1
|
Rahman AA, Hegazy A, Elabbasy LM, Shoaeir MZ, Abdel-Aziz TM, Abbas AS, Khella HWZ, Eltrawy AH, Alshaman R, Aloyouni SY, Aldahish AA, Zaitone SA. Leflunomide-induced cardiac injury in adult male mice and bioinformatic approach identifying Nrf2/NF-κb signaling interplay. Toxicol Mech Methods 2024; 34:639-653. [PMID: 38389224 DOI: 10.1080/15376516.2024.2322666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Leflunomide (LFND) is an immunosuppressive and immunomodulatory disease-modifying antirheumatic drug (DMARD) that was approved for treating rheumatoid arthritis. LFND-induced cardiotoxicity was not fully investigated since its approval. We investigated the cardiac injury in male mice and identified the role of nuclear factor erythroid 2-related factor 2/nuclear factor-κ B (Nrf2/NF-κB) signaling. Male albino mice were assigned into five groups as control, vehicle, and LFND (2.5, 5, and 10 mg/kg). We investigated cardiac enzymes, histopathology, and the mRNA expression of Nrf2, NF-κB, BAX, and tumor necrosis factor-α (TNF-α). The bioinformatic study identified the interaction between LFND and Nrf2/NF-κB signaling; this was confirmed by amelioration in mRNA expression (0.5- to 0.34-fold decrease in Nrf2 and 2.6- to 4.61-fold increases in NF-κB genes) and increased (1.76- and 2.625-fold) serum creatine kinase (CK) and 1.38- and 2.33-fold increases in creatine kinase-MB (CK-MB). Histopathological results confirmed the dose-dependent effects of LFND on cardiac muscle structure in the form of cytoplasmic, nuclear, and vascular changes in addition to increased collagen deposits and apoptosis which were increased compared to controls especially with LFND 10 mg/kg. The current study elicits the dose-dependent cardiac injury induced by LFND administration and highlights, for the first time, dysregulation in Nrf2/NF-κB signaling.
Collapse
Affiliation(s)
- Abeer A Rahman
- Department of Histology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ann Hegazy
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Lamiaa M Elabbasy
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Mohamed Z Shoaeir
- Department of Rheumatology and Rehabilitation, Al-Azhar Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Tarek M Abdel-Aziz
- Department of Rheumatology and Rehabilitation, Al-Azhar Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Awad S Abbas
- Department of Rheumatology and Rehabilitation, Al-Azhar Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Heba W Z Khella
- Department of Clinical Education, Canadian Memorial Chiropractic College, Toronto, Canada
| | - Amira H Eltrawy
- Department of Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sheka Yagub Aloyouni
- Research Department, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Afaf A Aldahish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Cho M, Park H, Lee SH, Kim MJ, Jang M. Phyllodulcin from the hexane fraction of Hydrangea macrophylla inhibits glucose-induced lipid accumulation and reactive oxygen species generation in Caenorhabditis elegans. Biosci Biotechnol Biochem 2024; 88:789-797. [PMID: 38599627 DOI: 10.1093/bbb/zbae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
We confirmed that the hexane layer of Hydrangea macrophylla leaf extract (HLH) is rich in phyllodulcin (PD), an alternative sweetener, through high performance liquid chromatography (HPLC) analysis. To investigate in vivo activity of HLH and its PD, acute toxicity and growth rate of Caenorhabditis elegans were tested and there are no clinical abnormalities at 125-500 µg/mL of HLH. HLH decreased the total lipid and triglyceride contents dose-dependently in glucose-induced obese worms. Also, HLH increased survival rates under oxidative and thermal stress and decreased body reactive oxygen species (ROS) contents significantly. Such antioxidant properties of HLH were attributed to the enhanced activity of the antioxidant enzyme catalase. To determine whether the effect of HLH was due to PD, worms were treated with PD (concentration contained in HLH), and inhibitory effects on total lipids and ROS were observed. Our results suggest that HLH and its PD as a natural alternative sweetener can be used as materials to improve metabolic diseases.
Collapse
Affiliation(s)
- Myogyeong Cho
- Department of Smart Food & Drug, Inje University, Gimhae, Korea
| | - Harin Park
- Department of Digital Anti-aging Healthcare, Inje University, Gimhae, Korea
| | - Sang Hyun Lee
- Department of Smart Food & Drug, Inje University, Gimhae, Korea
- Department of Food Technology and Nutrition, Inje University, Gimhae, Korea
| | - Myo-Jeong Kim
- Department of Smart Food & Drug, Inje University, Gimhae, Korea
- Department of Digital Anti-aging Healthcare, Inje University, Gimhae, Korea
| | - Miran Jang
- Department of Smart Food & Drug, Inje University, Gimhae, Korea
- Department of Digital Anti-aging Healthcare, Inje University, Gimhae, Korea
- Department of Food Technology and Nutrition, Inje University, Gimhae, Korea
| |
Collapse
|
3
|
Yu JS, Kim HJ, Kim YE, Yang HO, Shin YK, Kim H, Park S, Lee G. Lipidomic Assessment of the Inhibitory Effect of Standardized Water Extract of Hydrangea serrata (Thunb.) Ser. Leaves during Adipogenesis. Nutrients 2024; 16:1508. [PMID: 38794745 PMCID: PMC11124303 DOI: 10.3390/nu16101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Obesity is primarily exacerbated by excessive lipid accumulation during adipogenesis, with triacylglycerol (TG) as a major lipid marker. However, as the association between numerous lipid markers and various health conditions has recently been revealed, investigating the lipid metabolism in detail has become necessary. This study investigates the lipid metabolic effects of Hydrangea serrata (Thunb.) Ser. hot water leaf extract (WHS) on adipogenesis using LC-MS-based lipidomics analysis of undifferentiated, differentiated, and WHS-treated differentiated 3T3-L1 cells. WHS treatment effectively suppressed the elevation of glycerolipids, including TG and DG, and prevented a molecular shift in fatty acyl composition towards long-chain unsaturated fatty acids. This shift also impacted glycerophospholipid metabolism. Additionally, WHS stabilized significant lipid markers such as the PC/PE and LPC/PE ratios, SM, and Cer, which are associated with obesity and related comorbidities. This study suggests that WHS could reduce obesity-related risk factors by regulating lipid markers during adipogenesis. This study is the first to assess the underlying lipidomic mechanisms of the adipogenesis-inhibitory effect of WHS, highlighting its potential in developing natural products for treating obesity and related conditions. Our study provides a new strategy for the development of natural products for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Jae Sik Yu
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Hee Ju Kim
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Yeo Eun Kim
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (Y.-K.S.); (H.K.); (S.P.)
| | - Hyunjae Kim
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (Y.-K.S.); (H.K.); (S.P.)
| | - Soyoon Park
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Republic of Korea; (Y.-K.S.); (H.K.); (S.P.)
| | - Gakyung Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea; (J.S.Y.); (H.J.K.); (Y.E.K.); (H.O.Y.)
- Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
4
|
Coumarin Derivatives from Hydrangea macrophylla and Evaluation of Their Cytotoxic Activity. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Pető Á, Kósa D, Haimhoffer Á, Nemes D, Fehér P, Ujhelyi Z, Vecsernyés M, Váradi J, Fenyvesi F, Frum A, Gligor FG, Vicaș LG, Marian E, Jurca T, Pallag A, Muresan ME, Tóth Z, Bácskay I. Topical Dosage Formulation of Lyophilized Philadelphus coronarius L. Leaf and Flower: Antimicrobial, Antioxidant and Anti-Inflammatory Assessment of the Plant. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092652. [PMID: 35566001 PMCID: PMC9100982 DOI: 10.3390/molecules27092652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
Abstract
Philadelphus coronarius is a versatile plant and its use in folk medicine has a long tradition; however, scientifically, the medical utilization of the herb is a less explored research field. The aim of our study was to identify and determine the quantity of the bioactive compounds of both the leaf and the flower and prepare a lyophilized product of them, from which medical ointments were formulated, since the topical application of P. coronarius has also not been studied. In vitro drug release, texture analysis and biocompatibility experiments were carried out, as well as the investigation of microbiological, antioxidant and anti-inflammatory properties. According to our results the composition and the selected excipients of the ointments have a great impact on the drug release, texture and bioavailability of the preparation. During the microbiological testing, the P. coronarius leaf was effective against Escherichia coli and Staphylococcus aureus, but it did not significantly decrease IL-4 production when it was tested on HaCaT cells. P. coronarius is a promising herb, and its topical application in antimicrobial therapy can be a useful addition to modern medical therapy.
Collapse
Affiliation(s)
- Ágota Pető
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.P.); (D.K.); (Á.H.); (D.N.); (P.F.); (Z.U.); (M.V.); (J.V.); (F.F.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Dóra Kósa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.P.); (D.K.); (Á.H.); (D.N.); (P.F.); (Z.U.); (M.V.); (J.V.); (F.F.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.P.); (D.K.); (Á.H.); (D.N.); (P.F.); (Z.U.); (M.V.); (J.V.); (F.F.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.P.); (D.K.); (Á.H.); (D.N.); (P.F.); (Z.U.); (M.V.); (J.V.); (F.F.)
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.P.); (D.K.); (Á.H.); (D.N.); (P.F.); (Z.U.); (M.V.); (J.V.); (F.F.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.P.); (D.K.); (Á.H.); (D.N.); (P.F.); (Z.U.); (M.V.); (J.V.); (F.F.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.P.); (D.K.); (Á.H.); (D.N.); (P.F.); (Z.U.); (M.V.); (J.V.); (F.F.)
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.P.); (D.K.); (Á.H.); (D.N.); (P.F.); (Z.U.); (M.V.); (J.V.); (F.F.)
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.P.); (D.K.); (Á.H.); (D.N.); (P.F.); (Z.U.); (M.V.); (J.V.); (F.F.)
| | - Adina Frum
- Faculty of Medicine, Lucian Blaga University Sibiu, Lucian Blaga Street, No 2A, H-550169 Sibiu, Romania; (A.F.); (F.G.G.)
| | - Felicia Gabriela Gligor
- Faculty of Medicine, Lucian Blaga University Sibiu, Lucian Blaga Street, No 2A, H-550169 Sibiu, Romania; (A.F.); (F.G.G.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, H-410028 Oradea, Romania; (L.G.V.); (E.M.); (T.J.); (A.P.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, H-410028 Oradea, Romania; (L.G.V.); (E.M.); (T.J.); (A.P.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, H-410028 Oradea, Romania; (L.G.V.); (E.M.); (T.J.); (A.P.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, H-410028 Oradea, Romania; (L.G.V.); (E.M.); (T.J.); (A.P.)
| | - Mariana Eugenia Muresan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, H-410068 Oradea, Romania;
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.P.); (D.K.); (Á.H.); (D.N.); (P.F.); (Z.U.); (M.V.); (J.V.); (F.F.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-411-717 (ext. 54034)
| |
Collapse
|
6
|
VIS-NIR Modeling of Hydrangenol and Phyllodulcin Contents in Tea-Hortensia (Hydrangea macrophylla subsp. serrata). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hyperspectral data are commonly used for the fast and inexpensive quantification of plant constituent estimation and quality control as well as in research and development applications. Based on chemical analysis, different models for dihydroisocoumarins (DHCs), namely hydrangenol (HG) and phyllodulcin (PD), were built using a partial least squares regression (PLSR). While HG is common in Hydrangea macrophylla, PD only occurs in cultivars of Hydrangea macrophylla subsp. serrata, also known as ‘tea-hortensia’. PD content varies significantly over the course of the growing period. For maximizing yield, a targeted estimation of PD content is needed. Nowadays, DHC contents are determined via UPLC, a time-consuming and a destructive method. In this research article we investigated PLSR-based models for HG and PD using three different spectrometers. Two separate trials were conducted to test for model quality. Measurement conditions, namely fresh or dried leaves and black or white background, did not influence model quality. While highly accurate modeling of HG and PD for single plants was not possible, the determination of the mean content on a larger scale was successful. The results of this study show that hyperspectral modeling as a decision support for farmers is feasible and provides accurate results on a field scale.
Collapse
|
7
|
Lee J, Kwon H, Cho E, Jeon J, Lee IK, Cho WS, Park SJ, Lee S, Kim DH, Jung JW. Hydrangea macrophylla and Thunberginol C Attenuate Stress-Induced Anxiety in Mice. Antioxidants (Basel) 2022; 11:antiox11020234. [PMID: 35204117 PMCID: PMC8868050 DOI: 10.3390/antiox11020234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/19/2022] Open
Abstract
Stress is an important neurological input for successful life. However, chronic stress and stress hormones could be a cause of various neurological disorders including anxiety disorders. Therefore, there have been many efforts to find effective materials for curing stress-induced neurological disorders. In this study, we examined the effect of Hydrangea macrophylla (HM) on corticosterone-induced neurotoxicity, stress-induced anxiety in mice and suggested a possible active ingredient of HM. HM protected cortical neurons against neurotoxicity of corticosterone (CORT), a stress hormone. HM also blocked CORT-induced hippocampal synaptic deficit via regulating Akt signaling. Oral administration of HM improved chronic restraint stress-induced anxiety in Elevated Plus maze test along with reduction of plasma corticosterone and TNF-α levels. Moreover, HM reduced stress-induced neuroinflammation and oxidative stress. Thunberginol C, an active ingredient of HM, also prevented CORT-induced neuronal cell death and restraint stress-induced anxiety. Moreover, thunberginol C reduced plasma TNF-α level and neuroinflammation and oxidative stress. Collectively, HM could be a good candidate for preventing stress-induced neurological disorders and thunberginol C may be an active ingredient of HM for this purpose.
Collapse
Affiliation(s)
- Jihye Lee
- Division of Endocrinology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Huiyoung Kwon
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Korea; (H.K.); (W.-S.C.)
| | - Eunbi Cho
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.C.); (J.J.)
| | - Jieun Jeon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.C.); (J.J.)
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Korea;
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Korea; (H.K.); (W.-S.C.)
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Seungheon Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea;
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.C.); (J.J.)
- Correspondence: (D.H.K.); (J.W.J.)
| | - Ji Wook Jung
- Department of Herbal Medicinal Pharmacology, College of Herbal Bio-Industry, Daegu Haany University, Kyungsan 38610, Korea
- Correspondence: (D.H.K.); (J.W.J.)
| |
Collapse
|
8
|
Kim J, Lee G, Kang H, Yoo JS, Lee Y, Lee HS, Choi CY. Stauntonia hexaphylla leaf extract (YRA-1909) suppresses inflammation by modulating Akt/NF-κB signaling in lipopolysaccharide-activated peritoneal macrophages and rodent models of inflammation. Food Nutr Res 2021; 65:7666. [PMID: 34776829 PMCID: PMC8559446 DOI: 10.29219/fnr.v65.7666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/11/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background Inflammation is emerging as a key contributor to many vascular diseases and furthermore plays a major role in autoimmune diseases, arthritis, allergic reactions, and cancer. Lipopolysaccharide (LPS), which is a component constituting the outer membrane of Gram-negative bacteria, is commonly used for an inflammatory stimuli to mimic inflammatory diseases. Nuclear factor-kappa B (NF-κB) is a transcription factor and regulates gene expression particularly related to the inflammatory process. Stauntonia hexaphylla (Lardizabalaceae) is widely used as a traditional herbal medicine for rheumatism and osteoporosis and as an analgesic, sedative, and diuretic in Korea, Japan, and China. Objective The purpose of this study was to investigate the anti-inflammatory activity of YRA-1909, the leaf aqueous extract of Stauntonia hexaphylla using LPS-activated rat peritoneal macrophages and rodent inflammation models. Results YRA-1909 inhibited the LPS-induced nitric oxide (NO) and proinflammatory cytokine production in rat peritoneal macrophages without causing cytotoxicity and reduced inducible NO synthase and prostaglandin E2 levels without affecting the cyclooxygenase-2 expression. YRA-1909 also prevented the LPS-stimulated Akt and NF-κB phosphorylation and reduced the carrageenan-induced hind paw edema, xylene-induced ear edema, acetic acid-induced vascular permeation, and cotton pellet-induced granuloma formation in a dose-dependent manner in mice and rats. Conclusions S. hexaphylla leaf extract YRA-1909 had anti-inflammatory activity in vitro and in vivo that involves modulation of Akt/NF-κB signaling. Thus, YRA-1909 is safe and effective for the treatment of inflammation.
Collapse
Affiliation(s)
- Jaeyong Kim
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Gyuok Lee
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Huwon Kang
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Ji-Seok Yoo
- Rexpharmtech. Co., Ltd., Yongin, Seoul, Republic of Korea
| | - Yongnam Lee
- Rexpharmtech. Co., Ltd., Yongin, Seoul, Republic of Korea
| | - Hak-Sung Lee
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo, Republic of Korea
| | - Chul-Yung Choi
- Department of Biomedical Science College of Natural Science, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
9
|
Han HS, Lee HH, Gil HS, Chung KS, Kim JK, Kim DH, Yoon J, Chung EK, Lee JK, Yang WM, Shin YK, Ahn HS, Lee SH, Lee KT. Standardized hot water extract from the leaves of Hydrangea serrata (Thunb.) Ser. alleviates obesity via the AMPK pathway and modulation of the gut microbiota composition in high fat diet-induced obese mice. Food Funct 2021; 12:2672-2685. [PMID: 33656018 DOI: 10.1039/d0fo02185g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Obesity is an increasing health problem worldwide as it is the major risk factor for metabolic diseases. In the present study, we investigated the anti-obesity effects of WHS by examining its effects on high fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed either a normal diet (ND) or a high fat diet (HFD) with or without WHS. At the end of the experiment, we observed the changes in their body weight and white adipose tissue (WAT) weight and lipid profiles in plasma. We performed western blot and histological analyses of WAT and liver to elucidate the molecular mechanisms of action. We also conducted fecal 16S rRNA analysis for investigating the gut microbiota. Our results indicated that pre- and post-oral administration of WHS significantly prevented body weight gain and reduced body fat weight in HFD-induced obese mice. In addition, WHS was found to improve adipocyte hypertrophy and liver fat accumulation by regulating the AMPK and AKT/mTOR pathways. WHS ameliorated hyperlipidemia by reducing total cholesterol and low-density lipoprotein (LDL) and decreased the energy metabolism-related hormones, leptin and insulin, in mouse plasma. Furthermore, we found that WHS modulated gut dysbiosis by normalizing HFD-induced changes. Taken together, our in vivo data implicate that WHS can be considered as a potential dietary supplement for alleviating obesity.
Collapse
Affiliation(s)
- Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Leflunomide-induced liver injury in mice: Involvement of TLR4 mediated activation of PI3K/mTOR/NFκB pathway. Life Sci 2019; 235:116824. [DOI: 10.1016/j.lfs.2019.116824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/19/2023]
|
11
|
Lans C. Do recent research studies validate the medicinal plants used in British Columbia, Canada for pet diseases and wild animals taken into temporary care? JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:366-392. [PMID: 30772483 DOI: 10.1016/j.jep.2019.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There are insufficient safe and effective treatments for chronic pain in pets. In cases such as osteoarthritis there is no commercially available cure and veterinarians use NSAIDs to manage pain. Pet owners may have to plan for a lifetime of plant-based treatment for the conditions that lead to chronic pain in pets. Phytopharmacotherapies have the advantage of being less toxic, cheap or free, readily available, are more likely to be safe for long-term use and have the potential to reset the immune system to normal functioning. AIM OF THE STUDY To examine the recently published medicinal plant research that matches unpublished data on ethnoveterinary medicines (EVM) used for pets in Canada (British Columbia) to see if the EVM data can provide a lead to the development of necessary drugs. MATERIALS AND METHODS In 2003 semi-structured interviews were conducted with 60 participants who were organic farmers or holisitic medicinal/veterinary practitioners obtained using a purposive sample. A draft manual prepared from the data was then evaluated by participants at a participatory workshop that discussed the plant-based treatments. A copy of the final version of the manual was given to all research participants. In 2018, the recently published research matching the EVM data was reviewed to see if the EVM practices could serve as a lead for further research. RESULTS AND CONCLUSION Medicinal plants are used to treat a range of conditions. The injuries treated in pets in British Columbia included abscesses (resulting from an initial injury), sprains and abrasions. Dogs were also treated with medicinal plants for rheumatoid arthritis, joint pain and articular cartilage injuries. More than 40 plants were used. Anal gland problems were treated with Allium sativum L., Aloe vera L., Calendula officinalis L., Plantago major L., Ulmus fulva Michx., Urtica dioica L. and Usnea longissima Ach. Arctium lappa, Hydrangea arborescens and Lactuca muralis were used for rheumatoid arthritis and joint pain in pets. Asthma was treated with: Linum usitatissimum L., Borago officinalis L., Verbascum thapsus L., Cucurbita pepo L., Lobelia inflata L., and Zingiber officinale Roscoe. Pets with heart problems were treated with Crataegus oxyacantha L., Cedronella canariensis (L.) Willd. ex Webb & Berth, Equisetum palustre L., Cypripedium calceolus L., Pinus ponderosa Douglas ex Lawson, Humulus lupulus L., Valeriana officinalis L., Lobelia inflata L., Stachys officinalis (L.) Trev., and Viscum album L. The following plants were used for epilepsy, motion sickness and anxiety- Avena sativa L., Valeriana officinalis, Lactuca muralis (L.) Fresen., Scutellaria lateriflora L., Satureja hortensis L., and Passiflora incarnata L. Plants used for cancer treatment included Phytolacca decandra, Ganoderma lucidum, Lentinula edodes, Rumex acetosella, Arctium lappa, Ulmus fulva, Rheum palmatum, Frangula purshiana, Zingiber officinale, Glycyrrhiza glabra, Ulmus fulva, Althea officinalis, Rheum palmatum, Rumex crispus and Plantago psyllium. Trifolium pratense was used for tumours in the prostate gland. Also used were Artemisia annua, Taraxacum officinale and Rumex crispus. This review of plants used in EVM was possible because phytotherapy research of the plants described in this paper has continued because few new pharmaceutical drugs have been developed for chronic pain and because treatments like glucocorticoid therapy do not heal. Phytotherapuetic products are also being investigated to address the overuse of antibiotics. There have also been recent studies conducted on plant-based functional foods and health supplements for pets, however there are still gaps in the knowledge base for the plants Stillingia sylvatica, Verbascum thapsus, Yucca schidigera and Iris versicolor and these need further investigation.
Collapse
Affiliation(s)
- Cheryl Lans
- Institute for Ethnobotany and Zoopharmacognosy (IEZ), Rijksstraatweg 158A, 6573 DG Beek, the Netherlands.
| |
Collapse
|
12
|
Shin JS, Han HS, Lee SB, Myung DB, Lee K, Lee SH, Kim HJ, Lee KT. Chemical Constituents from Leaves of Hydrangea serrata and Their Anti-photoaging Effects on UVB-Irradiated Human Fibroblasts. Biol Pharm Bull 2019; 42:424-431. [DOI: 10.1248/bpb.b18-00742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University
| | - Seung-Bin Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University
| | - Da-bin Myung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University
| | - Keunsuk Lee
- Department of New Material Development, COSMAXBIO
| | - Sun Hee Lee
- Department of New Material Development, COSMAXBIO
| | - Hyoung Ja Kim
- Molecular Recognition Research Center, Materials and Life Science Research Division, Korea Institute of Science and Technology
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University
| |
Collapse
|
13
|
Wang J, Zhang P, He H, Se X, Sun W, Chen B, Zhang L, Yan X, Zou K. Eburicoic acid from Laetiporus sulphureus (Bull.:Fr.) Murrill attenuates inflammatory responses through inhibiting LPS-induced activation of PI3K/Akt/mTOR/NF-κB pathways in RAW264.7 cells. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:845-856. [PMID: 28577049 DOI: 10.1007/s00210-017-1382-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/17/2017] [Indexed: 01/14/2023]
Abstract
Excessive activation of macrophages has been implicated in various types of inflammatory injury. Suppression of macrophage activation would have therapeutic benefits, leading to the alleviation of the progression of inflammatory diseases. Eburicoic acid (EA) is one of main bioactive components isolated from Laetiporus sulphureus (Bull.:Fr.) Murrill. In our previous study, we found that EA possessed anti-inflammatory activities. However, the cellular and molecular mechanisms underlying its anti-inflammatory activities remain to be poorly understood. The present study aimed to further evaluate its effect on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 macrophage cells. We investigated the anti-inflammatory effect by modulating LPS-induced activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/nuclear transcription factor-κB (NF-κB) pathway in RAW264.7 cells. The results showed that EA caused no obvious cytotoxicity, and its suitable concentrations on RAW264.7 cells were in the range from 0.02 to 0.08 μM. EA significantly inhibited the releases of inflammatory mediators, nitrite oxide (NO) and prostaglandin E2 (PGE2); suppressed mRNA and protein expression levels of inducible nitrite oxide synthase (iNOS) and cyclooxygenase-2 COX-2 and pro-inflammatory cytokine TNF-α, IL-6, and IL-1β; and reduced levels of phosphorylated PI3K, Akt, mTOR, and NF-κBp65 in LPS-induced RAW264.7 cells in dose- and time-dependent manners. These aforementioned results indicated that EA executed anti-inflammatory effect on LPS-induced RAW264.7 cells, and this effect might be achieved via suppressing the PI3K/Akt/mTOR/NF-κB signaling pathway and inhibiting the LPS-induced productions of inflammatory mediators and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Junzhi Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China.,Hubei Research Institute of Tujia Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Pan Zhang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Haibo He
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China. .,Hubei Research Institute of Tujia Medicine, China Three Gorges University, Yichang, Hubei, China.
| | - Xinxin Se
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Wenjun Sun
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Beiyan Chen
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Lin Zhang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Ximing Yan
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, Hubei, 443002, China.,Hubei Research Institute of Tujia Medicine, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
14
|
Hu W, Wu L, Qiang Q, Ji L, Wang X, Luo H, Wu H, Jiang Y, Wang G, Shen T. The dichloromethane fraction from Mahonia bealei (Fort.) Carr. leaves exerts an anti-inflammatory effect both in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:134-143. [PMID: 27167461 DOI: 10.1016/j.jep.2016.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/25/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mahonia bealei has a long history of medical use in traditional Chinese medicine for the treatment of inflammatory-associated diseases. Despite numerous phytochemical and pharmacological studies, there is a lack of systematic studies to understand the cellular and molecular mechanisms of the anti-inflammatory activity of this plant. AIM OF STUDY This study aimed to evaluate the anti-inflammatory activity of the dichloromethane fraction from M. bealei leaves (MBL-CH). MATERIALS AND METHODS RAW 264.7 cells were pretreated with different concentrations of MBL-CH for 30min prior to treatment with 1μg/ml of lipopolysaccharide (LPS). The nuclear factor κB (NF-κB) pathway and subsequent production of inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), and tumour necrosis factor (TNF)-α were investigated. Furthermore, the in vivo mouse model of LPS-induced acute lung injury (ALI) was employed to study the anti-inflammatory effects of MBL-CH. RESULTS Pre-treatment with MBL-CH significantly inhibited the LPS-stimulated secretion of NO, PGE2, and TNF-α into the culture medium, as well as the mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α, which were associated with a reduction in the phosphorylation of IκBα, Akt, and PI3K and inhibition of the transcriptional activity of NF-κB. Furthermore, in vivo experiments revealed that MBL-CH attenuated LPS-stimulated lung inflammation in mice. CONCLUSION Taken together, our findings indicate that MBL-CH attenuates LPS-stimulated inflammatory responses in macrophages by blocking NF-κB activation through interference with activation of the PI3K/Akt pathway, providing scientific evidence that the plant can be employed in traditional remedies.
Collapse
Affiliation(s)
- Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Lei Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China; Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qian Qiang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Lilian Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Xinfeng Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Haiqing Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Yunyao Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Gongcheng Wang
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing West Road, Huaian 223300, China.
| | - Ting Shen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China.
| |
Collapse
|
15
|
Kim HJ, Kang CH, Jayasooriya RGPT, Dilshara MG, Lee S, Choi YH, Seo YT, Kim GY. Hydrangenol inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-mediated HO-1 pathway. Int Immunopharmacol 2016; 35:61-69. [DOI: 10.1016/j.intimp.2016.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022]
|
16
|
Vo VA, Lee JW, Park JH, Kwon JH, Lee HJ, Kim SS, Kwon YS, Chun W. N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells. Biomol Ther (Seoul) 2014; 22:200-6. [PMID: 25009700 PMCID: PMC4060082 DOI: 10.4062/biomolther.2014.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 01/01/2023] Open
Abstract
N-(p-Coumaryol) tryptamine (CT), a phenolic amide, has been reported to exhibit anti-oxidant and anti-inflammatory activities. However, the underlying mechanism by which CT exerts its pharmacological properties has not been clearly demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of CT in lipopolysaccharide (LPS)-challenged RAW264.7 macrophage cells. CT significantly inhibited LPS-induced extracellular secretion of pro-inflammatory mediators such as nitric oxide (NO) and PGE2, and protein expressions of iNOS and COX-2. In addition, CT significantly suppressed LPS-induced secretion of pro-inflammatory cytokines such as TNF-α and IL-1β. To elucidate the underlying anti-inflammatory mechanism of CT, involvement of MAPK and Akt signaling pathways was examined. CT significantly attenuated LPS-induced activation of JNK/c-Jun, but not ERK and p38, in a concentration-dependent manner. Interestingly, CT appeared to suppress LPS-induced Akt phosphorylation. However, JNK inhibition, but not Akt inhibition, resulted in the suppression of LPS-induced responses, suggesting that JNK/c-Jun signaling pathway significantly contributes to LPS-induced inflammatory responses and that LPS-induced Akt phosphorylation might be a compensatory response to a stress condition. Taken together, the present study clearly demonstrates CT exerts anti-inflammatory activity through the suppression of JNK/c-Jun signaling pathway in LPS-challenged RAW264.7 macrophage cells.
Collapse
Affiliation(s)
- Van Anh Vo
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Jae-Won Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Jun-Ho Park
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Jae-Hyun Kwon
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
- Department of Radiology, Dongguk University Ilsan Hospital, Ilsan 410-773, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Sung-Soo Kim
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 200-701
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701
| |
Collapse
|
17
|
Salidroside attenuates LPS-stimulated activation of THP-1 cell-derived macrophages through down-regulation of MAPK/NF-kB signaling pathways. ACTA ACUST UNITED AC 2013; 33:463-469. [PMID: 23904362 DOI: 10.1007/s11596-013-1143-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/12/2013] [Indexed: 10/26/2022]
Abstract
Excessive activation of macrophages is implicated in various inflammatory injuries. Salidroside (Sal), one of the main bioactive components of Rhodiola Sachalinensis, has been reported to possess anti-inflammatory activities. This study aimed to examine the effect of Sal on the activation of macrophages and the possible mechanism. The lipopolysaccharide (LPS)-stimulated phrobol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophage models were established. The changes in the inflammatory profiles of THP-1-derived macrophages were determined. The results showed that Sal significantly decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), interleukin-1beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) at both mRNA and protein levels in THP-1-derived macrophages, and the effect was dose-depedent. Moreover, NF-κB activation was significantly suppressed and the phosphorylation of ERK, p38 and JNK was substantially down-regulated after Sal treatment. The findings suggested that Sal can suppress the activation of LPS-stimulated PMA-differetiated THP-1 cells, as evidenced by the decreased expression of iNOS, COX2, IL-1β, IL-6 and TNF-α, and the mechanism involves the inhibition of NF-κB activation and the phosphorylation of the MAPK signal pathway.
Collapse
|