zealand
| | - Stephen B. Pointing
- School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142 New Zealand
| | - Dulam Jugder
- Information and Research Institute of Meteorology, Hydrology and Environment, Juulchny gudamj-5, Ulaanbaatar-46, 14201 Mongolia
| | - Norikazu Yamanaka
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori, 680-0001 Japan
| | - Hiroshi Hasegawa
- College of Science and Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192 Japan
| | - Masato Shinoda
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusaku, Nagoya, 464-8601 Japan
| |
Collapse
|
28
|
Bento CPM, Goossens D, Rezaei M, Riksen M, Mol HGJ, Ritsema CJ, Geissen V. Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1079-1089. [PMID: 27876225 DOI: 10.1016/j.envpol.2016.11.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 05/12/2023]
Abstract
Glyphosate is one of the most used herbicides in agricultural lands worldwide. Wind-eroded sediment and dust, as an environmental transport pathway of glyphosate and of its main metabolite aminomethylphosphonic acid (AMPA), can result in environmental- and human exposure far beyond the agricultural areas where it has been applied. Therefore, special attention is required to the airborne transport of glyphosate and AMPA. In this study, we investigated the behavior of glyphosate and AMPA in wind-eroded sediment by measuring their content in different size fractions (median diameters between 715 and 8 μm) of a loess soil, during a period of 28 days after glyphosate application. Granulometrical extraction was done using a wind tunnel and a Soil Fine Particle Extractor. Extractions were conducted on days 0, 3, 7, 14, 21 and 28 after glyphosate application. Results indicated that glyphosate and AMPA contents were significantly higher in the finest particle fractions (median diameters between 8 and 18 μm), and lowered significantly with the increase in particle size. However, their content remained constant when aggregates were present in the sample. Glyphosate and AMPA contents correlated positively with clay, organic matter, and silt content. The dissipation of glyphosate over time was very low, which was most probably due to the low soil moisture content of the sediment. Consequently, the formation of AMPA was also very low. The low dissipation of glyphosate in our study indicates that the risk of glyphosate transport in dry sediment to off-target areas by wind can be very high. The highest glyphosate and AMPA contents were found in the smallest soil fractions (PM10 and less), which are easily inhaled and, therefore, contribute to human exposure.
Collapse
Affiliation(s)
- Célia P M Bento
- Soil Physics and Land Management, Wageningen University & Research, PO. Box 47, 6700 AA, Wageningen, The Netherlands.
| | - Dirk Goossens
- Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Geo-Institute, Celestijnenlaan 200 E, 3001 Leuven, Belgium
| | - Mahrooz Rezaei
- Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Michel Riksen
- Soil Physics and Land Management, Wageningen University & Research, PO. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Hans G J Mol
- RIKILT - Wageningen University & Research, PO. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management, Wageningen University & Research, PO. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University & Research, PO. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
29
|
Yanagisawa R, Takano H, Ichinose T, Mizushima K, Nishikawa M, Mori I, Inoue KI, Sadakane K, Yoshikawa T. Gene Expression Analysis of Murine Lungs Following Pulmonary Exposure to Asian Sand Dust Particles. Exp Biol Med (Maywood) 2016; 232:1109-18. [PMID: 17720957 DOI: 10.3181/0612-rm-311] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The respiratory health impact of Asian sand dust events originating in the deserts of China has become a concern within China and in its neighboring countries. We examined the effects of Asian sand dust particles (ASDPs) on gene expression in the murine lung using microarray analysis and elucidated the components responsible for lung inflammation. Male ICR mice were intratracheally administrated ASDPs, heat-treated ASDPs (ASDP-F, lipopolysaccaride [LPS], or β-glucan free), or kaolin particles. We performed microarray analysis for murine lungs, the results of which were confirmed by quantitative reverse transcription–polymerase chain reaction (RT-PCR). We also assessed the protein expression and histologic changes. Exposure to ASDP, ASDP-F, or kaolin upregulated (>2-fold) 112, 36, or 9 genes, respectively, compared with vehicle exposure. In particular, ASDP exposure markedly enhanced inflammatory response–related genes, including chemokine (C-X-C motif) ligand 1/keratinocyte-derived chemokine, chemokine (C-X-C motif) ligand 2/macrophage inflammatory protein-2, chemokine (C-C motif) ligand 3/macrophage inflammatory protein-1α, and chemokine (C-X-C motif) ligand 10/interferon-gamma–inducible protein-10 (>6-fold). The results were correlated with those of the quantitative RT-PCR and the protein expression analyses in overall trend. In contrast, exposure to ASDP-F attenuated the enhanced expression of these proinflammatory molecules. Kaolin exposure increased the expression of genes and proteins for the chemokines. In histopathologic changes, exposure to ASDP prominently enhanced pulmonary neutrophilic inflammation, followed by kaolin and ASDP-F exposure in the order. Taken together, exposure to ASDP causes pulmonary inflammation via the expression of proinflammatory molecules, which can be attributed to LPS and β-glucan absorbed in ASDPs. Furthermore, microarray analysis should be effective for identifying potentially novel genes, sensitive biomarkers, and pathways involved in the health effects of the exposure to environmental particles (e.g., ASDPs).
Collapse
Affiliation(s)
- Rie Yanagisawa
- Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sadakane K, Ichinose T, Nishikawa M, Takano H, Shibamoto T. Co-exposure to zymosan A and heat-inactivated Asian sand dust exacerbates ovalbumin-induced murine lung eosinophilia. Allergy Asthma Clin Immunol 2016; 12:48. [PMID: 27766108 PMCID: PMC5057426 DOI: 10.1186/s13223-016-0153-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/20/2016] [Indexed: 01/19/2023] Open
Abstract
Background Epidemiological studies have implicated Asian sand dust (ASD) in the increased prevalence of respiratory disorders, including asthma. It has been observed that fungal elements such as β-glucan can be adsorbed onto ASD. In the present study, the exacerbating effect of the combined exposure to zymosan A (ZymA) containing yeast β-glucan and heat-inactivated ASD on ovalbumin (OVA)-induced murine lung eosinophilia was investigated. Methods BALB/c mice were repeatedly instilled intratracheally with one of eight immunogenic formulations consisting of various combinations of (1) ZymA, (2) ASD that was briefly heated to remove organic substances (H-ASD), and (3) OVA in normal saline, or each of the above alone. Pathologic changes, cytological alterations in bronchoalveolar lavage fluid (BALF), changes in inflammatory cytokines and chemokines in BALF, and OVA-specific IgE and IgG1 antibodies in serum were investigated. Results Exposure to ZymA with or without OVA had no effect on most indicators of lung inflammation. Exposure to H-ASD with OVA increased the recruitment of inflammatory cells to the lungs and the serum levels of OVA-specific IgE and IgG1. The combination OVA + ZymA + H-ASD induced a marked recruitment of eosinophils and upregulation of T helper 2 (Th2) cytokines (interleukin [IL]-4 and IL-13), IL-6, eotaxin/CCL11, and monocyte chemotactic protein (MCP)-3/CCL7 in BALF and OVA-specific IgE in serum. This treatment also induced the most severe pathological changes in the lungs of mice. ZymA was found to boost the effects of H-ASD, thereby exacerbating the OVA-induced allergic inflammation, even though ZymA alone did not have such effect. Conclusions The results suggest that fungal elements such as β-1,3-glucan aggravate the allergic inflammation caused by ASD. Our findings may facilitate prophylaxis of some allergic diseases in Asia.
Collapse
Affiliation(s)
- Kaori Sadakane
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201 Japan
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201 Japan
| | - Masataka Nishikawa
- Environmental Chemistry Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506 Japan
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8530 Japan
| | - Takayuki Shibamoto
- Department of Environmental Toxicology, University of California, Davis, CA 95616 USA
| |
Collapse
|
31
|
Honda A, Sawahara T, Hayashi T, Tsuji K, Fukushima W, Oishi M, Kitamura G, Kudo H, Ito S, Yoshida S, Ichinose T, Ueda K, Takano H. Biological factor related to Asian sand dust particles contributes to the exacerbation of asthma. J Appl Toxicol 2016; 37:583-590. [PMID: 27714829 DOI: 10.1002/jat.3395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/23/2016] [Accepted: 09/04/2016] [Indexed: 12/27/2022]
Abstract
Epidemiologic studies have revealed that Asian sand dust particles (ASDs) can affect respiratory and immune health represented by asthma. Factors responsible for the exacerbation of asthma remain unclear. The fungus Bjerkandera adusta (B.ad) and polycyclic aromatic hydrocarbons such as benzo[a]pyrene (BaP) have been identified in ASDs collected from the atmosphere when an ASD event occurred. We investigated the effects of B.ad and BaP related to ASDs on respiratory and immune systems. Bone marrow-derived antigen-presenting cells (APCs) and splenocytes from atopic prone NC/Nga mice and human airway epithelial cells were exposed to the B.ad or to BaP in the presence and absence of heated-ASDs (H-ASDs). B.ad and BaP in both the presence and absence of H-ASDs increased the expression of cell surface molecules on APCs. H-ASDs alone slightly activated APCs. The expressions induced by B.ad were higher than those induced by BaP in the presence and absence of H-ASDs. There were no remarkable effects on the activation of splenocytes or the proinflammatory responses in airway epithelial cells. These results suggest that B.ad rather than BaP contributes to the exacerbation of asthma regardless of the presence or absence of sand particles, particularly by the activation of the immune system via APCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akiko Honda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takahiro Sawahara
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomohiro Hayashi
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kenshi Tsuji
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Wataru Fukushima
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Mizuki Oishi
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Gaku Kitamura
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hitomi Kudo
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Sho Ito
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Seiichi Yoshida
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Japan
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Japan
| | - Kayo Ueda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Wang B, Li N, Deng F, Buglak N, Park G, Su S, Ren A, Shen G, Tao S, Guo X. Human bronchial epithelial cell injuries induced by fine particulate matter from sandstorm and non-sandstorm periods: Association with particle constituents. J Environ Sci (China) 2016; 47:201-210. [PMID: 27593287 DOI: 10.1016/j.jes.2015.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/23/2015] [Accepted: 12/16/2015] [Indexed: 06/06/2023]
Abstract
Epidemiological studies have demonstrated the exacerbation of respiratory diseases following sandstorm-derived particulate matter (PM) exposure. The presence of anthropogenic and biological agents on the sandstorm PM and the escalation of PM<2.5μm (PM2.5) pollution in China have led to serious concerns regarding the health effects of PM2.5 during Asian sandstorms. We investigated how changes in PM2.5 composition, as the weather transitioned towards a sandstorm, affected human airway epithelial cells. Six PM2.5 samples covering two sandstorm events and their respective background and transition periods were collected in Baotou, an industrial city near the Gobi Desert in China. PM samples from all three periods had mild cytotoxicity in human bronchial epithelial cell line BEAS-2B, which was positively correlated with the contents of polycyclic aromatic hydrocarbons and several metals. All PM samples potently increased the release of interleukin-6 (IL-6) and interleukin-8 (IL-8). Endotoxin in all samples contributed significantly to the IL-6 response, with only a minor effect on IL-8. Cr was positively correlated with both IL-6 and IL-8 release, while Si was only associated with the increase of IL-6. Our study suggests that local agricultural and industrial surroundings in addition to the sandstorm play important roles in the respiratory effects of sandstorm-derived PM.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Reproductive & Child Health/Ministry of Health Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing 100191, China.
| | - Ning Li
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA.
| | - Furong Deng
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Nicholas Buglak
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA
| | - George Park
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA
| | - Shu Su
- Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Aiguo Ren
- Institute of Reproductive & Child Health/Ministry of Health Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing 100191, China
| | - Guofeng Shen
- Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinbiao Guo
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
33
|
Go YY, Park MK, Kwon JY, Seo YR, Chae SW, Song JJ. Microarray Analysis of Gene Expression Alteration in Human Middle Ear Epithelial Cells Induced by Asian Sand Dust. Clin Exp Otorhinolaryngol 2015; 8:345-53. [PMID: 26622952 PMCID: PMC4661249 DOI: 10.3342/ceo.2015.8.4.345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/17/2014] [Accepted: 12/01/2014] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES The primary aim of this study is to evaluate the gene expression profile of Asian sand dust (ASD)-treated human middle ear epithelial cell (HMEEC) using microarray analysis. METHODS The HMEEC was treated with ASD (400 µg/mL) and total RNA was extracted for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed. For selected genes, the changes in gene expression were confirmed by real-time polymerase chain reaction. RESULTS A total of 1,274 genes were differentially expressed by ASD. Among them, 1,138 genes were 2 folds up-regulated, whereas 136 genes were 2 folds down-regulated. Up-regulated genes were mainly involved in cellular processes, including apoptosis, cell differentiation, and cell proliferation. Down-regulated genes affected cellular processes, including apoptosis, cell cycle, cell differentiation, and cell proliferation. The 10 genes including ADM, CCL5, EDN1, EGR1, FOS, GHRL, JUN, SOCS3, TNF, and TNFSF10 were identified as main modulators in up-regulated genes. A total of 11 genes including CSF3, DKK1, FOSL1, FST, TERT, MMP13, PTHLH, SPRY2, TGFBR2, THBS1, and TIMP1 acted as main components of pathway associated with 2-fold down regulated genes. CONCLUSION We identified the differentially expressed genes in ASD-treated HMEEC. Our work indicates that air pollutant like ASD, may play an important role in the pathogenesis of otitis media.
Collapse
Affiliation(s)
- Yoon Young Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Young Kwon
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University, Seoul, Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University, Seoul, Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Takeshita S, Tokunaga T, Tanabe Y, Arinami T, Ichinose T, Noguchi E. Asian sand dust aggregate causes atopic dermatitis-like symptoms in Nc/Nga mice. Allergy Asthma Clin Immunol 2015; 11:3. [PMID: 25642251 PMCID: PMC4311458 DOI: 10.1186/s13223-015-0068-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/31/2014] [Indexed: 12/22/2022] Open
Abstract
Background Asian sand dust (ASD) originates from the arid and semiarid areas of China, and epidemiologic studies have shown that ASD exposure is associated with various allergic and respiratory symptoms. However, few studies have been performed to assess the relationship between skin inflammation and ASD exposure. Methods Twelve-week-old NC/Nga mice were divided into 6 groups (n = 8 for each group): hydrophilic petrolatum only (control); hydrophilic petrolatum plus ASD (ASD); hydrophilic petrolatum and heat inactivated-ASD (H-ASD); Dermatophagoides farinae extract (Df); Df and ASD (Df + ASD), and; Df and H-ASD (Df + H-ASD). The NC/Nga mice in each group were subjected to treatment twice a week for 4 weeks. We evaluated skin lesions by symptoms, pathologic changes, and serum IgE levels. Results ASD alone did not induce atopic dermatitis (AD)-like skin symptoms. However, Df alone, Df + H-ASD and Df + ASD all induced AD-like symptoms, and dermatitis scores in the group of Df + ASD group were significantly greater than that of the Df group (P = 0.0011 at day 21; and P = 0.017 at day 28). Mean serum IgE was markedly increased in the Df and Df + ASD groups, compared to the ASD and control groups (P < 0.0001), and serum IgE levels in the Df + ASD group were significantly higher compared to the Df group (P = 0.003). Conclusions ASD alone did not cause AD-like symptoms in NC/Nga mice. However, AD-like symptoms induced by Df, a major allergen, were enhanced by adding ASD. Although no epidemiological studies have been conducted for the association between ASD and symptoms of dermatitis, our data suggest that it is likely that ASD may contribute to the exacerbation of not only respiratory symptoms, but also skin diseases, in susceptible individuals.
Collapse
Affiliation(s)
- Sayaka Takeshita
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki-ken 305-8575 Japan
| | - Takahiro Tokunaga
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki-ken 305-8575 Japan ; Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshiko Tanabe
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki-ken 305-8575 Japan
| | - Tadao Arinami
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki-ken 305-8575 Japan
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Notsuharu, Oita Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki-ken 305-8575 Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Chiyoda-ku, Tokyo Japan
| |
Collapse
|
35
|
Unno H, Futamura K, Morita H, Kojima R, Arae K, Nakae S, Ida H, Saito H, Matsumoto K, Matsuda A. Silica and double-stranded RNA synergistically induce bronchial epithelial apoptosis and airway inflammation. Am J Respir Cell Mol Biol 2014; 51:344-53. [PMID: 24661197 DOI: 10.1165/rcmb.2013-0281oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Silica crystals (silica), which are the main mineral component of volcanic ash and desert dust, can activate the caspase-1-activating inflammasome in phagocytic cells to secrete IL-1β. Although inhalation of silica-containing dust is known to exacerbate chronic respiratory diseases, probably through inflammasome activation, its direct effects on bronchial epithelial cells remain unclear. Here, we show that silica and double-stranded RNA (dsRNA) synergistically induces caspase-9-dependent apoptosis, but not inflammasome activation, of bronchial epithelial cells. Intranasal administration of silica and dsRNA to mice synergistically enhanced neutrophil infiltration in the airway without IL-1β release in the bronchoalveolar lavage fluid. Histopathological analysis revealed that silica or dsRNA alone induced slight airway inflammation, whereas combined administration significantly enhanced airway inflammation and epithelial damage. These novel findings suggest that inhalation of silica-containing dust may cause inflammasome-independent airway inflammation, possibly by damaging the epithelial barrier, especially at the time of viral infection. These responses may also be involved in acute lung injury caused by inhaled silica-containing dust.
Collapse
Affiliation(s)
- Hirotoshi Unno
- 1 Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
|
37
|
Asian dust particles induce macrophage inflammatory responses via mitogen-activated protein kinase activation and reactive oxygen species production. J Immunol Res 2014; 2014:856154. [PMID: 24987712 PMCID: PMC4058895 DOI: 10.1155/2014/856154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/18/2014] [Indexed: 12/19/2022] Open
Abstract
Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-α (TNF-α) compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10 μm in diameter provoked a greater inflammatory response than soil dust samples containing particles >10 μm. In addition, Asian dust particles-induced TNF-α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-κB and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.
Collapse
|
38
|
Rattanapinyopituk K, Shimada A, Morita T, Togawa M, Hasegawa T, Seko Y, Inoue K, Takano H. Ultrastructural changes in the air–blood barrier in mice after intratracheal instillations of Asian sand dust and gold nanoparticles. ACTA ACUST UNITED AC 2013; 65:1043-51. [DOI: 10.1016/j.etp.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/08/2013] [Accepted: 03/30/2013] [Indexed: 01/10/2023]
|
39
|
Honda A, Matsuda Y, Murayama R, Tsuji K, Nishikawa M, Koike E, Yoshida S, Ichinose T, Takano H. Effects of Asian sand dust particles on the respiratory and immune system. J Appl Toxicol 2013; 34:250-7. [DOI: 10.1002/jat.2871] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/16/2013] [Accepted: 01/30/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Akiko Honda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering; Kyoto University; C Cluster, Kyoto-Daigaku-Katsura Nishikyo-ku Kyoto 615-8540 Japan
| | - Yugo Matsuda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering; Kyoto University; C Cluster, Kyoto-Daigaku-Katsura Nishikyo-ku Kyoto 615-8540 Japan
| | - Rumiko Murayama
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering; Kyoto University; C Cluster, Kyoto-Daigaku-Katsura Nishikyo-ku Kyoto 615-8540 Japan
| | - Kenshi Tsuji
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering; Kyoto University; C Cluster, Kyoto-Daigaku-Katsura Nishikyo-ku Kyoto 615-8540 Japan
| | - Masataka Nishikawa
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies; 16-2 Onogawa Tsukuba 305-8506 Japan
| | - Eiko Koike
- Center for Environmental Health Sciences, National Institute for Environmental Studies; 16-2 Onogawa Tsukuba 305-8506 Japan
| | - Seiichi Yoshida
- Department of Health Sciences; Oita University of Nursing and Health Sciences; 2944-9 Megusuno Oita 870-1201 Japan
| | - Takamichi Ichinose
- Department of Health Sciences; Oita University of Nursing and Health Sciences; 2944-9 Megusuno Oita 870-1201 Japan
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering; Kyoto University; C Cluster, Kyoto-Daigaku-Katsura Nishikyo-ku Kyoto 615-8540 Japan
| |
Collapse
|
40
|
Yamada P, Hatta T, Du M, Wakimizu K, Han J, Maki T, Isoda H. Inflammatory and degranulation effect of yellow sand on RBL-2H3 cells in relation to chemical and biological constituents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:9-17. [PMID: 22835726 DOI: 10.1016/j.ecoenv.2012.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 05/26/2023]
Abstract
Recent studie pointed out that allergic diseases have increased during the Asian dust storm event (ADSE) in Japan. Daily observations and the atmospheric concentrations of yellow sand (YS) aerosol have been increasing. In this study, YS samples collected from three sites of Japan during ADSE in 2009-2010 were used. The particles were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence-energy dispersive spectrometer (XRF-EDS). We investigate ability of YS extract on enhancing the chemical mediator release and cytokine production from rat basophilic leukemia (RBL-2H3) cells. The dust particles at Fukuoka and Tsukuba were abundant in aluminum (Al), iron (Fe), potassium (K) and titan (Ti) than those at Naha. Concentration of the trace endotoxin and Cryptomeria japonica pollen allergen (Cry j 1) were measured in YS extract. After exposure of RBL-2H3 cells to YS extract, the β-hexosaminidase (β-hex) release, tumor necrosis factor-alpha (TNF-α) production were enhanced in RBL-2H3 cells. This process depends on endotoxin, Cry j 1 and other allergen present in the YS extract. YS water extract also show a strong cytotoxic effect on the cells. This data suggest that low levels of endotoxin and Cry j 1 in YS may cause allergy during the ADSE.
Collapse
Affiliation(s)
- Parida Yamada
- Alliance for Research on North Africa, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Moreno T, Kojima T, Querol X, Alastuey A, Amato F, Gibbons W. Natural versus anthropogenic inhalable aerosol chemistry of transboundary East Asian atmospheric outflows into western Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 424:182-192. [PMID: 22444053 DOI: 10.1016/j.scitotenv.2012.02.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/20/2012] [Accepted: 02/24/2012] [Indexed: 05/31/2023]
Abstract
The eastward transport of aerosols exported from mainland Asia strongly influences air quality in the Japanese archipelago. The bulk of the inhalable particulate matter (PM(10)) in these intrusions comprises either natural, desert-derived minerals (mostly supermicron silicates) or anthropogenic pollutants (mostly submicron sulphates), in various states of mixing. We analyse PM(10) collected in Kumamoto, SW Japan, during three contrasting types of aerosol intrusions, the first being dominated by desert PM which became increasingly mixed with anthropogenic components as time progressed, the second being a relatively minor event mixing fine, distal desert PM with anthropogenic materials, and the third being dominated by anthropogenic pollutants. Whereas the chemistry of the natural mineral component is characterised by "crustal" elements (Si, Al, Fe, Mg, K, Li, P, Sc, V, Rb, Sr, Zr, Th, lanthanoids), the anthropogenic component is rich in secondary inorganic compounds and more toxic metallic elements (NH(4)(+), SO(4)(2-), As, Pb, Cd, Cu, Zn, Sn, Bi, Sb, and Ge). Some desert-dust (Kosa) intrusions are more calcareous than others, implicating geologically different source areas, and contain enhanced levels of NO(3)(-), probably as supermicron Ca(NO(3))(2) particles produced by chemical reaction between NOx pollutants (mostly from industry and traffic) and carbonate during atmospheric transport. The overall trace element chemistry of aerosol intrusions into Kumamoto shows low V/Rb, low NO(3)(-)/SO(4)(2-), enhanced As levels, and unfractionated La/Ce values, which are all consistent with anthropogenic sources including coal emissions rather than those derived from the refining and combustion of oil fractionates. Geographically dispersed, residual sulphatic plumes of this nature mix with local traffic (revealed by OC and EC concentrations) and industrial emissions and dissipate only slowly, due to the dominance of submicron accumulation mode PM which is atmospherically persistent, and raise questions over the chronic health effects of breathing finely respirable sulphatic aerosol containing enhanced amounts of toxic metals.
Collapse
Affiliation(s)
- Teresa Moreno
- Institute of Environmental Assessment and Water Research, Spanish Research Council, IDÆA-CSIC, 08034 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
42
|
Naota M, Mukaiyama T, Shimada A, Yoshida A, Okajima M, Morita T, Inoue K, Takano H. Pathological Study of Acute Pulmonary Toxicity Induced by Intratracheally Instilled Asian Sand Dust (Kosa). Toxicol Pathol 2010; 38:1099-110. [DOI: 10.1177/0192623310385143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to investigate acute lung toxicity caused by Asian sand dust. Simulated Asian sand dust collected from the Tennger desert in China (CJ-2 particles) and Asian sand dust collected from the atmosphere in Japan (Tottori particles) were used. Saline suspensions of 50, 200, 800, and 3,000 µg Asian sand dust were intratracheally instilled to ICR mice. Localized accumulation of the dust particles was observed in the bronchioles and the alveoli of the lung tissues; acute inflammatory changes characterized by infiltration of macrophages and neutrophils were observed around the particles. Degenerated alveolar walls and bronchial epithelial cells, as well as a weakened positive immunolabeling for laminin, were observed to be associated with particle attachment. Positive immunolabelings for interleukin-6, tumor necrosis factor–α inducible nitric oxide synthase, and dimeric copper- and zinc-containing superoxide dismutase were observed mainly in the inflammatory cells in the lesions; these findings were not observed in the controls or in areas lacking lesions. These results suggest that Asian sand dust particles caused damage to the lung tissue through a direct physical effect. In addition, secondary released cytokines and oxidative stress generated in the lesion may be involved in the development of the acute lung toxicity.
Collapse
Affiliation(s)
- Misaki Naota
- Department of Veterinary Pathology, Tottori University, Tottori, Japan
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Toru Mukaiyama
- Department of Veterinary Pathology, Tottori University, Tottori, Japan
| | - Akinori Shimada
- Department of Veterinary Pathology, Tottori University, Tottori, Japan
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Atushi Yoshida
- Tottori Prefectual Institute of Public Health and Environmental Science, Tottori, Japan
| | - Mina Okajima
- Department of Veterinary Pathology, Tottori University, Tottori, Japan
| | - Takehito Morita
- Department of Veterinary Pathology, Tottori University, Tottori, Japan
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Kenichiro Inoue
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Hirohisa Takano
- National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
43
|
He M, Ichinose T, Yoshida S, Nishikawa M, Mori I, Yanagisawa R, Takano H, Inoue KI, Sun G, Shibamoto T. Airborne Asian sand dust enhances murine lung eosinophilia. Inhal Toxicol 2010; 22:1012-25. [DOI: 10.3109/08958378.2010.510151] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Ueda K, Nitta H, Odajima H. The effects of weather, air pollutants, and Asian dust on hospitalization for asthma in Fukuoka. Environ Health Prev Med 2010; 15:350-7. [PMID: 21432566 DOI: 10.1007/s12199-010-0150-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 04/22/2010] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE We assessed the association of fluctuations in ambient temperature, air pollutants, and Asian dust (AD) events with the hospitalization of children for asthma in Fukuoka City. METHODS Data on emergency hospitalizations of children under 12 years of age for asthma were collected at Fukuoka National Hospital. We obtained air pollution and meteorological data for Fukuoka from the National Institute for Environmental Studies. Using a time-stratified case-crossover design, we estimated odds ratios (ORs) of hospitalization corresponding to a unit change in weather variables and concentration of air pollutants. We also evaluated the effect of AD events on asthma hospitalization with data stratified by days with or without an AD event. RESULTS There were 3427 hospitalizations and 106 AD events from 2001 to 2007. We found that within-day temperature change rather than ambient temperature was associated with asthma exacerbation. In the multi-pollutant model, the ORs per 1°C within-day drop and rise during the period from the hospitalization day to 3 days previously (lag3) were 1.033 [95% confidence interval (CI) 1.005-1.063] and 1.027 (95% CI 0.995-1.060), rspectively. A 10 μg/m(3) increase in suspended particulate matter (SPM) and nitrogen dioxide (NO(2)) at lag2-lag3 were significantly associated with an increase in asthma hospitalization with ORs of 1.041 (95% CI 1.013-1.070) and 1.112 (95% CI 1.022-1.209), respectively. We did not observe a significant association between asthma hospitalization and AD events. CONCLUSIONS This study showed that temperature fluctuation, SPM, and NO(2) were associated with an increased risk of hospitalization of children for asthma.
Collapse
Affiliation(s)
- Kayo Ueda
- Environmental Epidemiology Section, Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan,
| | | | | |
Collapse
|
45
|
Yoshida S, Hiyoshi K, Ichinose T, Nishikawa M, Takano H, Sugawara I, Takeda K. Aggravating effect of natural sand dust on male reproductive function in mice. Reprod Med Biol 2009; 8:151-156. [PMID: 29699320 DOI: 10.1007/s12522-009-0027-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 07/02/2009] [Indexed: 10/20/2022] Open
Abstract
Purpose Although adverse health effects of environment (such as cadmium, pesticides, diesel exhaust, etc.) on the male reproductive system have been suggested, there is little experimental evidence of such an effect of atmospheric sand dust. In the present study, the effects of sand dust (mineral particles) were investigated on the male reproductive system of mice. Methods Two types of sand dusts (Asian sand dust and Arizona sand dust) were intratracheally administered (0.1 mg/mouse 4 times every other week) to ICR male mice and then male reproductive organ weight, daily sperm production (DSP), histological analysis and serum testosterone level were measured. Results Histological examination showed that interstitial edema was produced by both sand dust types, and partial vacuolation of the seminiferous tubules was detected in the exposed mice. Moreover, exposure to these natural sand dusts significantly decreased DSP. On the other hand, there was no significant differences in serum testosterone concentration. Conclusions These results suggest that natural sand dust-exposure produced adverse effects on mouse male reproductive function.
Collapse
Affiliation(s)
- Seiichi Yoshida
- Department of Health Sciences Oita University of Nursing and Health Sciences 2944-9 Megusuno 870-1201 Oita Oita Japan
| | - Kyoko Hiyoshi
- Department of Health Sciences Oita University of Nursing and Health Sciences 2944-9 Megusuno 870-1201 Oita Oita Japan
| | - Takamichi Ichinose
- Department of Health Sciences Oita University of Nursing and Health Sciences 2944-9 Megusuno 870-1201 Oita Oita Japan
| | - Masataka Nishikawa
- Environmental Chemistry Division National Institute for Environmental Studies 16-2 Onogawa 305-0053 Tsukuba Ibaraki Japan
| | - Hirohisa Takano
- Pathophysiology Research National Institute for Environmental Studies 16-2 Onogawa 305-0053 Tsukuba Ibaraki Japan
| | - Isamu Sugawara
- Mycobacterium Reference Center Research Institute of Tuberculosis 3-1-24 Matsuyama 204-8533 Kiyose Tokyo Japan
| | - Ken Takeda
- Faculty of Pharmaceutical Sciences Tokyo University of Science 2641 Yamazaki 278-8510 Noda Chiba Japan
| |
Collapse
|
46
|
Ichinose T, Hiyoshi K, Yoshida S, Takano H, Inoue K, Nishikawa M, Mori I, Kawazato H, Yasuda A, Shibamoto T. Asian sand dust aggravates allergic rhinitis in guinea pigs induced by Japanese cedar pollen. Inhal Toxicol 2009; 21:985-93. [DOI: 10.1080/08958370802672883] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Ichinose T, Yoshida S, Sadakane K, Takano H, Yanagisawa R, Inoue K, Nishikawa M, Mori I, Kawazato H, Yasuda A, Shibamoto T. Effects of Asian Sand Dust, Arizona Sand Dust, Amorphous Silica and Aluminum Oxide on Allergic Inflammation in the Murine Lung. Inhal Toxicol 2008; 20:685-94. [DOI: 10.1080/08958370801935133] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Ichinose T, Yoshida S, Hiyoshi K, Sadakane K, Takano H, Nishikawa M, Mori I, Yanagisawa R, Kawazato H, Yasuda A, Shibamoto T. The effects of microbial materials adhered to Asian sand dust on allergic lung inflammation. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 55:348-57. [PMID: 18227959 DOI: 10.1007/s00244-007-9128-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 12/26/2007] [Indexed: 05/19/2023]
Abstract
Asian sand dust (ASD) containing microbiological materials, sulfate (SO(4)(2)), and nitrate (NO(3)(-) ) derived from air pollutants in East China, reportedly cause adverse respiratory health effects. ASD aggravates ovalbumin (OVA)-associated experimental lung eosinophilia. In this study, the toxic materials adsorbed onto ASD were excluded by heat treatment at 360 degrees C for 30 min. The effects of nonheated ASD or heated ASD (H-ASD) toward the allergic lung inflammation were compared in murine lungs. ICR mice were administered intratracheally with normal saline (control), H-ASD, ASD, OVA, OVA + H-ASD, and OVA + ASD, four times at 2-week intervals. ASD only increased neutrophils in bronchoalveolar lavage fluids (BALFs) along with pro-inflammatory mediators, such as keratinocyte chemoattractant (KC). H-ASD and ASD enhanced eosinophil recruitment induced by OVA in the alveoli and in the submucosa of the airway, which has a goblet cell proliferation in the bronchial epithelium. The two ASDs synergistically increased interleukin-5 (IL-5), monocyte chemotactic protein-3 (MCP-3), and eotaxin, which were associated with OVA, in BALF. The enhancing effects were much greater in ASD than in H-ASD. The two ASDs induced the adjuvant effects to specific IgE and IgG1 production by OVA. In the in vitro study using RAW264.7 cells, ASD increased the expression of Toll-like receptor 2 (TLR 2) mRNA but not TLR4 mRNA. H-ASD caused no expression of either TLR mRNA. These results suggest that the aggravated lung eosinophilia by ASD may be due to activation of Th2-associated immune response via the activation of TLR2 by microbial components adhered to ASD.
Collapse
Affiliation(s)
- T Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Notsuharu, Oita, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Griffin DW. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 2007; 20:459-77, table of contents. [PMID: 17630335 PMCID: PMC1932751 DOI: 10.1128/cmr.00039-06] [Citation(s) in RCA: 344] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Billions of tons of desert dust move through the atmosphere each year. The primary source regions, which include the Sahara and Sahel regions of North Africa and the Gobi and Takla Makan regions of Asia, are capable of dispersing significant quantities of desert dust across the traditionally viewed oceanic barriers. While a considerable amount of research by scientists has addressed atmospheric pathways and aerosol chemistry, very few studies to determine the numbers and types of microorganisms transported within these desert dust clouds and the roles that they may play in human health have been conducted. This review is a summary of the current state of knowledge of desert dust microbiology and the health impact that desert dust and its microbial constituents may have in downwind environments both close to and far from their sources.
Collapse
Affiliation(s)
- Dale W Griffin
- U.S. Geological Survey, St. Petersburg, Florida 33701, USA.
| |
Collapse
|
50
|
Vaughn JM, Wiederhold NP, McConville JT, Coalson JJ, Talbert RL, Burgess DS, Johnston KP, Williams RO, Peters JI. Murine airway histology and intracellular uptake of inhaled amorphous itraconazole. Int J Pharm 2007; 338:219-24. [PMID: 17368772 DOI: 10.1016/j.ijpharm.2007.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Aerosolization of amorphous itraconazole may be a safe and effective method of pulmonary delivery. Our objective was to evaluate the histologic effects, immunogenic potential, and cellular uptake of aerosolized amorphous itraconazole. Mice received amorphous itraconazole (30mg/kg), excipient placebo, or saline control by nebulization every 12h for up to 12 days. Broncho-alveolar lavage (BAL) and formalin fixation of both lungs were conducted. BAL supernatant was assayed for IL-12 by ELISA, and cellular components were analyzed by high performance liquid chromatography-mass spectroscopy. Coronal sections of the entire lung were stained, viewed by light microscopy, and the Cimolai histopathologic inflammatory score was obtained for each lobe. No evidence of bronchiolar, peribronchiolar or perivascular inflammation was found in any treatment group, nor were epithelial ulceration or repair observed. The Cimolai histopathologic scores for amorphous itraconazole, excipient, and saline control on days 3 and 8 did not differ between groups. ELISA analysis showed no cytokine induction of IL-12. Itraconazole was detected within cells collected from BAL fluid on days 1, 3, 8 and 12. Aerosolized administration of amorphous itraconazole or excipients does not cause inflammation or changes in pulmonary histology and are not associated with pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Jason M Vaughn
- University of Texas at Austin College of Pharmacy, 1 University Station, A1900, Austin, TX 78712, United States
| | | | | | | | | | | | | | | | | |
Collapse
|