1
|
Ünel ÇÇ, Eroğlu E, Özatik O, Erol K. Chlorogenic acid co-administration alleviates cisplatin-induced peripheral neuropathy in rats. Fundam Clin Pharmacol 2024; 38:523-537. [PMID: 37996998 DOI: 10.1111/fcp.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is still an unresolved problem in cisplatin (CIS) use. OBJECTIVES This study investigates possible anti-neuropathic effect of chlorogenic acid (CGA) against CIS-induced CIPN in rats while also investigating the contribution of nitric oxide (NO) to this phenomenon. METHODS Initially, CGA (250-1000 μM) was tested by MTT assay on primary DRG neurons. Subsequently, CIPN was induced in Sprague-Dawley rats by 3 mg/kg intraperitoneal injections of CIS once/week for 5 weeks. CGA (100 mg/kg) was co-administered with CIS, both alone and in combination with l-arginine (LARG) or l-nitro-arginine-methyl-ester (LNAME), to elucidate the contribution of nitrergic system to anti-neuropathic effects. Mechanical allodynia, thermal hyperalgesia, and cold plate tests were performed to test CIPN. Rotarod, footprint analysis, and activitymeter were used to evaluate motor coordination and performance. Tumor necrosis factor alpha (TNF-α) was measured as a marker of inflammation. Histological evaluations of DRG and sciatic nerves (SNs) were performed utilizing toluidine blue staining. Two-way analysis of variance and Kruskal-Wallis following Tukey's test were used as statistical analysis. RESULTS Higher concentration of CGA (1000 μM) exhibited protective effect against in vitro neurotoxicity. Neither LARG nor LNAME exerted significant change in this effect. Co-administration of CGA alleviated histological abnormalities and neuropathic effects induced by CIS. Ameliorative effect of CGA was not changed in mechanical allodynia but attenuated in cold allodynia, and motor activity/coordination tests by LARG and LNAME. Neuropathic effects of CIS remained unchanged with LARG and LNAME in behavioral experiments. CONCLUSION The study identified CGA as candidate agent in mitigating CIPN. NO seems to play a modulatory role in this effect.
Collapse
Affiliation(s)
- Çiğdem Çengelli Ünel
- Faculty of Medicine, Department of Medical Pharmacology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ezgi Eroğlu
- Department of Clinical Research, Turkish Medicines and Medical Devices Agency, Ankara, Turkey
| | - Orhan Özatik
- Faculty of Medicine, Department of Histology and Embryology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Kevser Erol
- Faculty of Medicine, Department of Pharmacology, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
2
|
Hu S, Zhao R, Chi X, Chen T, Li Y, Xu Y, Zhu B, Hu J. Unleashing the power of chlorogenic acid: exploring its potential in nutrition delivery and the food industry. Food Funct 2024; 15:4741-4762. [PMID: 38629635 DOI: 10.1039/d4fo00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In the contemporary era, heightened emphasis on health and safety has emerged as a paramount concern among individuals with food. The concepts of "natural" and "green" have progressively asserted dominance in the food consumption market. Consequently, through continuous exploration and development, an escalating array of natural bioactive ingredients is finding application in both nutrition delivery and the broader food industry. Chlorogenic acid (CGA), a polyphenolic compound widely distributed in various plants in nature, has garnered significant attention. Abundant research underscores CGA's robust biological activity, showcasing notable preventive and therapeutic efficacy across diverse diseases. This article commences with a comprehensive overview, summarizing the dietary sources and primary biological activities of CGA. These encompass antioxidant, anti-inflammatory, antibacterial, anti-cancer, and neuroprotective activities. Next, a comprehensive overview of the current research on nutrient delivery systems incorporating CGA is provided. This exploration encompasses nanoparticle, liposome, hydrogel, and emulsion delivery systems. Additionally, the article explores the latest applications of CGA in the food industry. Serving as a cutting-edge theoretical foundation, this paper contributes to the design and development of CGA in the realms of nutrition delivery and the food industry. Finally, the article presents informed speculations and considerations for the future development of CGA.
Collapse
Affiliation(s)
- Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Runan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xuesong Chi
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Tao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yangjing Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| |
Collapse
|
3
|
Seyed Aliyan SM, Roohbakhsh A, Jafari Fakhrabad M, Salmasi Z, Moshiri M, Shahbazi N, Etemad L. Evaluating the Protective Effects of Thymoquinone on Methamphetamine-induced Toxicity in an In Vitro Model Based on Differentiated PC12 Cells. Altern Lab Anim 2024; 52:94-106. [PMID: 38445454 DOI: 10.1177/02611929241237409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Methamphetamine (Meth) is a highly addictive stimulant. Its potential neurotoxic effects are mediated through various mechanisms, including oxidative stress and the initiation of the apoptotic process. Thymoquinone (TQ), obtained from Nigella sativa seed oil, has extensive antioxidant and anti-apoptotic properties. This study aimed to investigate the potential protective effects of TQ against Meth-induced toxicity by using an in vitro model based on nerve growth factor-differentiated PC12 cells. Cell differentiation was assessed by detecting the presence of a neuronal marker with flow cytometry. The effects of Meth exposure were evaluated in the in vitro neuronal cell-based model via the determination of cell viability (in an MTT assay) and apoptosis (by annexin/propidium iodide staining). The generation of reactive oxygen species (ROS), as well as the levels of glutathione (GSH) and dopamine, were also determined. The model was used to determine the protective effects of 0.5, 1 and 2 μM TQ against Meth-induced toxicity (at 1 mM). The results showed that TQ reduced Meth-induced neurotoxicity, possibly through the inhibition of ROS generation and apoptosis, and by helping to maintain GSH and dopamine levels. Thus, the impact of TQ treatment on Meth-induced neurotoxicity could warrant further investigation.
Collapse
Affiliation(s)
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Jafari Fakhrabad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahar Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niosha Shahbazi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Mallamaci R, Storelli MM, Barbarossa A, Messina G, Valenzano A, Meleleo D. Potential Protective Effects of Spirulina ( Spirulina platensis) against In Vitro Toxicity Induced by Heavy Metals (Cadmium, Mercury, and Lead) on SH-SY5Y Neuroblastoma Cells. Int J Mol Sci 2023; 24:17076. [PMID: 38069399 PMCID: PMC10707235 DOI: 10.3390/ijms242317076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Spirulina, a filamentous microalga, is used all over the world as a nutraceutical dietary supplement. Recent studies have focused on examining its chelating activity and antioxidant properties, especially as a candidate for protection against neurotoxicity caused by heavy metals. The MTT test and LDH assay were used to examine the viability of the SH-SY5Y cells for 24, 48, and 72 h, to Cd, Hg, and Pb, individually or in combination with Spirulina, and the effects of necrotic cell death. In comparison to the control group, the viability of SH-SY5Y cells decreased after 24 h of exposure, with Cd being more toxic than Hg and Pb being less lethal. The effects of heavy metal toxicity on cell survival were ranked in order after 72 h under identical experimental circumstances as follows: Hg, Pb, and Cd. The viability of the cells was then tested after being exposed to Spirulina at doses of 5 at 50 (%v/v) for 24, 48, and 72 h, respectively. SH-SY5Y cells that had been treated with mixtures of heavy metals and Spirulina underwent the same assay. Cell viability is considerably increased by using Spirulina treatments at the prescribed periods and doses. Instead, the same procedure, when applied to SH-SY5Y cells, caused the release of LDH, which is consistent with the reduction in cell viability. We demonstrated for the first time, considering all the available data, that Spirulina 5, 25, and 50 (%v/v) enhanced the number of viable SH-SY5Y cells utilized as a model system for brain cells. Overall, the data from the present study provide a first insight into the promising positive role of Spirulina against the potentially toxic effects of metals.
Collapse
Affiliation(s)
- Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Maria Maddalena Storelli
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Alexia Barbarossa
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (G.M.); (A.V.)
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (G.M.); (A.V.)
| | - Daniela Meleleo
- Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
5
|
Wang Q, Liu T, Koci M, Wang Y, Fu Y, Ma M, Ma Q, Zhao L. Chlorogenic Acid Alleviated AFB1-Induced Hepatotoxicity by Regulating Mitochondrial Function, Activating Nrf2/HO-1, and Inhibiting Noncanonical NF-κB Signaling Pathway. Antioxidants (Basel) 2023; 12:2027. [PMID: 38136147 PMCID: PMC10740517 DOI: 10.3390/antiox12122027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Aflatoxin B1 (AFB1), a kind of mycotoxin, imposes acute or chronic toxicity on humans and causes great public health concerns. Chlorogenic acid (CGA), a natural phenolic substance, shows a powerful antioxidant and anti-inflammatory effect. This study was conducted to investigate the effect and mechanism of CGA on alleviating cytotoxicity induced by AFB1 in L-02 cells. The results showed that CGA (160 μM) significantly recovered cell viability and cell membrane integrity in AFB1-treated (8 μM) cells. Furthermore, it was found that CGA reduced AFB1-induced oxidative injury by neutralizing reactive oxygen species (ROS) and activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In addition, CGA showed anti-inflammatory effects as it suppressed the expression of inflammation-related genes (IL-6, IL-8, and TNF-α) and AFB1-induced noncanonical nuclear factor kappa-B (NF-κB) activation. Moreover, CGA mitigated AFB1-induced apoptosis by maintaining the mitochondrial membrane potential (MMP) and inhibiting mRNA expressions of Caspase-3, Caspase-8, Bax, and Bax/Bcl-2. These findings revealed a possible mechanism: CGA prevents AFB1-induced cytotoxicity by maintaining mitochondrial membrane potential, activating Nrf2/HO-1, and inhibiting the noncanonical NF-κB signaling pathway, which may provide a new direction for the application of CGA.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Tianxu Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Yutong Fu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Mingxin Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (Q.W.); (T.L.); (Y.W.); (Y.F.); (M.M.); (Q.M.)
| |
Collapse
|
6
|
Ma C, Sheng N, Li Y, Zheng H, Wang Z, Zhang J. A comprehensive perspective on the disposition, metabolism, and pharmacokinetics of representative multi-components of Dengzhan Shengmai in rats with chronic cerebral hypoperfusion after oral administration. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116212. [PMID: 36739927 DOI: 10.1016/j.jep.2023.116212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengzhan Shengmai capsule (DZSM), an evidence-based Chinese medicine comprising Erigeron breviscapus (Vaniot) Hand. -Mazz., Panax ginseng C.A.Mey., Ophiopogon japonicus (Thunb.) Ker Gawl., and Schisandra chinensis (Turcz.) Baill., exhibits an excellent efficacy in treating cardio- and cerebrovascular diseases. It contains caffeoyl compounds, flavonoids, saponins, and lignans as primary active components. However, so far, the characteristics of disposition, metabolism, and pharmacokinetics of its active components remain mostly unclear. AIM OF STUDY To elucidate disposition, metabolism, and pharmacokinetics of representative components of DZSM in rats with chronic cerebral hypoperfusion (CCH) by integrating ex vivo and in situ approaches. MATERIALS AND METHODS Exposure and distribution of absorbed prototypes and their metabolites were comprehensively investigated using sensitive LC-MS/MS and high-resolution LC-Q-TOF/MS. Pharmacokinetics of representative 16 components (12 prototypes and 4 metabolites) with different chemical categories, relatively high in vivo levels, wide tissue distribution, and reported neuroprotective activities were profiled. The ex vivo everted gut sac and in situ linked-rat models were adopted. RESULTS Representative 12 prototypes including 6 caffeoyl compounds (CA, 5-CQA, 3-CQA, 4-CQA, 1,3-CQA, and 3,4-CQA), 1 flavonoid (Scu), 2 saponins (Rd and Rg2), and 3 lignans (SchA, SchB, and SolA) presented characteristic absorption, disposition, and pharmacokinetics profiles in CCH rats. The caffeoyl compounds and flavonoid were well absorbed, exhibited wide distribution, and underwent extensive intestinal metabolism, such as methylation, isomerization, and sulfoconjugation. For CA, 5-CQA, Scu, and 4 related metabolites, the enterohepatic circulation was observed and resulted in bimodal or multimodal pharmacokinetic profiles. Saponins showed relatively low systemic exposure and limited distribution. The PPD-type ginsenoside Rd exhibited longer elimination half-life and systemic circulation than the PPT-type ginsenoside Rg2. No enterohepatic circulation was observed regarding saponins, suggesting that the multimodal pharmacokinetic profile of Rd could be due to its multi-site intestinal absorption. Lignans presented a low in vivo exposure and broad distribution. They were mainly transformed into hydroxylated metabolites. Corresponding to its bimodal pharmacokinetic profile, one metabolite of lignans completed the enterohepatic cycle. CONCLUSION The disposition, metabolism, and pharmacokinetic profiles of representative active components of DZSM were comprehensively characterized and elucidated.
Collapse
Affiliation(s)
- Congyu Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Ning Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Yuanyuan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Hao Zheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
7
|
Efficient and selective extraction of chlorogenic acid in juice samples using magnetic molecularly imprinted polymers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Identification of a Hydroxygallic Acid Derivative, Zingibroside R1 and a Sterol Lipid as Potential Active Ingredients of Cuscuta chinensis Extract That Has Neuroprotective and Antioxidant Effects in Aged Caenorhabditis elegans. Nutrients 2022; 14:nu14194199. [PMID: 36235851 PMCID: PMC9570774 DOI: 10.3390/nu14194199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
We examined the effects of the extracts from two traditional Chinese medicine plants, Cuscuta chinensis and Eucommia ulmoides, on the healthspan of the model organism Caenorhabditis elegans. C. chinensis increased the short-term memory and the mechanosensory response of aged C. elegans. Furthermore, both extracts improved the resistance towards oxidative stress, and decreased the intracellular level of reactive oxygen species. Chemical analyses of the extracts revealed the presence of several bioactive compounds such as chlorogenic acid, cinnamic acid, and quercetin. A fraction from the C. chinensis extract enriched in zingibroside R1 improved the lifespan, the survival after heat stress, and the locomotion in a manner similar to the full C. chinensis extract. Thus, zingibroside R1 could be (partly) responsible for the observed health benefits of C. chinensis. Furthermore, a hydroxygallic acid derivative and the sterol lipid 4-alpha-formyl-stigmasta-7,24(241)-dien-3-beta-ol are abundantly present in the C. chinensis extract and its most bioactive fraction, but hardly in E. ulmoides, making them good candidates to explain the overall healthspan benefits of C. chinensis compared to the specific positive effects on stress resistance by E. ulmoides. Our findings highlight the overall anti-aging effects of C. chinensis in C. elegans and provide first hints about the components responsible for these effects.
Collapse
|
9
|
Multi-Target Mechanisms of Phytochemicals in Alzheimer’s Disease: Effects on Oxidative Stress, Neuroinflammation and Protein Aggregation. J Pers Med 2022; 12:jpm12091515. [PMID: 36143299 PMCID: PMC9500804 DOI: 10.3390/jpm12091515] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by a tangle-shaped accumulation of beta-amyloid peptide fragments and Tau protein in brain neurons. The pathophysiological mechanism involves the presence of Aβ-amyloid peptide, Tau protein, oxidative stress, and an exacerbated neuro-inflammatory response. This review aims to offer an updated compendium of the most recent and promising advances in AD treatment through the administration of phytochemicals. The literature survey was carried out by electronic search in the following specialized databases PubMed/Medline, Embase, TRIP database, Google Scholar, Wiley, and Web of Science regarding published works that included molecular mechanisms and signaling pathways targeted by phytochemicals in various experimental models of Alzheimer’s disease in vitro and in vivo. The results of the studies showed that the use of phytochemicals against AD has gained relevance due to their antioxidant, anti-neuroinflammatory, anti-amyloid, and anti-hyperphosphorylation properties of Tau protein. Some bioactive compounds from plants have been shown to have the ability to prevent and stop the progression of Alzheimer’s.
Collapse
|
10
|
Bjørklund G, Antonyak H, Polishchuk A, Semenova Y, Lesiv M, Lysiuk R, Peana M. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals. Arch Toxicol 2022; 96:3175-3199. [PMID: 36063174 DOI: 10.1007/s00204-022-03366-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Methylmercury (MeHg) is a global environmental pollutant with neurotoxic effects. Exposure to MeHg via consumption of seafood and fish can severely impact fetal neurobehavioral development even when MeHg levels in maternal blood are as low as about 5 μg/L, which the mother tolerates well. Persistent motor dysfunctions and cognitive deficits may result from trans-placental exposure. The present review summarizes current knowledge on the mechanisms of MeHg toxicity during the period of nervous system development. Although cerebellar Purkinje cells are MeHg targets, the actions of MeHg on thiol components in the neuronal cytoskeleton as well as on mitochondrial enzymes and induction of disturbances of glutamate signaling can impair extra-cerebellar functions, also at levels well tolerated by adult individuals. Numerous herbal substances possess neuroprotective effects, predominantly represented by natural polyphenolic molecules that might be utilized to develop natural drugs to alleviate neurotoxicity symptoms caused by MeHg or other Hg compounds.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | | | | | | | - Marta Lesiv
- Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
11
|
Rashidi R, Rezaee R, Shakeri A, Hayes AW, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. J Food Biochem 2022; 46:e14254. [PMID: 35609009 DOI: 10.1111/jfbc.14254] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Chlorogenic acid (CGA) is a naturally occurring non-flavonoid polyphenol found in green coffee beans, teas, certain fruits, and vegetables, that exerts antiviral, antitumor, antibacterial, and antioxidant effects. Several in vivo and in vitro studies have demonstrated that CGA can protect against toxicities induced by chemicals of different classes such as fungal/bacterial toxins, pharmaceuticals, metals, pesticides, etc., by preservation of cell survival via reducing overproduction of nitric oxide and reactive oxygen species and suppressed pro-apoptotic signaling. CGA antioxidant effects mediated through the Nrf2-heme oxygenase-1 signaling pathway were shown to enhance the levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferases, glutathione peroxidase, and glutathione reductase as well as glutathione content. Also, CGA could suppress inflammation via inhibition of toll-like receptor 4 and MyD88, and the phosphorylation of inhibitor of kappa B and p65 subunit of NF-κB, resulting in diminished levels of downstream inflammatory factors including interleukin (IL)-1 β, IL-6, tumor necrosis factor-α, macrophage inflammatory protein 2, cyclooxygenase-2, and prostaglandin E2. Moreover, CGA inhibited apoptosis by reducing Bax, cytochrome C, and caspase 3 and 9 expression while increasing Bcl-2 levels. The present review discusses several mechanisms through which CGA may exert its protective role against such agents. Chemical and natural toxic agents affect human health. Phenolic antioxidant compounds can suppress free radical production and combat these toxins. Chlorogenic acid is a plant polyphenol present in the human diet and exerts strong antioxidant properties that can effectively help in the treatment of various toxicities.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Arif MU, Khan MKI, Riaz S, Nazir A, Maan AA, Amin U, Saeed F, Afzaal M. Role of fruits in aging and age-related disorders. Exp Gerontol 2022; 162:111763. [DOI: 10.1016/j.exger.2022.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/04/2022] [Accepted: 02/27/2022] [Indexed: 11/24/2022]
|
13
|
Chen J, Chen D, Yu B, Luo Y, Zheng P, Mao X, Yu J, Luo J, Huang Z, Yan H, He J. Chlorogenic Acid Attenuates Oxidative Stress-Induced Intestinal Mucosa Disruption in Weaned Pigs. Front Vet Sci 2022; 9:806253. [PMID: 35237678 PMCID: PMC8884245 DOI: 10.3389/fvets.2022.806253] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 01/13/2023] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol that possesses potent antioxidant activity. However, little is known about its exact role in regulating the intestinal health under oxidative stress. This study was conducted to explore the effect of dietary CGA supplementation on intestinal barrier functions in weaned pigs upon oxidative stress. Twenty-four weaned pigs were allocated to three treatments and were given a basal diet (control) or basal diet containing CGA (1,000 mg/kg) for 21 days. Pigs were challenged by sterile saline (control) or diquat [10 mg/kg body weight (BW)] on the 15th day. Results showed that CGA attenuated the BW reduction, reduced the serum concentrations of diamine oxidase and D-lactate, and elevated serum antioxidant enzymes activities in diquat-challenged weaned pigs (P < 0.05). Moreover, diquat challenge decreased villus height and activities of sucrase and alkaline phosphatase in jejunum and ileum (P < 0.05), but CGA elevated the villus height and enzyme activities in the intestinal mucosa (P < 0.05). In addition, CGA not only decreased the expression levels of Bax, caspase-3, and caspase-9 (P < 0.05) but also elevated the expression levels of sodium glucose transport protein-1, glucose transporter-2, occludin, claudin-1, zonula occludens-1, and antioxidant genes such as nuclear factor erythroid-derived 2-related factor 2 and heme oxygenase-1 in intestinal mucosa of weaned pigs upon oxidative stress (P < 0.05). These findings suggested that CGA can attenuate oxidative stress-induced growth retardation and intestinal mucosa disruption, which was linked to elevated antioxidative capacity and enhanced intestinal barrier integrity.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
- *Correspondence: Jun He
| |
Collapse
|
14
|
Maccioni RB, Calfío C, González A, Lüttges V. Novel Nutraceutical Compounds in Alzheimer Prevention. Biomolecules 2022; 12:249. [PMID: 35204750 PMCID: PMC8961630 DOI: 10.3390/biom12020249] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) incidence is increasing worldwide at an alarming rate. Considering this increase, prevention efforts, stemming from scientific research, health education, and public policies, are critical. Clinical studies evidenced that healthy lifestyles along with natural multitarget and disease-modifying agents have a preventative impact on AD or mitigate symptoms in diagnosed patients. The pathological alterations of AD start 30 years before symptoms, and it is essential to develop the capacity to detect those changes. In this regard, molecular biomarkers that detect early pathological manifestations are helpful. Based on markers data, early preventive interventions could reduce more than 40% of AD cases. Protective actions include exercise, shown to induce neurogenesis, cognitive stimulation, intellectual-social activity, and nutrition among others. Mediterranean diet, preprobiotics, and nutraceuticals containing bioactive molecules with antioxidant and anti-inflammatory properties are relevant. Antiprotein aggregation molecules whose mechanisms were described are important. Anti-inflammatory agents with anti-aggregation properties that help to control cognitive impairment, include quercetin, biocurcumin, rosemarinic acid, and Andean shilajit. Anthocyanidins, e.g., delphinidin, malvidin, and natural flavonoids, are also included. Quercetin and hydroxy-tyrosol are antiaging molecules and could have anti-AD properties. We emphasize the relevance of nutraceuticals as a main actor in the prevention and/or control of dementia and particularly AD.
Collapse
Affiliation(s)
- Ricardo Benjamin Maccioni
- International Center for Biomedicine ICC, Vitacura 3568, Santiago 7630000, Chile; (C.C.); (A.G.); (V.L.)
- Laboratory of Neuroscience and Functional Medicine, Faculty of Sciences, University of Chile, Santiago 7630000, Chile
| | - Camila Calfío
- International Center for Biomedicine ICC, Vitacura 3568, Santiago 7630000, Chile; (C.C.); (A.G.); (V.L.)
- Laboratory of Neuroscience and Functional Medicine, Faculty of Sciences, University of Chile, Santiago 7630000, Chile
| | - Andrea González
- International Center for Biomedicine ICC, Vitacura 3568, Santiago 7630000, Chile; (C.C.); (A.G.); (V.L.)
- Laboratory of Neuroscience and Functional Medicine, Faculty of Sciences, University of Chile, Santiago 7630000, Chile
| | - Valentina Lüttges
- International Center for Biomedicine ICC, Vitacura 3568, Santiago 7630000, Chile; (C.C.); (A.G.); (V.L.)
- Laboratory of Neuroscience and Functional Medicine, Faculty of Sciences, University of Chile, Santiago 7630000, Chile
| |
Collapse
|
15
|
Narayanaperumal J, D'souza A, Miriyala A, Sharma B, Gopal G. A randomized double blinded placebo controlled clinical trial for the evaluation of green coffee extract on immune health in healthy adults. J Tradit Complement Med 2022; 12:455-465. [PMID: 36081816 PMCID: PMC9446042 DOI: 10.1016/j.jtcme.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/08/2023] Open
Abstract
Background The immune system functions to protect the host from a broad array of infectious diseases. Here, we evaluated the in vitro immunomodulatory effects of green coffee extract (GCE), and conducted a double-blinded, randomized and placebo-controlled trial among apparently healthy individuals. Methods We determined the levels and functions of inflammatory and immune markers viz., phospho-NF-κB p65 ser536, chemotaxis, phagocytosis, TH1/TH2 cytokines and IgG production. We also evaluated several immunological markers such as total leukocyte counts, differential leukocyte counts, NK cell activity, CD4/CD8 ratio, serum immunoglobulin, C-reactive protein (CRP) and pro-inflammatory cytokines (IL-6 and TNF-α). Results and conclusion GCE significantly inhibited LPS-induced NF-κB p65 ser536 phosphorylation, MCP-1-induced chemotaxis and significantly enhanced phagocytosis and IgG production. In addition, GCE modulated PMA/PHA-induced TH1/TH2 cytokine production. Clinical investigations suggested that the expression of CD56 and CD16 was markedly augmented on NK cells following GCE treatment. GCE significantly enhanced IgA production before and after influenza vaccination. Similarly, IL-6, TNF-α and CRP levels were significantly inhibited by GCE. Together, GCE confers several salubrious immunomodulatory effects at different levels attributing to optimal functioning of immune responses in the host. Taxonomy Cell biology, Clinical study, Clinical Trial. GCE showed an anti-inflammatory effect by inhibiting the NF-κB phosphorylation. GCE enhances innate immune response by activating NK cells and phagocytosis. GCE is an immunomodulator.
Collapse
Affiliation(s)
- Jeyaparthasarathy Narayanaperumal
- ITC Limited - Corporate Division, Life Sciences & Technology Centre, #3, 1st Main, Peenya Industrial Area, Phase I, Bangalore, 560 058, India
| | - Avin D'souza
- ITC Limited - Corporate Division, Life Sciences & Technology Centre, #3, 1st Main, Peenya Industrial Area, Phase I, Bangalore, 560 058, India
| | - Amarnath Miriyala
- ITC Limited - Corporate Division, Life Sciences & Technology Centre, #3, 1st Main, Peenya Industrial Area, Phase I, Bangalore, 560 058, India
| | - Bhavna Sharma
- ITC Limited - Foods Division, ITC Green Centre, No. 18 Banaswadi, Main Road, Maruthiseva Nagar, Bangalore, 560 005, India
| | - Ganesh Gopal
- ITC Limited - Corporate Division, Life Sciences & Technology Centre, #3, 1st Main, Peenya Industrial Area, Phase I, Bangalore, 560 058, India
- Corresponding author.
| |
Collapse
|
16
|
Arshad N'A, Lin TS, Yahaya MF. Stingless Bee Honey Reduces Anxiety and Improves Memory of the Metabolic Disease-induced Rats. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:115-126. [PMID: 31957619 DOI: 10.2174/1871527319666200117105133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Scientific studies support the evidence of the involvement of Metabolic Syndrome (MetS) in the progression of neurodegenerative diseases through oxidative stress. Consumption of antioxidant compounds was found to be beneficial for brain-health as it reduced the brain oxidative stress level and improved cognitive performance in animals. Stingless bee honey or locally known as Kelulut Honey (KH) has high phenolic content and is widely used as a food supplement. OBJECTIVES In this study, we aimed to investigate the effects of KH on the brain of MetS-induced rats. METHODS Forty male Wistar rats were divided into 5 groups; 8 weeks (C8) and 16 weeks control groups (C16), groups that received High-Carbohydrate High Fructose (HCHF) diet for 8 weeks (MS8) and 16 weeks (MS16), and a group that received HCHF for 16 weeks with KH supplemented for the last 35 days (KH). RESULTS Serum fasting blood glucose decreased in the KH group compared to the MS16 group. HDL levels were significantly decreased in MetS groups compared to control groups. Open field experiments showed that KH group exhibits less anxious behavior compared to the MetS group. Probe trial of Morris water maze demonstrated significant memory retention of KH group compared to the MS16 group. Nissl staining showed a significant decrease in the pyramidal hippocampal cells in the MS16 compared to the KH group. CONCLUSION KH has the ability to normalise blood glucose and reduce serum triglyceride and LDL levels in MetS rats, while behavior studies complement its effect on anxiety and memory. This shows a promising role of KH in attenuating neurodegenerative diseases through the antioxidant activity of its polyphenolic content.
Collapse
Affiliation(s)
- Nurul 'Ain Arshad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia.,School of Nursing, Faculty of Engineering, Science & Technology, Nilai University, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Teoh Seong Lin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|
18
|
Ibrahim AB, Mahmoud GA, Meurer F, Bodensteiner M. Preparation and crystallographic studies of a new mercuric salicylaldimine complex for fabrication of microscaled and nanoscaled mercuric sulfide as antimicrobial agents against human pathogenic yeasts and filamentous fungi. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ahmed B.M. Ibrahim
- Department of Chemistry, Faculty of Science Assiut University Assiut 71516 Egypt
| | | | - Florian Meurer
- Faculty of Chemistry and Pharmacy University of Regensburg Regensburg Germany
| | | |
Collapse
|
19
|
Xu X, Chang J, Wang P, Yin Q, Liu C, Li M, Song A, Zhu Q, Lu F. Effect of chlorogenic acid on alleviating inflammation and apoptosis of IPEC-J2 cells induced by deoxyniyalenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111376. [PMID: 32961488 DOI: 10.1016/j.ecoenv.2020.111376] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Deoxynivalenol (DON) is extensively detected in many kinds of foods and feeds to harm human and animal health. This research aims to investigate the effect of chlorogenic acid (CGA) on alleviating inflammation and apoptosis of swine jejunal epithelial cells (IPEC-J2) triggered by DON. The results demonstrated that cell viability was decreased when DON concentrations increased or incubation time expanded. The pretreatment with CGA (40 μg/mL) for 1 h increased cell viability, decreased lactate dehydrogenase (LDH) release and apoptosis in cells triggered by DON at 0.5 μg/mL for 6 h, compared with the DON alone-treated cells. Moreover, the mRNA abundances of IL-8, IL-6, TNF-α, COX-2, caspase-3, Bax and ASCT2 genes, and protein expressions of COX-2, Bax and ASCT2 were significantly down-regulated; while the mRNA abundances of ZO-1, claudin-1, occludin, PePT1 and GLUT2 genes, and protein expressions of ZO-1, claudin-1 and PePT1 were significantly up-regulated in the CGA + DON group, compared with the DON alone group. This study indicated that CGA pretreatment alleviated cytotoxicity, inflammation and apoptosis in DON-triggered IPEC-J2 cells, and protected intestinal cell integrity from DON damages.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Juan Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Ping Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qingqiang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Chaoqi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Maolong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Andong Song
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang, 453000, China.
| | - Fushan Lu
- Henan Puai Feed Co., Ltd., Zhoukou, 466000, China.
| |
Collapse
|
20
|
Elyasi L, Jahanshahi M, Jameie SB, Hamid Abadi HG, Nikmahzar E, Khalili M, Jameie M, Jameie M. 6-OHDA mediated neurotoxicity in SH-SY5Y cellular model of Parkinson disease suppressed by pretreatment with hesperidin through activating L-type calcium channels. J Basic Clin Physiol Pharmacol 2020; 32:11-17. [PMID: 32918805 DOI: 10.1515/jbcpp-2019-0270] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/11/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Parkinson's disease (PD) is a neurological condition with selective progressive degeneration of dopaminergic neurons. Routine therapies are symptomatic and palliative. Although, hesperidin (Hsd) is known for its neuroprotective effects, its exact cellular mechanism is still a mystery. Considering the important role of calcium (Ca2+) in cellular mechanisms of neurodegenerative diseases, the present study aimed to investigate the possible effects of Hsd on Ca2+ channels in cellular model of PD and the possible association between the selective vulnerability of neurons in cellular models of PD and expression of the physiological phenotype that changes Ca2+ homeostasis. METHODS SH-SY5Y cell line was used in this study; cell damage was induced by 150 µM 6-OHDA and the cells' viability was examined using MTT assay. Intracellular calcium, reactive oxygen species (ROS) and mitochondrial membrane potential were determined by the fluorescence spectrophotometry method. The expressions of calcium channel receptors were determined by gel electrophoresis and immunoblotting. RESULTS Loss of cell viability and mitochondrial membrane potential were confirmed in 6-OHDA treated cells. In addition, intracellular ROS and calcium levels, calcium channel receptors significantly increased in 6-OHDA-treated cells. Incubation of SH-SY5Y cells with hesperidin showed a protective effect, reduced the biochemical markers of cell damage/death, and balanced calcium hemostasis. CONCLUSIONS Based on our findings, it seems that hesperidin could suppress the progression of the cellular model of PD via acting on intracellular calcium homeostasis. Further studies are needed to confirm the potential benefits of preventive and therapeutic effects of stabilizing cellular calcium homeostasis in neurodegenerative disease.
Collapse
Affiliation(s)
- Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - S B Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Hatef Ghasemi Hamid Abadi
- Immunogenetic Research Center, Department of Anatomy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emsehgol Nikmahzar
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Khalili
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Melika Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mana Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Osmakov DI, Khasanov TA, Andreev YA, Lyukmanova EN, Kozlov SA. Animal, Herb, and Microbial Toxins for Structural and Pharmacological Study of Acid-Sensing Ion Channels. Front Pharmacol 2020; 11:991. [PMID: 32733241 PMCID: PMC7360831 DOI: 10.3389/fphar.2020.00991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are of the most sensitive molecular sensors of extracellular pH change in mammals. Six isoforms of these channels are widely represented in membranes of neuronal and non-neuronal cells, where these molecules are involved in different important regulatory functions, such as synaptic plasticity, learning, memory, and nociception, as well as in various pathological states. Structural and functional studies of both wild-type and mutant ASICs are essential for human care and medicine for the efficient treatment of socially significant diseases and ensure a comfortable standard of life. Ligands of ASICs serve as indispensable tools for these studies. Such bioactive compounds can be synthesized artificially. However, to date, the search for such molecules has been most effective amongst natural sources, such as animal venoms or plants and microbial extracts. In this review, we provide a detailed and comprehensive structural and functional description of natural compounds acting on ASICs, as well as the latest information on structural aspects of their interaction with the channels. Many of the examples provided in the review demonstrate the undoubted fundamental and practical successes of using natural toxins. Without toxins, it would not be possible to obtain data on the mechanisms of ASICs' functioning, provide detailed study of their pharmacological properties, or assess the contribution of the channels to development of different pathologies. The selectivity to different isoforms and variety in the channel modulation mode allow for the appraisal of prospective candidates for the development of new drugs.
Collapse
Affiliation(s)
- Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Timur A Khasanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
22
|
El-Seedi HR, Khalifa SA, El-Wahed AA, Gao R, Guo Z, Tahir HE, Zhao C, Du M, Farag MA, Musharraf SG, Abbas G. Honeybee products: An updated review of neurological actions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Sato M, Toyama T, Kim MS, Lee JY, Hoshi T, Miura N, Naganuma A, Hwang GW. Increased putrescine levels due to ODC1 overexpression prevents mitochondrial dysfunction-related apoptosis induced by methylmercury. Life Sci 2020; 256:118031. [PMID: 32615186 DOI: 10.1016/j.lfs.2020.118031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/23/2022]
Abstract
AIMS We had previously reported that addition of putrescine to the culture medium was reported to reduce methylmercury toxicity in C17.2 neural stem cells. Here, we have examined the inhibition of methylmercury-induced cytotoxicity by putrescine using ODC1-overexpressing C17.2 cells. MATERIALS AND METHODS We established stable ODC1-overexpressing C17.2 cells and evaluated methylmercury-induced apoptosis by examining the TUNEL assay and cleaved caspase-3 levels. Mitochondria-mediated apoptosis was also evaluated by reduction of mitochondrial membrane potential and recruitment of Bax and Bak to the mitochondria. KEY FINDINGS ODC is encoded by ODC1 gene, and putrescine levels in ODC1-overexpressing cells were significantly higher than in control cells. Overexpression of ODC1 and addition of putrescine to the culture medium suppressed DNA fragmentation and caspase-3 activation, which are observed when apoptosis is induced by methylmercury. Moreover, mitochondrial dysfunction and reactive oxygen species (ROS) generation, caused by methylmercury, were also inhibited by the overexpression of ODC1 and putrescine; pretreatment with ODC inhibitor, however, promoted both ROS generation and apoptosis by methylmercury. Finally, we found that Bax and Bak, the apoptosis-promoting factors, to be increased in mitochondria, following methylmercury treatment, and the same was inhibited by overexpression of ODC1. These results suggest that overexpression of ODC1 may prevent mitochondria-mediated apoptosis by methylmercury via increase of putrescine levels. SIGNIFICANCE Our findings provide important clues to clarify mechanisms involved in the defense against methylmercury toxicity and suggest novel biological functions of putrescine.
Collapse
Affiliation(s)
- Masayuki Sato
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takashi Toyama
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Min-Seok Kim
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Inhalation Toxicology Research Group, Korea Institute of Toxicology, 30, Baekhak1-gil Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Takayuki Hoshi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nobuhiko Miura
- Laboratory of Environmental and Molecular Toxicology, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
24
|
Geng L, Xia Z, Yuan L, Li C, Zhang M, Du Y, Wei L, Bi H. Effects of β-HgS on cell viability and intracellular oxidative stress in PC-12 cells. Metallomics 2020; 12:1389-1399. [DOI: 10.1039/d0mt00088d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional Tibetan medicines containing β-HgS have been used to treat chronic ailments for thousands of years. The effects were studied of β-HgS on cell viability and intracellular oxidative stress in PC-12 cells.
Collapse
Affiliation(s)
- Lujing Geng
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation
- Northwest Institute of Plateau Biology
- CAS
- Xining 810008
- China
| | - Zhenghua Xia
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation
- Northwest Institute of Plateau Biology
- CAS
- Xining 810008
- China
| | - Lu Yuan
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation
- Northwest Institute of Plateau Biology
- CAS
- Xining 810008
- China
| | - Cen Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation
- Northwest Institute of Plateau Biology
- CAS
- Xining 810008
- China
| | - Ming Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation
- Northwest Institute of Plateau Biology
- CAS
- Xining 810008
- China
| | - Yuzhi Du
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation
- Northwest Institute of Plateau Biology
- CAS
- Xining 810008
- China
| | - Lixin Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation
- Northwest Institute of Plateau Biology
- CAS
- Xining 810008
- China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation
- Northwest Institute of Plateau Biology
- CAS
- Xining 810008
- China
| |
Collapse
|
25
|
Chang J, Zhou Y, Wang Q, Aschner M, Lu R. Plant components can reduce methylmercury toxication: A mini-review. Biochim Biophys Acta Gen Subj 2019; 1863:129290. [DOI: 10.1016/j.bbagen.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/15/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
|
26
|
Hermawati E, Arfian N, Mustofa M, Partadiredja G. Chlorogenic acid ameliorates memory loss and hippocampal cell death after transient global ischemia. Eur J Neurosci 2019; 51:651-669. [PMID: 31437868 DOI: 10.1111/ejn.14556] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
Chlorogenic acid (CGA) is known to have antioxidant potentials, yet the effect of CGA on brain ischemia has not been sufficiently understood. Brain ischemia such as transient global ischemia disrupts many areas of the brain of rats, including the hippocampus. Male Wistar rats were randomly assigned into five groups, that is, sham-operated (SO), bilateral common carotid occlusion (BCCO), and BCCO+ 15, 30, and 60 mg/kg bw CGA groups (CGA15, CGA30, and CGA60, respectively). Brain ischemia was induced in Wistar rats with BCCO for 20 min followed by intraperitoneal injection of CGA. The rats were examined for the spatial memory in a Morris water maze test on the 3rd day and were euthanized on the 10th day after BCCO. The total number of pyramidal cells was estimated, and the mRNA expressions of Bcl2, Bax, caspase-3, SOD2, SOD1, GPx, ET-1, eNOS, CD31, and VEGF-A were measured. The BCCO group spent less time and distance in the target quadrant than any other group in the spatial memory retention test. The CA1 pyramidal cell numbers in the BCCO and CGA15 groups were lower than in the CGA30 and CGA60 groups. The mRNA expressions of Bcl2, SOD2, and CD31 in the BCCO group were lower than in the CGA15, CGA30, and CGA60 groups. The ET-1 expression was higher in the BCCO and CGA15 groups than in the SO, CGA30, and CGA60 groups. CGA improves the spatial memory and prevents the CA1 pyramidal cell death after BCCO by increasing Bcl2, SOD2, and CD31 expressions and decreasing ET-1 expression.
Collapse
Affiliation(s)
- Ery Hermawati
- Doctoral Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Department of Physiology, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimantan, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ginus Partadiredja
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
27
|
Alqarni I, Bassiouni YA, Badr AM, Ali RA. Telmisartan and/or chlorogenic acid attenuates fructose-induced non-alcoholic fatty liver disease in rats: Implications of cross-talk between angiotensin, the sphingosine kinase/sphingoine-1-phosphate pathway, and TLR4 receptors. Biochem Pharmacol 2019; 164:252-262. [PMID: 31004566 DOI: 10.1016/j.bcp.2019.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
Abstract
Renin-angiotensin-aldosterone system (RAS) has been implicated in non-alcoholic fatty liver disease (NAFLD); the most common cause of chronic liver diseases. There is accumulating evidence that altered TLR4 and Sphingosine kinase 1(SphK1)/sphingosine1phosphate (S1P) signaling pathways are key players in the pathogenesis of NAFLD. Cross talk of the sphingosine signaling pathway, toll-4 (TLR4) receptors, and angiotensin II was reported in various tissues. Therefore, the aim of this study was to define the contribution of these two pathways to the hepatoprotective effects of telmisartan and/or chlorogenic acid (CGA) in NAFLD. CGA is a strong antioxidant that was previously reported to inhibit angiotensin converting enzyme. Male Wistar rats were treated with either high-fructose, with or without telmisartan, CGA, telmisartan + CGA for 8 weeks. Untreated NAFL rats showed characteristics of NAFLD, as evidenced by significant increase in the body weight, insulin resistance, and serum hepatotoxicity markers (Alanine and Aspartate transaminases) and lipids as compared to the negative control group, in addition to characteristic histopathological alterations. Treatment with either telmisartan and/or CGA improved aforementioned parameters, in addition to upregulation of antioxidant enzymes (Superoxide dismutase and Glutathione peroxidase). Effect of inhibiting RAS on both sphingosine pathway and TLR4 was evident by the suppressing effect of telmisartan and/or CGA on high fructose-induced upregulation of hepatic SPK1 and S1P, in addition to concomitant up-regulation of Sphingosine-1-Phosphate receptor (S1PR)3 protein level and increased expression of S1PR1 and TLR4. As TLR4 and SPK/S1P signaling pathways play important roles in the progression of liver inflammation, the effect on sphingosine pathway and TLR4 was associated with decreased concentrations of inflammatory markers, enzyme kB kinase (IKK), nuclear factor-kB and tumor necrosis factor-α as compared to untreated NAFL group. In conclusion, the present data strongly suggests the cross-talk between angiotensin, the Sphingosine SPK/S1P Axis and TLR4 Receptors, and their role in the pathogenesis of fructose-induced NAFLD, and the protection afforded by drugs inhibiting RAS.
Collapse
Affiliation(s)
- Iman Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Yieldez A Bassiouni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Egypt
| | - Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt.
| | - Rehab A Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| |
Collapse
|
28
|
Kianfar M, Nezami A, Mehri S, Hosseinzadeh H, Hayes AW, Karimi G. The protective effect of fasudil against acrylamide-induced cytotoxicity in PC12 cells. Drug Chem Toxicol 2018; 43:595-601. [DOI: 10.1080/01480545.2018.1536140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mostafa Kianfar
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Nezami
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A. Wallace Hayes
- University of South Florida College of Public Health, USA
- Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Nootropic and Anti-Alzheimer's Actions of Medicinal Plants: Molecular Insight into Therapeutic Potential to Alleviate Alzheimer's Neuropathology. Mol Neurobiol 2018; 56:4925-4944. [PMID: 30414087 DOI: 10.1007/s12035-018-1420-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
Medicinal plants are the backbone of modern medicine. In recent times, there is a great urge to discover nootropic medicinal plants to reverse cognitive dysfunction owing to their less adverse effects. Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the inevitable loss of cognitive function, memory and language impairment, and behavioral disturbances, which turn into gradually more severe. Alzheimer's has no current cure, but symptomatic treatments are available and research continues. The number of patients suffering from AD continues to rise and today, there is a worldwide effort under study to find better ways to alleviate Alzheimer's pathogenesis. In this review, the nootropic and anti-Alzheimer's potentials of 6 medicinal plants (i.e., Centella asiatica, Clitoria ternatea, Crocus sativus, Terminalia chebula, Withania somnifera, and Asparagus racemosus) were explored through literature review. This appraisal focused on available information about neuroprotective and anti-Alzheimer's use of these plants and their respective bioactive compounds/metabolites and associated effects in animal models and consequences of its use in human as well as proposed molecular mechanisms. This review progresses our existing knowledge to reveal the promising linkage of traditional medicine to halt AD pathogenesis. This analysis also avowed a new insight to search the promising anti-Alzheimer's drugs.
Collapse
|
30
|
Silva S, Costa EM, Veiga M, Morais RM, Calhau C, Pintado M. Health promoting properties of blueberries: a review. Crit Rev Food Sci Nutr 2018; 60:181-200. [PMID: 30373383 DOI: 10.1080/10408398.2018.1518895] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With the strengthening of the link between diet and health, several foodstuffs have emerged as possessing potential health benefits such as phenolic rich fruits and vegetables. Blueberries, along with other berries, given their flavonoid and antioxidant content have long since been considered as a particularly interesting health promoting fruit. Therefore, the present work aimed to compile the existing evidences regarding the various potential benefits of blueberry and blueberry based products consumption, giving particular relevance to in vivo works and epidemiological studies whenever available. Overall, the results demonstrate that, while the evidences that support a beneficial role of blueberry and blueberry extracts consumption, further human based studies are still needed.
Collapse
Affiliation(s)
- Sara Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Eduardo M Costa
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Mariana Veiga
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Rui M Morais
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Conceição Calhau
- Nutrição e Metabolismo, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,CINTESIS, Centro de Investigação em Tecnologias e Serviços de Saúde, Universidade do Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| |
Collapse
|
31
|
Yang L, Wang N, Zheng G. Enhanced Effect of Combining Chlorogenic Acid on Selenium Nanoparticles in Inhibiting Amyloid β Aggregation and Reactive Oxygen Species Formation In Vitro. NANOSCALE RESEARCH LETTERS 2018; 13:303. [PMID: 30269259 PMCID: PMC6163123 DOI: 10.1186/s11671-018-2720-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/14/2018] [Indexed: 05/25/2023]
Abstract
The deposition of amyloid-β (Aβ) plaques and formation of neurotoxic reactive oxygen species (ROS) is a significant pathological signature of Alzheimer's disease (AD). Herein, a novel strategy is reported for combining the unique Aβ absorption property of selenium nanoparticles with the natural antioxidant agent chlorogenic acid (CGA) to form CGA@SeNPs. The in vitro biological evaluation revealed that CGA could clear the ROS induced by Aβ40 aggregates, but it did not inhibit the Aβ40 aggregation and cell membrane damage which were also caused by Aβ40 aggregates. Interestingly, CGA@SeNPs show an enhanced inhibition effect on Aβ40 aggregation and, more importantly, protect PC12 cells from Aβ aggregation-induced cell death. It is believed that CGA@SeNPs are more efficient than CGA in reducing Aβ40 toxic in long-term use.
Collapse
Affiliation(s)
- Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Na Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| |
Collapse
|
32
|
Domith I, Duarte-Silva AT, Garcia CG, Calaza KDC, Paes-de-Carvalho R, Cossenza M. Chlorogenic acids inhibit glutamate dehydrogenase and decrease intracellular ATP levels in cultures of chick embryo retina cells. Biochem Pharmacol 2018; 155:393-402. [PMID: 30031809 DOI: 10.1016/j.bcp.2018.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/18/2018] [Indexed: 11/26/2022]
Abstract
Chlorogenic acids (CGAs) are a group of phenolic compounds found in worldwide consumed beverages such as coffee and green tea. They are synthesized from an esterification reaction between cinnamic acids, including caffeic (CFA), ferulic and p-coumaric acids with quinic acid (QA), forming several mono- and di-esterified isomers. The most prevalent and studied compounds are 3-O-caffeoylquinic acid (3-CQA), 4-O-caffeoylquinic acid (4-CQA) and 5-O-caffeoylquinic acid (5-CQA), widely described as having antioxidant and cell protection effects. CGAs can also modulate glutamate release from microglia by a mechanism involving a decrease of reactive oxygen species (ROS). Increased energy metabolism is highly associated with enhancement of ROS production and cellular damage. Glutamate can also be used as an energy source by glutamate dehydrogenase (GDH) enzyme, providing α-ketoglutarate to the tricarboxylic acid (TCA) cycle for ATP synthesis. High GDH activity is associated with some disorders, such as schizophrenia and hyperinsulinemia/hyperammonemia syndrome. In line with this, our objective was to investigate the effect of CGAs on GDH activity. We show that CGAs and CFA inhibits GDH activity in dose-dependent manner, reaching complete inhibition at high concentration with IC50 of 52 μM for 3-CQA and 158.2 μM for CFA. Using live imaging confocal microscopy and microplate reader, we observed that 3-CQA and CFA can be transported into neuronal cells by an Na+-dependent mechanism. Moreover, neuronal cells treated with CGAs presented lower intracellular ATP levels. Overall, these data suggest that CGAs have therapeutic potential for treatment of disorders associated with high GDH activity.
Collapse
Affiliation(s)
- Ivan Domith
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil
| | | | | | - Karin da Costa Calaza
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil; Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil; Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marcelo Cossenza
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil; Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil.
| |
Collapse
|
33
|
Smilax aristolochiifolia Root Extract and Its Compounds Chlorogenic Acid and Astilbin Inhibit the Activity of α-Amylase and α-Glucosidase Enzymes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6247306. [PMID: 30046343 PMCID: PMC6036819 DOI: 10.1155/2018/6247306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 12/24/2022]
Abstract
Regulating activities of α-amylase and α-glucosidase through the use of specific inhibitors is a main strategy for controlling type 2 diabetes. Smilax aristolochiifolia root decoctions are traditionally used in Mexico as hypoglycemic and for weight loss, but the active principles and mechanisms underlying such putative metabolic effects are yet unknown. Here, we isolated the major bioactive compounds from a hydroethanolic extract of S. aristolochiifolia root by fast centrifugal partition chromatography and evaluated their effects against pancreatic α-amylase and yeast α-glucosidase. A chlorogenic acid-rich fraction (CAF) inhibited α-amylase activity with an IC50 value of 59.28 μg/mL in an uncompetitive manner and α-glucosidase activity with an IC50 value of 9.27 μg/mL in a noncompetitive mode. Also, an astilbin-rich fraction (ABF) inhibited α-glucosidase activity with an IC50 value of 12.30 μg/mL, in a noncompetitive manner. CAF inhibition α-amylase was as active as acarbose while both CAF and ABF were 50-fold more potent inhibitors of α-glucosidase than acarbose. The molecular docking results of chlorogenic acid and astilbin with α-amylase and α-glucosidase enzymes correlated with the inhibition mechanisms suggested by enzymatic assays. Our results prove that S. aristolochiifolia roots contain chlorogenic acid and astilbin, which inhibit carbohydrates-hydrolyzing enzymes, suggesting a new mechanism for the hypoglycemic effect reported for this plant.
Collapse
|
34
|
Priftis A, Mitsiou D, Halabalaki M, Ntasi G, Stagos D, Skaltsounis LA, Kouretas D. Roasting has a distinct effect on the antimutagenic activity of coffee varieties. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 829-830:33-42. [DOI: 10.1016/j.mrgentox.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/11/2023]
|
35
|
Surface imprinted polymers based on amino-hyperbranched magnetic nanoparticles for selective extraction and detection of chlorogenic acid in Honeysuckle tea. Talanta 2018; 181:271-277. [DOI: 10.1016/j.talanta.2018.01.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
|
36
|
Heidari S, Mehri S, Shariaty V, Hosseinzadeh H. Preventive effects of crocin on neuronal damages induced by D-galactose through AGEs and oxidative stress in human neuroblastoma cells (SH-SY5Y). J Pharmacopuncture 2018; 21:18-25. [PMID: 30151301 PMCID: PMC6054079 DOI: 10.3831/kpi.2018.21.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 02/18/2018] [Accepted: 02/26/2018] [Indexed: 01/02/2023] Open
Abstract
Objective D-galactose (D-gal) is well-known agent to induce aging process. In the present study, we selected crocin, the main constituent of Crocus sativus L. (saffron), against D-gal-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Methods Pretreated cells with crocin (25–500 μM, 24 h) were exposed to D-gal (25–400 mM, 48 h). The MTT assay was used for determination cell viability. Dichlorofluorescin diacetate assay (DCF-DA) and senescence associated β-galactosidase staining assay (SA-β-gal) were used to evaluate the generation of reactive oxygen species and beta-galactosidase as an aging marker, respectively. Also advanced glycation end products (AGEs) expression which is known as the main mechanism of age-related diseases was measured by western blot analysis. Results The findings of our study showed that treatment of cells with D-gal (25–400 mM) for 48h decreased cell viability concentration dependency. Reactive oxygen species (ROS) levels which are known as main factors in age-related diseases increased from 100 ± 8% in control group to 132 ± 22% in D-gal (200 mM) treated cells for 48h. The cytotoxic effects of D-gal decreased with 24h crocin pretreatment of cells. The cell viability at concentrations of 100 μM, 200 μM and 500 μM increased and ROS production decreased at concentrations of 200 and 500 μM to 111.5 ± 6% and 108 ± 5%, respectively. Also lysosomal biomarker of aging and carboxymethyl lysine (CML) expression as an AGE protein, significantly increased in D-gal 200 mM group after 48h incubation compare to control group. Pretreatment of SHSY-5Y cells with crocin (500 μM) before adding D-gal significantly reduced aging marker and CML formation. Conclusion Treatment of SH-SY5Y cells with crocin before adding of D-gal restored aging effects of D-gal concentration dependency. These findings indicate that crocin has potent anti-aging effects through inhibition of AGEs and ROS production.
Collapse
Affiliation(s)
- Somaye Heidari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I. R. Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I. R. Iran
| | - Vahidesadat Shariaty
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I. R. Iran
| |
Collapse
|
37
|
Chen J, Xie H, Chen D, Yu B, Mao X, Zheng P, Yu J, Luo Y, Luo J, He J. Chlorogenic Acid Improves Intestinal Development via Suppressing Mucosa Inflammation and Cell Apoptosis in Weaned Pigs. ACS OMEGA 2018; 3:2211-2219. [PMID: 30023826 PMCID: PMC6044628 DOI: 10.1021/acsomega.7b01971] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/09/2018] [Indexed: 05/06/2023]
Abstract
Chlorogenic acid (CGA) is a naturally occurring polyphenol in the human diet and plants, exhibiting antioxidant and anti-inflammatory activities. This study was conducted to investigate the effects of CGA on intestinal development and health in weaned pigs. Twenty-four weaned pigs were randomly assigned to two treatments and fed with a basal diet or a basal diet supplemented with 1000 mg/kg CGA. After a 14 d trial, samples were collected. Compared with the control group, CGA supplementation decreased the serum tumor necrosis factor-α, interleukin-6, and interleukin-1βIL-6 concentrations and elevated the serum immunoglobulin G and jejunal secretory immunoglobulin A concentrations. Meanwhile, jejunal villus height, duodenal and jejunal villus width, and jejunal and ileal villus height/crypt depth were increased by CGA. CGA not only decreased the number of duodenal and jejunal cells in the G0G1 phase but also increased the number of jejunal and ileal cells in the S phase. The percentages of late and total apoptotic cells in jejunum and the ratio of B-cell lymphoma-2-assiciated X protein to B-cell lymphoma-2 (Bcl-2) in duodenum and jejunum were also decreased by CGA supplementation. Finally, CGA upregulated the expression level of Bcl-2 in duodenum and jejunum, whereas it downregulated the expression levels of caspase-3 in duodenum and jejunum, caspase-9 in jejunum, as well as Fas in jejunum and ileum. This study suggested that the beneficial effects of CGA on intestinal development and health are partially due to improvement in immune defense and suppression in excessive apoptosis of intestinal epithelial cells in weaned pigs.
Collapse
Affiliation(s)
- Jiali Chen
- Key
Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition
Institute, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya’an, Sichuan 625014, China
| | - Hongmei Xie
- Department
of Pet Science, Shandong Vocational Animal
Science and Veterinary College, 88 Shengli Street, Weifang, Shandong 261061, China
| | - Daiwen Chen
- Key
Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition
Institute, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya’an, Sichuan 625014, China
| | - Bing Yu
- Key
Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition
Institute, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya’an, Sichuan 625014, China
| | - Xiangbing Mao
- Key
Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition
Institute, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya’an, Sichuan 625014, China
| | - Ping Zheng
- Key
Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition
Institute, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya’an, Sichuan 625014, China
| | - Jie Yu
- Key
Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition
Institute, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya’an, Sichuan 625014, China
| | - Yuheng Luo
- Key
Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition
Institute, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya’an, Sichuan 625014, China
| | - Junqiu Luo
- Key
Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition
Institute, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya’an, Sichuan 625014, China
| | - Jun He
- Key
Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition
Institute, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya’an, Sichuan 625014, China
- E-mail: . Phone: +86-28-86290922 (J.H.)
| |
Collapse
|
38
|
Hossen MS, Ali MY, Jahurul MHA, Abdel-Daim MM, Gan SH, Khalil MI. Beneficial roles of honey polyphenols against some human degenerative diseases: A review. Pharmacol Rep 2017; 69:1194-1205. [PMID: 29128800 DOI: 10.1016/j.pharep.2017.07.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/11/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023]
Abstract
Honey contains many active constituents and antioxidants such as polyphenols. Polyphenols are phytochemicals, a generic term for the several thousand plant-based molecules with antioxidant properties. Many in vitro studies in human cell cultures as well as many animal studies confirm the protective effect of polyphenols on a number of diseases such as cardiovascular diseases (CVD), diabetes, cancer, neurodegenerative diseases, pulmonary diseases, liver diseases and so on. Nevertheless, it is challenging to identify the specific biological mechanism underlying individual polyphenols and to determine how polyphenols impact human health. To date, several studies have attempted to elucidate the molecular pathway for specific polyphenols acting against particular diseases. In this review, we report on the various polyphenols present in different types of honey according to their classification, source, and specific functions and discuss several of the honey polyphenols with the most therapeutic potential to exert an effect on the various pathologies of some major diseases including CVD, diabetes, cancer, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Md Sakib Hossen
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh.
| | - Md Yousuf Ali
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh.
| | - M H A Jahurul
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt; Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan.
| | - Siew Hua Gan
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| | - Md Ibrahim Khalil
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh; Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
39
|
Chen WC, Hsu YJ, Lee MC, Li HS, Ho CS, Huang CC, Chen FA. Effect of burdock extract on physical performance and physiological fatigue in mice. J Vet Med Sci 2017; 79:1698-1706. [PMID: 28890521 PMCID: PMC5658563 DOI: 10.1292/jvms.17-0345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Burdock (BD) is a common vegetable with many pharmacological properties. However, few
studies have examined the effect of BD on exercise performance and physical fatigue. We
aimed to evaluate the potential beneficial effects of BD on fatigue and ergogenic
functions following physical challenge in mice. Methods: Male ICR mice were divided into
four groups to receive either vehicle, or BD at 348.5, 697 or 1,742.5 mg/kg/day, by daily
oral gavage for 4 weeks. Exercise performance and fatigue were evaluated from forelimb
grip strength, exhaustive swimming time, and post-exercise levels of physical
fatigue-related biomarkers serum lactate, ammonia, glucose, and creatine kinase (CK).
Results: BD supplementation elevated endurance and grip strength in a dose-dependent
manner. It also significantly decreased lactate, ammonia, and CK levels after physical
challenge. In addition, BD supplementation had few subchronic toxic effects. Conclusions:
Supplementation with BD has a wide spectrum of bioactive effects, including health
promotion, performance improvement, and fatigue reduction.
Collapse
Affiliation(s)
- Wen-Chyuan Chen
- Center for General Education, Chang Gung University of Science and Technology, Taoyuan 33301, Taiwan.,Department of Otorhinolaryngology, Head and Neck Surgery, Sleep Center, Linkou-Chang Gung Memorial Hospital, Taoyuan 33301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Hua Shuai Li
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Chun-Sheng Ho
- Division of Physical Medicine and Rehabilitation, Lo-Hsu Foundation, Inc., Lotung Poh-Ai Hospital, Yilan 26546, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Fu-An Chen
- Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 90741, Taiwan
| |
Collapse
|
40
|
Fukagawa S, Haramizu S, Sasaoka S, Yasuda Y, Tsujimura H, Murase T. Coffee polyphenols extracted from green coffee beans improve skin properties and microcirculatory function. Biosci Biotechnol Biochem 2017; 81:1814-1822. [DOI: 10.1080/09168451.2017.1345614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Coffee polyphenols (CPPs), including chlorogenic acid, exert various physiological activities. The purpose of this study was to investigate the effects of CPPs on skin properties and microcirculatory function in humans. In this double-blind, placebo-controlled study, 49 female subjects with mildly xerotic skin received either a test beverage containing CPPs (270 mg/100 mL/day) or a placebo beverage for 8 weeks. The ingestion of CPPs significantly lowered the clinical scores for skin dryness, decreased transepidermal water loss, skin surface pH, and increased stratum corneum hydration and the responsiveness of skin blood flow during local warming. Moreover, the amounts of free fatty acids and lactic acid in the stratum corneum significantly increased after the ingestion of CPPs. These results suggest that an 8-week intake of CPPs improve skin permeability barrier function and hydration, with a concomitant improvement in microcirculatory function, leading to efficacy in the alleviation of mildly xerotic skin.
Collapse
Affiliation(s)
- Satoko Fukagawa
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Satoshi Haramizu
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Shun Sasaoka
- Analytical Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Yuka Yasuda
- Analytical Science Laboratories, Kao Corporation, Tochigi, Japan
| | | | - Takatoshi Murase
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| |
Collapse
|
41
|
Sanchez MB, Miranda-Perez E, Verjan JCG, de Los Angeles Fortis Barrera M, Perez-Ramos J, Alarcon-Aguilar FJ. Potential of the chlorogenic acid as multitarget agent: Insulin-secretagogue and PPAR α/γ dual agonist. Biomed Pharmacother 2017; 94:169-175. [PMID: 28759754 DOI: 10.1016/j.biopha.2017.07.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/09/2017] [Accepted: 07/19/2017] [Indexed: 01/28/2023] Open
Abstract
The chlorogenic acid (CGA) is a natural product isolated from Cecropia obtusifolia, which possesses several pharmacological properties, such as: anti-carcinogenic, neuroprotective, antioxidant, anti-inflammatory, hypoglycemic, and hypolipidemic. In relation to its effects on the hyperglycemia and hypertriglyceridemia, few is known about the mechanisms in which this compound may be acting, therefore, the aim of the present study was to determine if CGA acts as an insulin secretagogue increasing intracellular calcium concentrations ([Ca2+]i) in RINm5F cells; or as an insulin sensitizer and lipid-lowering agent stimulating the expression of PPARγ and PPARα, respectively, in 3T3-L1 adipocytes. As results, RINm5F cells treated with 200μM of CGA showed an increase in [Ca2+]i of 9-times versus control and 4-times as compared to positive control; in addition, an increase in insulin secretion was observed similarly to those of positive control. CGA also significantly increased the mRNA expression of PPARγ (150%) and GLUT4 (220%), as well PPARα (40%) and FATP (25%) as it was appreciated by RT-PCR. Additionally, a chemoinformatic analysis suggested that CGA has suitable physicochemical properties to be considered as leader bioactive molecule for the development of novel agents with similar properties. Together, our results indicate that CGA possesses multiple mechanisms of action for the development of highly effective therapeutics in the treatment of metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Maetzin Becerra Sanchez
- Laboratory of Pharmacology, Health Sciences Department, D.C.B.S., UAM-I. Av. San Rafael Atlixco No. 186. Col. Vicentina, C.P. 09640 CDMX, Mexico
| | - Elizabeth Miranda-Perez
- Laboratory of Pharmacology, Health Sciences Department, D.C.B.S., UAM-I. Av. San Rafael Atlixco No. 186. Col. Vicentina, C.P. 09640 CDMX, Mexico
| | - Juan Carlos Gomez Verjan
- Departamento de Investigación Básica, Instituto Nacional de Geriatria, Blvd. Adolfo Ruiz Cortines # 2767, Col. San Jerónimo Lídice, Del. La Magdalena Contreras, CDMX, Mexico
| | - Maria de Los Angeles Fortis Barrera
- Laboratory of Pharmacology, Health Sciences Department, D.C.B.S., UAM-I. Av. San Rafael Atlixco No. 186. Col. Vicentina, C.P. 09640 CDMX, Mexico
| | - Julia Perez-Ramos
- Laboratory of Experimental Biology, Health Sciences Department, D.C.B.S., UAM-X, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacán, C.P. 04960 CDMX, Mexico
| | - Francisco Javier Alarcon-Aguilar
- Laboratory of Pharmacology, Health Sciences Department, D.C.B.S., UAM-I. Av. San Rafael Atlixco No. 186. Col. Vicentina, C.P. 09640 CDMX, Mexico.
| |
Collapse
|
42
|
Tajik N, Tajik M, Mack I, Enck P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr 2017; 56:2215-2244. [PMID: 28391515 DOI: 10.1007/s00394-017-1379-1] [Citation(s) in RCA: 436] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 01/10/2017] [Indexed: 02/08/2023]
Abstract
Chlorogenic acid (CGA), an important biologically active dietary polyphenol, is produced by certain plant species and is a major component of coffee. Reduction in the risk of a variety of diseases following CGA consumption has been mentioned in recent basic and clinical research studies. This systematic review discusses in vivo animal and human studies of the physiological and biochemical effects of chlorogenic acids (CGAs) on biomarkers of chronic disease. We searched PubMed, Embase, Amed and Scopus using the following search terms: ("chlorogenic acid" OR "green coffee bean extract") AND (human OR animal) (last performed on April 1st, 2015) for relevant literature on the in vivo effects of CGAs in animal and human models, including clinical trials on cardiovascular, metabolic, cancerogenic, neurological and other functions. After exclusion of editorials and letters, uncontrolled observations, duplicate and not relevant publications the remaining 94 studies have been reviewed. The biological properties of CGA in addition to its antioxidant and anti-inflammatory effects have recently been reported. It is postulated that CGA is able to exert pivotal roles on glucose and lipid metabolism regulation and on the related disorders, e.g. diabetes, cardiovascular disease (CVD), obesity, cancer, and hepatic steatosis. The wide range of potential health benefits of CGA, including its anti-diabetic, anti-carcinogenic, anti-inflammatory and anti-obesity impacts, may provide a non-pharmacological and non-invasive approach for treatment or prevention of some chronic diseases. In this study, the effects of CGAs on different aspects of health by reviewing the related literatures have been discussed.
Collapse
Affiliation(s)
- Narges Tajik
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Frondsbergstr 23, 72076, Tuebingen, Germany
| | - Mahboubeh Tajik
- Faculty of Physical Education and Sport Sciences, International Branch of Ferdowsi University of Mashhad, Mashhad, Iran
| | - Isabelle Mack
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Frondsbergstr 23, 72076, Tuebingen, Germany
| | - Paul Enck
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, University Hospital Tuebingen, Frondsbergstr 23, 72076, Tuebingen, Germany.
| |
Collapse
|
43
|
Yuan Y, Gong X, Zhang L, Jiang R, Yang J, Wang B, Wan J. Chlorogenic acid ameliorated concanavalin A-induced hepatitis by suppression of Toll-like receptor 4 signaling in mice. Int Immunopharmacol 2017; 44:97-104. [DOI: 10.1016/j.intimp.2017.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 12/25/2016] [Accepted: 01/10/2017] [Indexed: 01/16/2023]
|
44
|
Sun GG, Shih JH, Chiou SH, Hong CJ, Lu SW, Pao LH. Chinese herbal medicines promote hippocampal neuroproliferation, reduce stress hormone levels, inhibit apoptosis, and improve behavior in chronically stressed mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:159-168. [PMID: 27416803 DOI: 10.1016/j.jep.2016.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/22/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An efficacious antidepressant without unwanted side effects is need urgently at present. This study aimed to investigate whether treatment with four Chinese herbal medicines (CHMs), namely Radix Astragali, Saposhnikovia divaricate (SD), Eucommia ulmoides Oliv. bark (EU), and Corydalis yanhusuo W. T. Wang (C. yanhusuo), could reverse the effects of chronic mild stress (CMS) in a depression-like mouse model and the potential mechanism(s) of their action. MATERIALS AND METHODS In vitro study, the proliferation of NSCs was assessed using the MTS assay. In vivo study, chronic mild stress (CMS) was used in mice for 14 days to establish a depression-like mouse model. Plasma corticosterone levels were assessed by UPLC coupled to a triple-quadrupole mass spectrometer. The forced swim test (FST) was used to assess the effects of the four CHMs on depression. BrdU incorporation and TUNEL staining were used to assay hippocampal precursor cell proliferation rate and apoptosis. RESULTS The CHMs included Radix Astragali, EU, C. yanhusuo, and SD were shown to promote neuroproliferation in vitro. In vivo study, oral administration of these four CHMs for 14 days reversed the elevated plasma corticosterone levels, body weight loss, decrease in proliferation of hippocampal precursor cells; they also inhibited hippocampal cell apoptosis, and exhibited an antidepressant-like effect in a depression-like mouse model induced by CMS. CONCLUSIONS Our study indicates that each of these CHMs has the potential to ameliorate depression. The possible mechanisms of action include modulation of the HPA axis, reduction in stress hormone levels, inhibition of apoptosis, and promotion of hippocampal neuronal plasticity and neurogenesis.
Collapse
Affiliation(s)
- Gao-Ge Sun
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Jui-Hu Shih
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang-Ming University & Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Chen-Jee Hong
- Department of Psychiatry, Taipei Veterans General Hospital & School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Shao-Wei Lu
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Li-Heng Pao
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China.
| |
Collapse
|
45
|
Aguiar J, Estevinho B, Santos L. Microencapsulation of natural antioxidants for food application – The specific case of coffee antioxidants – A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Liu F, Lu XW, Zhang YJ, Kou L, Song N, Wu MK, Wang M, Wang H, Shen JF. Effects of chlorogenic acid on voltage-gated potassium channels of trigeminal ganglion neurons in an inflammatory environment. Brain Res Bull 2016; 127:119-125. [DOI: 10.1016/j.brainresbull.2016.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 02/02/2023]
|
47
|
Mikami Y, Kakizawa S, Yamazawa T. Essential Roles of Natural Products and Gaseous Mediators on Neuronal Cell Death or Survival. Int J Mol Sci 2016; 17:E1652. [PMID: 27690018 PMCID: PMC5085685 DOI: 10.3390/ijms17101652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
Although precise cellular and molecular mechanisms underlying neurodegeneration still remain enigmatic, key factors associated with degenerative disorders, such as glutamate toxicity and oxidative stress, have been recently identified. Accordingly, there has been growing interest in examining the effects of exogenous and endogenous molecules on neuroprotection and neurodegeneration. In this paper, we review recent studies on neuroprotective and/or neurodegenerative effects of natural products, such as caffeic acid and chlorogenic acid, and gaseous mediators, including hydrogen sulfide and nitric oxide. Furthermore, possible molecular mechanisms of these molecules in relation to glutamate signals are discussed. Insight into the pathophysiological role of these molecules will make progress in our understanding of molecular mechanisms underlying neurodegenerative diseases, and is expected to lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Yoshinori Mikami
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.
| | - Sho Kakizawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
48
|
Stefanello N, Schmatz R, Pereira LB, Cardoso AM, Passamonti S, Spanevello RM, Thomé G, de Oliveira GMT, Kist LW, Bogo MR, Morsch VM, Schetinger MRC. Effects of chlorogenic acid, caffeine and coffee on components of the purinergic system of streptozotocin-induced diabetic rats. J Nutr Biochem 2016; 38:145-153. [PMID: 27736734 DOI: 10.1016/j.jnutbio.2016.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/08/2016] [Accepted: 08/20/2016] [Indexed: 12/20/2022]
Abstract
We evaluated the effect of chlorogenic acid (CGA), caffeine (CA) and coffee (CF) on components of the purinergic system from the cerebral cortex and platelets of streptozotocin-induced diabetic rats. Animals were divided into eight groups: control animals treated with (I) water (WT), (II) CGA (5 mg/kg), (III) CA (15 mg/kg) and (IV) CF (0.5 g/kg), and diabetic animals treated with (V) WT, (VI) CGA (5 mg/kg), (VII) CA (15 mg/kg) and (VIII) CF (0.5 g/kg). Our results showed an increase (173%) in adenosine monophosphate (AMP) hydrolysis in the cerebral cortex of diabetic rats. In addition, CF treatment increased adenosine diphosphate (ADP) and AMP hydrolysis in group VIII synaptosomes. Platelets showed an increase in ectonucleotidase activity in group V, and all treatments reduced the increase in adenosine triphosphate and ADP hydrolysis. Furthermore, there was an increase in platelet aggregation of 72% in the diabetic rats, and CGA and CF treatment reduced platelet aggregation by nearly 60% when compared to diabetic rats. In this context, we can suggest that CGA and CF treatment should be considered a therapeutic and scientific target to be investigated in diseases associated with hyperglycemia.
Collapse
Affiliation(s)
- Naiara Stefanello
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - Roberta Schmatz
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Luciane Belmonte Pereira
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Andréia Machado Cardoso
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | | | - Gustavo Thomé
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | | | - Luiza Wilges Kist
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, PUCRS, 90619-900 Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, PUCRS, 90619-900 Porto Alegre, RS, Brazil
| | - Vera Maria Morsch
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Biological Sciences, Toxicological Biochemistry, Center of Natural and Exact Sciences, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
49
|
Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation. Int J Pharm 2016; 501:342-9. [DOI: 10.1016/j.ijpharm.2016.01.081] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/30/2016] [Accepted: 01/31/2016] [Indexed: 02/02/2023]
|
50
|
Turgut NH, Mert DG, Kara H, Egilmez HR, Arslanbas E, Tepe B, Gungor H, Yilmaz N, Tuncel NB. Effect of black mulberry (Morus nigra) extract treatment on cognitive impairment and oxidative stress status of D-galactose-induced aging mice. PHARMACEUTICAL BIOLOGY 2015; 54:1052-64. [PMID: 26510817 PMCID: PMC11132963 DOI: 10.3109/13880209.2015.1101476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 05/21/2023]
Abstract
CONTEXT Morus nigra L. (Moraceae) has various uses in traditional medicine. However, the effect of M. nigra on cognitive impairment has not been investigated yet. OBJECTIVE The objective of this study is to determine the phenolic acid content and DNA damage protection potential of M. nigra leaf extract and to investigate the extract effect on cognitive impairment and oxidative stress in aging mice. MATERIALS AND METHODS Phenolic acid content was determined by quantitative chromatographic analysis. DNA damage protection potential was evaluated on pBR322 plasmid DNA. Thirty-two Balb-C mice were randomly divided into four groups (control, d-galactose, d-galactose + M. nigra 50, and d-galactose + M. nigra 100). Mice were administered d-galactose (100 mg/kg, subcutaneous) and M. nigra (50 or 100 mg/kg, orally) daily for 8 weeks. Behavioral responses were evaluated with Morris water maze. Activities of antioxidant enzymes and levels of malondialdehyde (MDA) were assayed in serum, brain, and liver. RESULTS In extract, vanillic (632.093 μg/g) and chlorogenic acids (555.0 μg/g) were determined. The extract between 0.02 and 0.05 mg/mL effectively protected all DNA bands against the hazardous effect of UV and H2O2. Morus nigra significantly improved learning dysfunctions (p < 0.01), increased memory retention (p < 0.01), reduced MDA levels (p < 0.05), and elevated SOD, GPx, and CAT activities (p < 0.05) compared with the d-galactose group. DISCUSSION AND CONCLUSION These results show that M. nigra has the potential in improving cognitive deficits in mice and that M. nigra may be useful to suppress aging, partially due to its scavenging activity of free radicals and high antioxidant capacity.
Collapse
Affiliation(s)
- Nergiz Hacer Turgut
- Department of Pharmacology, Cumhuriyet University Faculty of Pharmacy, Sivas, Turkey
| | - Derya Guliz Mert
- Department of Psychiatry, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | - Haki Kara
- Department of Pharmacology and Toxicology, Cumhuriyet University Faculty of Veterinary Medicine, Sivas, Turkey
| | | | - Emre Arslanbas
- Department of Pharmacology and Toxicology, Cumhuriyet University Faculty of Veterinary Medicine, Sivas, Turkey
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Kilis University Faculty of Science and Literature, Kilis, Turkey
| | - Huseyin Gungor
- Department of Pharmacology and Toxicology, Cumhuriyet University Faculty of Veterinary Medicine, Sivas, Turkey
| | - Nese Yilmaz
- Department of Food Engineering, Faculty of Engineering, Canakkale 18 Mart University, Canakkale, Turkey
| | - Necati Baris Tuncel
- Department of Food Engineering, Faculty of Engineering, Canakkale 18 Mart University, Canakkale, Turkey
| |
Collapse
|