1
|
Chen D, Liang J, Jiang C, Wu D, Huang B, Teng X, Tang Y. Mitochondrion Participated in Effect Mechanism of Manganese Poisoning on Heat Shock Protein and Ultrastructure of Testes in Chickens. Biol Trace Elem Res 2023; 201:1432-1441. [PMID: 35513734 DOI: 10.1007/s12011-022-03259-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Manganese (Mn) poisoning can happen in the case of environmental pollution and occupational exposure. However, the underlying mechanisms of Mn-induced teste toxicity and whether mitochondrion and heat shock proteins (HSPs) are involved in toxic effect of Mn on chicken testes remain poorly understood. To investigate this, MnCl2·4H2O was administered in the diet (600, 900, and 1800 mg/kg Mn) of chickens for 30, 60, and 90 days. Electron microscopy and qPCR were performed. Results showed that Mn exposure suppressed dose- and time-dependently HSP40 and HSP60 mRNA levels, meanwhile increased does-dependently HSP27, HSP70, and HSP90 mRNA levels at all three time points under three Mn exposure concentrations. Furthermore, Mn treatment damaged myoid cells, spermatocytes, and Sertoli cells through electron microscopic observation, indicating that Mn treatment damaged chicken testes. In addition, abnormal shapes of mitochondria were found, and mitochondria displayed extensive vacuolation. The increase of HSP90 and HSP70 induced by Mn exposure inhibited HSP40 and stimulated HSP27, respectively, in chicken testes, which needs further to be explored. Taken together, our study suggested that there was toxic effect in excess Mn on chickens, and HSPs and mitochondria were involved in the mechanism of dose-dependent injury caused by Mn in chicken testes. This study provided new insights for Mn toxicity identification in animal husbandry production practice.
Collapse
Affiliation(s)
- Dechun Chen
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jiatian Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Chunyu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Di Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Bin Huang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China
| | - Xiaohua Teng
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - You Tang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China.
| |
Collapse
|
2
|
Rudolph TE, Roach CM, Baumgard LH, Ross JW, Keating AF, Selsby JT. The impact of Zearalenone on heat-stressed skeletal muscle in pigs. J Anim Sci 2022; 100:6652325. [PMID: 35908787 PMCID: PMC9339304 DOI: 10.1093/jas/skac215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Heat stress (HS) and Zearalenone (ZEN) exposure affect growth, production efficiency, and animal welfare; and, under extreme situations, both can be lethal. Given that both HS and ZEN independently cause oxidative stress, we hypothesized that simultaneous exposure to HS and ZEN would cause greater oxidative stress in porcine skeletal muscle than either condition, alone. To address this hypothesis, crossbred, prepubertal gilts were treated with either vehicle control (cookie dough) or ZEN (40 μg/kg) and exposed to either thermoneutral (TN; 21.0 °C) or 12-h diurnal HS conditions (night: 32.2 °C; day: 35.0 °C) for 7 d. Pigs were euthanized immediately following the environmental challenge and the glycolytic (STW) and oxidative (STR) portions of the semitendinosus muscle were collected for analysis. In STR, malondialdehyde (MDA) concentration, a marker of oxidative stress, tended to increase following ZEN exposure (P = 0.08). HS increased CAT (P = 0.019) and SOD1 (P = 0.049) protein abundance, while ZEN decreased GPX1 protein abundance (P = 0.064) and activity (P = 0.036). In STR, HS did not alter protein expression of HSP27, HSP70, or HSP90. Conversely, in STW, MDA-modified proteins remained similar between all groups. Consistent with STR, ZEN decreased GPX1 (P = 0.046) protein abundance in STW. In STW, ZEN decreased protein abundance of HSP27 (P = 0.032) and pHSP27 (P = 0.0068), while HS increased protein expression of HSP70 (P = 0.04) and HSP90 (P = 0.041). These data suggest a muscle fiber type-specific response to HS or ZEN exposure, potentially rendering STR more susceptible to HS- and/or ZEN-induced oxidative stress, however, the combination of HS and ZEN did not augment oxidative stress.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Josh T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Cytotoxicity of Mycotoxins and Their Combinations on Different Cell Lines: A Review. Toxins (Basel) 2022; 14:toxins14040244. [PMID: 35448853 PMCID: PMC9031280 DOI: 10.3390/toxins14040244] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are secondary metabolites of molds and mainly produced by species of the genera Aspergillus, Penicillium and Fusarium. They can be synthesized on the field, during harvest as well as during storage. They are fairly stable compounds and difficult to remove. Among several hundreds of mycotoxins, according to the WHO, ochratoxin A, aflatoxins, zearalenone, deoxynivalenol, patulin, fumonisins as well as T-2 and HT-2 toxins deserve special attention. Cytotoxicity is one of the most important adverse properties of mycotoxins and is generally assessed via the MTT assay, the neutral red assay, the LDH assay, the CCK-8 assay and the ATP test in different cell lines. The apoptotic cell ratio is mainly assessed via flow cytometry. Aside from the assessment of the toxicity of individual mycotoxins, it is important to determine the cytotoxicity of mycotoxin combinations. Such combinations often exhibit stronger cytotoxicity than individual mycotoxins. The cytotoxicity of different mycotoxins often depends on the cell line used in the experiment and is frequently time- and dose-dependent. A major drawback of assessing mycotoxin cytotoxicity in cell lines is the lack of interaction typical for complex organisms (for example, immune responses).
Collapse
|
4
|
Atlas D. Emerging therapeutic opportunities of novel thiol-amides, NAC-amide (AD4/NACA) and thioredoxin mimetics (TXM-Peptides) for neurodegenerative-related disorders. Free Radic Biol Med 2021; 176:120-141. [PMID: 34481041 DOI: 10.1016/j.freeradbiomed.2021.08.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022]
Abstract
Understanding neurodegenerative diseases have challenged scientists for decades. It has become apparent that a decrease in life span is often correlated with the development of neurodegenerative disorders. Oxidative stress and the subsequent inflammatory damages appear to contribute to the different molecular and biochemical mechanisms associated with neurodegeneration. In this review, I examine the protective properties of novel amino acid based compounds, comprising the AD series (AD1-AD7) in particular N-acetylcysteine amide, AD4, also called NACA, and the series of thioredoxin mimetic (TXM) peptides, TXM-CB3-TXM-CB16. Designed to cross the blood-brain-barrier (BBB) and permeate the cell membrane, these antioxidant/anti-inflammatory compounds may enable effective treatment of neurodegenerative related disorders. The review addresses the molecular mechanism of cellular protection exhibited by these new reagents, focusing on the reversal of oxidative stress, mitochondrial stress, inflammatory damages, and prevention of premature cell death. In addition, it will cover the outlook of the clinical prospects of AD4/NACA and the thioredoxin-mimetic peptides, which are currently in development.
Collapse
Affiliation(s)
- Daphne Atlas
- Professor of Neurochemistry, Dept. of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
5
|
Awny MM, Al-Mokaddem AK, Ali BM. Mangiferin mitigates di-(2-ethylhexyl) phthalate-induced testicular injury in rats by modulating oxidative stress-mediated signals, inflammatory cascades, apoptotic pathways, and steroidogenesis. Arch Biochem Biophys 2021; 711:108982. [PMID: 34400143 DOI: 10.1016/j.abb.2021.108982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an endocrine disruptor that causes reproductive defects in male animal models. This study was conducted to explore the plausible modulatory effects of mangiferin (MF) against DEHP-induced testicular injury in rats. Thirty-two adult male albino rats were allocated into four groups. Two groups were given DEHP (2 g/kg/day, p.o) for 14 days. One of these groups was treated with MF (20 mg/kg/day, i.p) for 7 days before and 14 days after DEHP administration. A vehicle-treated control was included, and another group of rats was given MF only. Results revealed that MF treatment suppressed oxidative testicular injury by amplifying the mRNA expression of nuclear factor-erythroid 2 related factor-2 (Nrf2) and increasing hemoxygenase-1 (HO-1), glutathione, and total antioxidant capacity (TAC) levels. This treatment also enhanced superoxide dismutase activity, but it decreased malondialdehyde and nitric oxide levels. MF had an anti-inflammatory characteristic, as demonstrated by the downregulation of the mRNA of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The content of tumor necrosis factor-alpha also decreased. MF modulated the apoptotic pathway by suppressing the mRNA of cytochrome c (Cyt c), Fas ligand content, Bax IHC expression, caspase-3 activity and cleaved caspase-3 IHC expression. It also upregulated the expression levels of heat-shock protein 70 (HSP70) and B-cell lymphoma 2. Moreover, MF upregulated the mRNA expression levels of HSP70 and c-kit and enriched the content of steroidogenic acute regulatory (StAR) protein, which were reflected in serum testosterone levels. This result indicated that MF played crucial roles in steroidogenesis and spermatogenesis. Besides, the activities of testicular marker enzymes, namely, acid and alkaline phosphatases, and lactate dehydrogenase, significantly increased. Histopathological observations provided evidence supporting the biochemical and molecular measurements. In conclusion, MF provided protective mechanisms against the DEHP-mediated deterioration of testicular functions partially through its antioxidant, anti-inflammatory, and anti-apoptotic properties. It also involved the restoration of steroidogenesis and spermatogenesis through the modulation of Nrf2/HO-1, NF-κB/Cyt c/HSP70, and c-Kit signaling cascades.
Collapse
Affiliation(s)
- Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Cairo, Egypt.
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Cairo, Egypt
| |
Collapse
|
6
|
Ruan H, Lu Q, Wu J, Qin J, Sui M, Sun X, Shi Y, Luo J, Yang M. Hepatotoxicity of food-borne mycotoxins: molecular mechanism, anti-hepatotoxic medicines and target prediction. Crit Rev Food Sci Nutr 2021; 62:2281-2308. [PMID: 34346825 DOI: 10.1080/10408398.2021.1960794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycotoxins are metabolites produced by fungi. The widespread contamination of food and feed by mycotoxins is a global food safety problem and a serious threat to people's health. Most food-borne mycotoxins have strong hepatotoxicity. However, no effective methods have been found to prevent or treat Mycotoxin- Induced Liver Injury (MILI) in clinical and animal husbandry. In this paper, the molecular mechanisms and potential anti-MILI medicines of six food-borne MILI are reviewed, and their targets are predicted by network toxicology, which provides a theoretical basis for further study of the toxicity mechanism of MILI and the development of effective strategies to manage MILI-related health problems in the future and accelerate the development of food safety.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiashuo Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinqi Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Shi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Kócsó DJ, Ali O, Kovács M, Mézes M, Balogh K, Kachlek ML, Bóta B, Zeebone YY, Szabó A. A preliminary study on changes in heat shock protein 70 levels induced by Fusarium mycotoxins in rats: in vivo study. Mycotoxin Res 2021; 37:141-148. [PMID: 33665736 PMCID: PMC8163673 DOI: 10.1007/s12550-021-00425-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
The heat shock protein (Hsp70) level was assessed after 14 days of oral gavage-exposure to fumonisin B1 (FB1: 150 µg/animal/day), deoxynivalenol (DON: 30 µg/animal/day) and zearalenone (ZEN: 150 µg/animal/day), alone or in combinations (in additive manner: FD = FB1 + DON, FZ = FB1 + ZEN, DZ = DON + ZEN and FDZ = FB1 + DON + ZEN) in the liver, kidneys and lung of 24 adult male Wistar rats (n = 3/group). The liver was the most responsive tissue, as compared with kidney and lung. Except of DZ-treatment, mycotoxins elevated the Hsp70 levels in livers. The highest Hsp70-levels (≈ twofold) were in the DON, FD, FZ and FDZ treatments (additive effects). In the kidney, alterations (↑ ≈ twofold) were detected in ZEN, FD, FZ and DZ treatments. The least responsive organ was the lung (↑ only in FDZ, antagonistic effect). DON and ZEA exposures have altered the reduced glutathione concentration (↓) and glutathione peroxidase activity (↓) in the blood serum. The serum malondialdehyde level increased only after exposure to FD (synergistic effect), as compared with the DZ group (antagonistic effect). When the blood clinical chemistry was assessed, significant alterations were in alanine aminotransferase (80% increase in FDZ, antagonistic effect) and total protein (↓ ZEN). Results varied according to the organ, toxin type and interactions. Furthermore, oxidative stress was not the only key player behind the Hsp70 increase, in which another mechanism is suggested.
Collapse
Affiliation(s)
- Dániel J Kócsó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary
| | - Omeralfaroug Ali
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary.
| | - Melinda Kovács
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary.,Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary
| | - Miklós Mézes
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary.,Institute of Physiology and Nutrition, Department of Feed Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Gödöllő, Hungary
| | - Krisztián Balogh
- Institute of Physiology and Nutrition, Department of Feed Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Gödöllő, Hungary
| | - Mariam L Kachlek
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary
| | - Brigitta Bóta
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary
| | - Yarsmin Y Zeebone
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary
| | - András Szabó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary.,Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary
| |
Collapse
|
8
|
Song T, Liu X, Yuan X, Yang W, Liu F, Hou Y, Huang L, Jiang S. Dose-Effect of Zearalenone on the Localization and Expression of Growth Hormone, Growth Hormone Receptor, and Heat Shock Protein 70 in the Ovaries of Post-weaning Gilts. Front Vet Sci 2021; 8:629006. [PMID: 33614768 PMCID: PMC7889998 DOI: 10.3389/fvets.2021.629006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Zearalenone (ZEA) has an estrogen-like effect, which can injure the reproductive system of animals, causing infertility, and abortion in sows. However, the underlying mechanisms are still not clear. The objective of this study was to assess the effects of ZEA on the localization and expression of growth hormone (GH), growth hormone receptor (GHR), and heat shock protein 70 (Hsp70) in the ovaries of post-weaning gilts. Forty healthy post-weaning gilts were randomly provided one of four diets: normal basal diet supplemented with 0 (control), 0.5 (ZEA0.5), 1.0 (ZEA1.0), and 1.5 (ZEA1.5) mg ZEA/kg. Gilts were housed and fed individually for 35 days; the ovaries were collected after euthanasia for antioxidant index, relative mRNA and protein expression, and immunohistochemical analyses of GH, GHR, and Hsp70. The results revealed that the glutathione peroxidase and total superoxide dismutase levels decreased (p < 0.05), whereas the malondialdehyde level increased (p < 0.05) with increasing ZEA content. The localization pattern of GH, GHR, and Hsp70 in ZEA-treated gilts was the same as that in the control; however, the localization of yellow and brown immunoreactive substances of GH, GHR, and Hsp70 was stronger in the ZEA groups than in the control. The relative mRNA and protein expression of GHR and Hsp70 was the highest in the ZEA1.0 group (p < 0.05), whereas that of GH was the highest in the ZEA0.5 group (p < 0.05). The mRNA and protein expression of GH was lower in the ZEA1.5 group than in the control (p < 0.05). Hsp70 results showed adverse responses to increasing ZEA levels in gilt ovaries, suggesting that Hsp70 played an important role in alleviating ZEA-induced oxidative stress.
Collapse
Affiliation(s)
- Tingting Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xiufeng Liu
- College of Life and Sciences, Shandong Agricultural University, Tai'an, China
| | - Xuejun Yuan
- College of Life and Sciences, Shandong Agricultural University, Tai'an, China
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Faxiao Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yanmeng Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
9
|
Effects of Dietary Zearalenone Exposure on the Growth Performance, Small Intestine Disaccharidase, and Antioxidant Activities of Weaned Gilts. Animals (Basel) 2020; 10:ani10112157. [PMID: 33228146 PMCID: PMC7699518 DOI: 10.3390/ani10112157] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary This study was conducted to assess the effects of Zearalenone (ZEA) exposure on the growth performance, small intestine disaccharidase, and antioxidant activities of weaned gilts. Twenty weaned gilts were randomly divided into control and ZEA treatment (1.04 mg/kg) groups. The data showed that 1.04 mg/kg ZEA in gilt’s diet could reduce the activity of disaccharidase enzymes and induce oxidative stress in the small intestine. Therefore, ZEA may induce intestinal injury by oxidative stress, or induce oxidative stress through intestinal injury, thus reducing the effect of animals on nutrient absorption. Abstract Zearalenone (ZEA) is a secondary metabolite with estrogenic effects produced by Fusarium fungi and mainly occurs as a contaminant of grains such as corn and wheat. ZEA, to which weaned gilts are extremely sensitive, is the main Fusarium toxin detected in corn–soybean meal diets. Our aim was to examine the effects of ZEA on the growth performance, intestinal disaccharidase activity, and anti-stress capacity of weaned gilts. Twenty 42-day-old healthy Duroc × Landrace × Large White weaned gilts (12.84 ± 0.26 kg) were randomly divided into control and treatment (diet containing 1.04 mg/kg ZEA) groups. The experiment included a 7-day pre-trial period followed by a 35-day test period, all gilts were euthanized and small intestinal samples were collected and subjected to immunohistochemical and western blot analyses. The results revealed that inclusion of 1.04 mg/kg ZEA in the diet significantly reduced the activities of lactase, sucrase, and maltase in the duodenum, jejunum, and ileum of gilts. Similarly, the activities of superoxide dismutase and glutathione peroxidase in the duodenum, jejunum, and ileum, and activities of catalase in the jejunum and ileum were reduced (p < 0.05). Conversely, the content of malondialdehyde in the duodenum, jejunum, and ileum, and the integrated optical density (IOD), IOD in single villi, and the mRNA and protein expression of heat shock protein 70 (Hsp70) were significantly increased (p < 0.05). The results of immunohistochemical analyses revealed that the positive reaction of Hsp70 in the duodenum, jejunum, and ileum of weaned gilts was enhanced in the ZEA treatment, compared with the control. The findings of this study indicate the inclusion of ZEA (1.04 mg/kg) in the diet of gilts reduced the activity of disaccharidase enzymes and induced oxidative stress in the small intestine, thereby indicating that ZEA would have the effect of reducing nutrient absorption in these animals.
Collapse
|
10
|
Karaman E, Ariman I, Ozden S. Responses of oxidative stress and inflammatory cytokines after zearalenone exposure in human kidney cells. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Zearalenone is a mycotoxin widely found worldwide that is produced by several fungal species. Due to its similarity to estradiol, it has been shown to have toxic effects on the reproductive system. Although various animal studies have been conducted to investigate the toxic effects of zearalenone, the mechanisms of toxicity have not been fully elucidated. The aim of the study was to investigate the dose-dependent toxic effects of zearalenone exposure in human kidney cells. The half-maximal inhibitory concentration values of zearalenone in HK-2 cells were found to be 133.42 and 101.74 µM in MTT- and NRU-tests, respectively. Zearalenone exposure at concentrations of 1, 10 and 50 µM decreased cell proliferation by 2.1, 11.07 and 24.34%, respectively. Reactive oxygen species levels increased significantly in a dose-dependent manner. A significant increase was observed in the expressions of MGMT, α-GST, Hsp70 and HO-1 genes, which are associated with oxidative damage, while a significant decrease in L-Fabp gene expression was observed. Moreover, zearalenone increased gene expression of inflammatory cytokines, such as IL-6, IL-8, TNFα and MAPK8. Significant increases were observed at the level of global DNA methylation and expression of DNMT1 in all exposure groups. These results indicate that changes in DNA methylation and oxidative damage may play an important role in the toxicity of zearalenone.
Collapse
Affiliation(s)
- E.F. Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, 34010-Topkapi, Istanbul, Turkey
| | - I. Ariman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - S. Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| |
Collapse
|
11
|
Karaman EF, Zeybel M, Ozden S. Evaluation of the epigenetic alterations and gene expression levels of HepG2 cells exposed to zearalenone and α-zearalenol. Toxicol Lett 2020; 326:52-60. [PMID: 32119988 DOI: 10.1016/j.toxlet.2020.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 01/30/2023]
Abstract
Zearalenone, produced by various Fusarium species, is a non-steroidal estrogenic mycotoxin that contaminates cereals, resulting in adverse effects on human health. We investigated the effects of zearalenone and its metabolite alpha zearalenol on epigenetic modifications and its relationship with metabolic pathways in human hepatocellular carcinoma cells following 24 h of exposure. Zearalenone and alpha zearalenol at the concentrations of 1, 10 and 50 μM significantly increased global levels of DNA methylation and global histone modifications (H3K27me3, H3K9me3, H3K9ac). Expression levels of the chromatin modifying enzymes EHMT2, ESCO1, HAT1, KAT2B, PRMT6 and SETD8 were upregulated by 50 μM of zearalenone exposure using PCR arrays, consistent with the results of global histone modifications. Zearalenone and alpha zearalenol also changed expression levels of the AhR, LXRα, PPARα, PPARɣ, L-fabp, LDLR, Glut2, Akt1 and HK2 genes, which are related to nuclear receptors and metabolic pathways. PPARɣ, a key regulator of lipid metabolism, was selected from among these genes for further analysis. The PPARɣ promoter reduced methylation significantly following zearalenone exposure. Taken together, the epigenetic mechanisms of DNA methylation and histone modifications may be key mechanisms in zearalenone toxicity. Furthermore, effects of zearalenone in metabolic pathways could be mediated by epigenetic modifications.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Müjdat Zeybel
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, 34010, Topkapi, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
12
|
Hong Y, Huang Y, Huang Z. Oxidative stress, immunological response, and heat shock proteins induction in the Chinese Mitten Crab, Eriocheir sinensis following avermectin exposure. ENVIRONMENTAL TOXICOLOGY 2020; 35:213-222. [PMID: 31617668 DOI: 10.1002/tox.22858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/19/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
In this study, the Chinese mitten crabs, Eriocheir sinensis were exposed to avermectin at 0.03, 0.06, 0.12, 0.24, and 0.48 mg/L respectively for 96 hours. The results showed that levels of superoxide dismutase, catalase, and glutathione peroxidase in hepatopancreas were slightly induced at concentration of 0.03 and 0.06 mg/L, but significantly (P < .05) decreased at higher concentrations, meanwhile similar trend of the activities of acid phosphatase, alkaline phosphatase and lysozyme were observed. Significant induction of HSP70 and HSP90 mRNA expression was detected at 24 hours whereas no significant change was found in HSP60. In addition, levels of reactive oxygen species in hepatocytes increased in dose- and time- dependent manners, and cell viabilities of hepatocytes and haemocytes decreased. These results indicated that sublethal concentration exposure of avermectin had a prominent oxidative stress effect on E. sinensis based on the antioxidative and immunological activity inhibition, and HSP60, 70, and 90 perform a protective response during the exposure.
Collapse
Affiliation(s)
- Yuhang Hong
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang, Sichuan Province, China
| | - Yi Huang
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang, Sichuan Province, China
| | - Zhiqiu Huang
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang, Sichuan Province, China
| |
Collapse
|
13
|
Fu Y, Jin Y, Zhao Y, Shan A, Fang H, Shen J, Zhou C, Yu H, Zhou YF, Wang X, Wang J, Li R, Wang R, Zhang J. Zearalenone induces apoptosis in bovine mammary epithelial cells by activating endoplasmic reticulum stress. J Dairy Sci 2019; 102:10543-10553. [DOI: 10.3168/jds.2018-16216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/24/2019] [Indexed: 01/17/2023]
|
14
|
Karaman EF, Ozden S. Alterations in global DNA methylation and metabolism-related genes caused by zearalenone in MCF7 and MCF10F cells. Mycotoxin Res 2019; 35:309-320. [PMID: 30953299 DOI: 10.1007/s12550-019-00358-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium fungi. ZEN has endocrine disruptor effects and could impair the hormonal balance. Here, we aimed at investigating possible effects of ZEN on metabolism-related pathways and its relation to epigenetic mechanisms in breast adenocarcinoma (MCF7) and breast epithelial (MCF10F) cells. Using the MTT and neutral red uptake (NRU) cell viability tests, IC50 values of ZEN after 24 h were found to be 191 μmol/L and 92.6 μmol/L in MCF7 cells and 67.4 μmol/L and 79.5 μmol/L in MCF10F cells. A significant increase on global levels of 5-methylcytosine (5-mC%) was observed for MCF7 cells, correlating with the increased expression of DNA methyltransferases. No alterations were observed on levels of 5-mC% and expression of DNA methyltransferases for MCF10F cells. Further, at least threefold upregulation compared to control was observed for several genes related to nuclear receptors and metabolism in MCF7 cells, while some of these genes were downregulated in MCF10F cells. The most notably altered genes were IGF1, HK2, PXR, and PPARγ. We suggested that ZEN could alter levels of global DNA methylation and impair metabolism-related pathways.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey.
| |
Collapse
|
15
|
Gao XJ, Tang B, Liang HH, Yi L, Wei ZG. Selenium deficiency induced an inflammatory response by the HSP60 - TLR2-MAPKs signalling pathway in the liver of carp. FISH & SHELLFISH IMMUNOLOGY 2019; 87:688-694. [PMID: 30769078 DOI: 10.1016/j.fsi.2019.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 05/20/2023]
Abstract
Selenium (Se) is one of the essential trace elements for immune regulation and antioxidant systems in fish growth. The dietary Se plays an important role in immune regulation and inflammation by regulating HSPs and TLRs in liver of many animals. The liver is an important digestive organ in carp. Liver damage can seriously affect the growth and survival of carp. This study was conducted to determine whether Se regulated liver inflammation by affecting HSPs-TLR2 signalling and the potential mechanisms of action in common carp. The gene was analysed by qPCR. The proteins of inflammatory factors were detected by ELISA. The others proteins were analysed by Western blot. The results indicated the Se concentrations in blood and liver tissues were significantly influenced by dietary Se. The Se deficiency increased the expression of HSP60 and TLR2 and the secretion of the proinflammatory factor TNF-α, IL-1β and IL-6, induced a low secretion of the anti-inflammatory TGF-β, but the Se supplements could transform these events. Further research showed that with the dose-dependently decrease of Se, the HSP60 expressions were increased, and the MAPKs pathway were significantly activated by the phosphorylation of p38, JNK and ERK in liver tissue and cell. The results provide evidence that Se deficiency induced and exacerbated inflammatory injury to the liver through the HSP60 and TLR2-MAPKs signalling pathways in carp.
Collapse
Affiliation(s)
- Xue-Jiao Gao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Bin Tang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Hui-Huang Liang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Li Yi
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zi-Gong Wei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
16
|
Li Y, Zhao Y, Deng H, Chen A, Chai L. Endocrine disruption, oxidative stress and lipometabolic disturbance of Bufo gargarizans embryos exposed to hexavalent chromium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:242-250. [PMID: 30273847 DOI: 10.1016/j.ecoenv.2018.09.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
The aim of the current study was to determine the potential developmental and metabolic abnormalities caused by Cr (VI) exposure on Bufo gargarizans (B. gargarizans) embryos. B. gargarizans embryos were treated with different concentrations of Cr (VI) (13, 52, 104, 208, and 416 μg Cr6+ L-1) for 6 days. Morphological abnormalities, total length, weight and developmental stage were monitored. Malformations of embryos were also examined using scanning electron microscopy (SEM). In addition, the transcript levels of several genes associated with lipid metabolism, oxidative stress, and thyroid hormones signaling pathways were also determined. Our results showed a time-dependent inhibitory effect of Cr (VI) on the growth and development of B. gargarizans embryos. On day 4, total length, weight, and developmental stage were significantly lower at 416 μg Cr6+ L-1 relative to control embryos. On day 6, significant reductions in total length, weight, and developmental stage were observed at 104, 208, and 416 μg Cr6+ L-1. Malformed embryos were found in all Cr (VI) treatments, which were characterized by axial flexures, yolk sac edema and rupture, surface tissue hyperplasia, stunted growth, wavy fin and fin flexure. RT-qPCR results showed that exposure to Cr (VI) down-regulated TRβ and Dio2 mRNA expression and up-regulated Dio3 mRNA level at 416 μg Cr6+ L-1. The transcript levels of SOD and GPx were upregulated at 52, 208, and 416 μg Cr6+ L-1, while the transcript level of HSP90 was downregulated at 52, 208, and 416 μg Cr6+ L-1. Also, mRNA expression of lipid synthesis-related genes (FAE and ACC) were significantly downregulated in embryos treated with 208 and 416 μg Cr6+ L-1, but mRNA expression of fatty acid β-oxidation-related genes (ACOX, CPT, and SCP) was significantly upregulated at 416 μg Cr6+ L-1. Therefore, our results suggested that Cr (VI) could disrupt thyroid endocrine pathways and lipid synthesis, leading to the inhibition of growth and development in B. gargarizans embryos. Furthermore, the decreased ability of scavenging ROS induced by Cr (VI) might be responsible for the teratogenic effects of Cr (VI).
Collapse
Affiliation(s)
- Yanbin Li
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University Xi'an 710062, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710062, China
| | - Yonghua Zhao
- Shaanxi Key Laboratory of Land Consolidation, Xi'an 710062, China
| | - Hongzhang Deng
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University Xi'an 710062, China
| | - Aixia Chen
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University Xi'an 710062, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University Xi'an 710062, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710062, China.
| |
Collapse
|
17
|
Shi Q, Sun N, Kou H, Wang H, Zhao H. Chronic effects of mercury on Bufo gargarizans larvae: Thyroid disruption, liver damage, oxidative stress and lipid metabolism disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:500-509. [PMID: 30145490 DOI: 10.1016/j.ecoenv.2018.08.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Mercury is severely detrimental to organisms and is ubiquitous in both terrestrial and aquatic ecosystems. In the present study, we examined the effects of chronic mercury (Hg) exposure on metamorphosis, body size, thyroid microstructures, liver microstructural and ultrastructural features, and transcript levels of genes associated with lipid metabolism, oxidative stress and thyroid hormones signaling pathways of Chinese toad (Bufo gargarizans) tadpoles. Tadpoles were exposed to mercury concentrations at 0, 6, 12, 18, 24 and 30 µg/L from Gosner stage 26-42 of metamorphic climax. The present results showed that high dose mercury (24 and 30 µg/L) decelerated metamorphosis rate and inhibited body size of B. gargarizans larvae. Histological examinations have clearly exhibited that high mercury concentrations caused thyroid gland and liver damages. Moreover, degeneration and disintegration of hepatocytes, mitochondrial vacuolation, and endoplasmic reticulum breakdown were visible in the ultrastructure of liver after high dose mercury treatment. Furthermore, the larvae exposed to high dose mercury demonstrated a significant decrease in type II iodothyronine deiodinase (Dio2) and thyroid hormone receptor α and β (TRα and TRβ) mRNA levels. Transcript level of superoxide dismutase (SOD) and heat shock protein (HSP) were significantly up regulated in larvae exposed to high dose mercury, while transcript level of phospholipid hydroperoxide glutathione peroxidase (PHGPx) was significantly down regulated. Moreover, exposure to high dose mercury significantly down regulated mRNA expression of carnitine palmitoyltransferase (CPT), sterol carrier protein (SCP), acyl-CoA oxidase (ACOX) and peroxisome proliferator-activated receptor α (PPAPα), but significantly up regulated mRNA expression of fatty acid elongase (FAE), fatty acid synthetase (FAS) and Acetyl CoA Carboxylase (ACC). Therefore, we conclude that high dose mercury induced thyroid function disruption, liver oxidative stress and lipid metabolism disorder by damaging thyroid and liver cell structures and altering the expression levels of relevant genes.
Collapse
Affiliation(s)
- Qiang Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China
| | - Nailiang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China
| | - Honghong Kou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119 China.
| |
Collapse
|
18
|
Liu XL, Wu RY, Sun XF, Cheng SF, Zhang RQ, Zhang TY, Zhang XF, Zhao Y, Shen W, Li L. Mycotoxin zearalenone exposure impairs genomic stability of swine follicular granulosa cells in vitro. Int J Biol Sci 2018; 14:294-305. [PMID: 29559847 PMCID: PMC5859475 DOI: 10.7150/ijbs.23898] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/30/2017] [Indexed: 01/15/2023] Open
Abstract
Zearalenone (ZEA), a metabolite of Fusarium fungi, is commonly found on moldy grains. Because it can competitively combine to estrogen receptor to disrupt estrogenic signaling, it has been reported to have serious adverse effects on animal reproduction systems. In order to explore the genotoxic effects of ZEA exposure on ovarian somatic cells, porcine granulosa cells were exposed to 10 μM and 30 μM ZEA for 24 or 72 h in vitro. The results showed that ZEA exposure for 24 h remarkably reduced the proliferation of porcine granulosa cells in a dose-dependent manner as determined by MTT analysis and flow cytometry. Furthermore, exposure to ZEA for 72 h induced apoptosis, and RNA sequence analysis also revealed that the expression of apoptosis related genes were altered. RT-qPCR, immunofluorescence and western blot analysis further confirmed the expression of DNA damage and repair related genes (γ-H2AX, BRCA1, RAD51 and PRKDC) were increased in ZEA exposed granulosa cells. When the estrogen antagonist, tamoxifen, was added with ZEA in the culture medium, the DNA damage and repairment by ZEA returned to normal level. Collectively, these results illustrate that ZEA disrupts genome stability and inhibits growth of porcine granulosa cells via the estrogen receptors which may promote granulosa cell apoptosis when the DNA repair system is not enough to rescue this serious damage.
Collapse
Affiliation(s)
- Xue-Lian Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui-Ying Wu
- Center for Reproductive Medicine, Qingdao Women's and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Xiao-Feng Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui-Qian Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Tian-Yu Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,Center for Reproductive Medicine, Qingdao Women's and Children's Hospital, Qingdao University, Qingdao 266034, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
19
|
Xiang M, Zhang X, Deng Y, Li Y, Yu J, Zhu J, Huang X, Zhou J, Liao H. Comparative transcriptome analysis provides insights of anti-insect molecular mechanism of Cassia obtusifolia trypsin inhibitor against Pieris rapae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21427. [PMID: 29193258 DOI: 10.1002/arch.21427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pieris rapae, a serious Lepidoptera pest of cultivated crucifers, utilizes midgut enzymes to digest food and detoxify secondary metabolites from host plants. A recombinant trypsin inhibitor (COTI) from nonhost plant, Cassia obtusifolia, significantly decreased activities of trypsin-like proteases in the larval midgut on Pieris rapae and could suppress the growth of larvae. In order to know how COTI took effect, transcriptional profiles of P. rapae midgut in response to COTI was studied. A total of 51,544 unigenes were generated and 45.86% of which had homologs in public databases. Most of the regulated genes associated with digestion, detoxification, homeostasis, and resistance were downregulated after ingestion of COTI. Meanwhile, several unigenes in the integrin signaling pathway might be involved in response to COTI. Furthermore, using comparative transcriptome analysis, we detected differently expressing genes and identified a new reference gene, UPF3, by qRT-polymerase chain reaction (PCR). Therefore, it was suggested that not only proteolysis inhibition, but also suppression of expression of genes involved in metabolism, development, signaling, and defense might account for the anti-insect resistance of COTI.
Collapse
Affiliation(s)
- Mian Xiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xian Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yin Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yangyang Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jihua Yu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jianquan Zhu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xinhe Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Chai L, Chen A, Luo P, Zhao H, Wang H. Histopathological changes and lipid metabolism in the liver of Bufo gargarizans tadpoles exposed to Triclosan. CHEMOSPHERE 2017; 182:255-266. [PMID: 28500970 DOI: 10.1016/j.chemosphere.2017.05.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/09/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
In the current study, the adverse effects of TCS on liver health of B. gargarizans tadpoles were assessed. B. gargarizans larvae were exposed to TCS at 0, 10, 30, 60, and 150 μg L-1 from Gosner stage 3 until metamorphic climax. The hepatosomatic index (HSI), hepatic histological and ultrastructural features, and transcript levels of genes associated with detoxification and oxidative stress as well as lipid metabolism in the livers were determined. Exposure to 150 μg L-1 TCS resulted in increased HSI of tadpoles at metamorphic climax. Histological changes characterized by an increase in the number of melanomacrophage, nucleus pyknosis, and deposition of collagen fibers were observed in liver at 60 and 150 μg L-1 TCS. Moreover, marked ultrastructural alterations including high electron dense in mitochondrial matrix and lipid accumulation were also observed. In addition, abundances of transcripts of Cu/Zn superoxide dismutase (SOD), phospholipid hydroperoxide glutathione peroxidase (PHGPx), and heat shock protein 90 (HSP90) were decreased in larvae exposed to 60 and 150 μg L-1 TCS, while transcript level of HSP90 was increased at 30 μg L-1 TCS. Also, abundances of transcripts of acetyl-CoA carboxylase (ACC), carnitine palmitoyltransferase 2 (CPT2), peroxisome proliferator-activated receptor alpha (PPARa), fatty acid elongase 1 (FAE), sterol carrier protein 2 (SCP) were significantly lesser in larvae exposed to 60 and 150 μg L-1 TCS. Overall, TCS at high levels induced histopathological changes in the liver of B. gargarizans tadpoles. This might have been due to the alteration of oxidative stress-related genes and lipid metabolism-related genes expression levels.
Collapse
Affiliation(s)
- Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064 China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064 China
| | - Aixia Chen
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064 China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064 China
| | - Pingping Luo
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064 China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064 China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
21
|
Wu C, Zhang Y, Chai L, Wang H. Histological changes, lipid metabolism and oxidative stress in the liver of Bufo gargarizans exposed to cadmium concentrations. CHEMOSPHERE 2017; 179:337-346. [PMID: 28384601 DOI: 10.1016/j.chemosphere.2017.03.131] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Chinese toad (Bufo gargarizans) were exposed to different concentrations of cadmium (5, 50, 100, 200 and 500 μg Cd L-1) from Gosner stage 3-42. Metamorphosis rate, body weight, total length and body length were measured. Histological alterations in thyroid gland and liver were examined. Changes in hepatocyte were also examined using Transmission electron microscopic. In addition, the mRNA expression of several genes involved in lipid metabolism, oxidative stress and thyroid hormones signaling pathways were also measured. Our results showed that 200 and 500 μg Cd L-1 decreased the metamorphosis rate and inhibited the body size of B. gargarizans larvae at G42. Moreover, histological examinations have clearly exhibited that cadmium caused liver damage. Ultrastructural examination revealed lipid accumulation and abnormal mitochondria. Exposure to 200 and 500 μg Cd L-1 significantly up-regulated mRNA expression of D2, SOD, GPx, ACC and FAE, but down-regulated mRNA expression of TRα, TRβ, PPARα, ACOX, CPT and SCP. However, low Cd concentration (5, 50 and 100) exposure did not cause any effect in genes expression. Thus, we conclude that high Cd concentrations could affect the normal processes of lipid metabolism though increasing lipid synthesis and reducing the ability of fatty acid β-oxidation, and disturb thyroid hormone pathways in liver, and induced oxidative stress. In addition, lipid metabolism might be regulated by THs. To our knowledge, the present study is the first to report the influence of cadmium on hepatic lipid metabolism in B. gargarizans and will greatly provide new insights into cadmium hepatotoxicity in amphibian.
Collapse
Affiliation(s)
- Chao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
22
|
Tatay E, Espín S, García-Fernández AJ, Ruiz MJ. Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells. Toxicol In Vitro 2017; 45:334-339. [PMID: 28477956 DOI: 10.1016/j.tiv.2017.04.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/14/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Mycotoxin contamination of foods and feeds represent a serious problem worldwide. Zearalenone (ZEA) is a secondary metabolite produced by Fusarium species. This study explores oxidative cellular damage and intracellular defense mechanisms (enzymatic and non-enzymatic) in the hepatoma cell line HepG2 after exposure to ZEA and its metabolites (α-zearalenol, α-ZOL; β-zearalenol, β-ZOL). Our results demonstrated that HepG2 cells exposed to ZEA, α-ZOL or β-ZOL at different concentrations (0, 6.25, 12.5 and 25μM) showed: (i) elevated ROS levels (1.5- to 7-fold) based on the formation of the highly fluorescent 2',7'-dichlorofluorescein (DCF), (ii) increased DNA damage measured by the comet assay (9-45% higher), (iii) decreased GSH levels and CAT activity (decreased by 54%-25% and by 62%-25% for GSH and CAT, respectively) and (iv) increased GPx and SOD activities (increased by 50%-90% and by 26%-70%, respectively), compared to untreated cells. Our results suggest that mycotoxin-induced oxidative stress and damage may play a major role in the cytotoxic effects of ZEA and its metabolites. GSH and endogenous enzymes function together in protecting cells from ROS and the consequent damage after mycotoxin exposure. ZEA has a lower capacity to induce oxidative stress and damage in HepG2 cells than its metabolites at the tested concentrations.
Collapse
Affiliation(s)
- Elena Tatay
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, (Valencia), Spain
| | - Silvia Espín
- Laboratory of Toxicology, Department of Health Sciences, Biomedical Research Institute of Murcia (IMIB-UM-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; Department of Biology, University of Turku, 20014 Turku, Finland
| | - Antonio-Juan García-Fernández
- Laboratory of Toxicology, Department of Health Sciences, Biomedical Research Institute of Murcia (IMIB-UM-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - María-José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, (Valencia), Spain.
| |
Collapse
|
23
|
Wu C, Zhang Y, Chai L, Wang H. Oxidative stress, endocrine disruption, and malformation of Bufo gargarizans embryo exposed to sub-lethal cadmium concentrations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:97-104. [PMID: 27984779 DOI: 10.1016/j.etap.2016.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Thyroid hormone (TH) is critical for vertebrate postembryonic development as well as embryonic development. Chinese toad (Bufo gargarizans) embryos were exposed to different concentrations of cadmium (5, 50, 100, 200 and 500μg Cd L-1) for 7days. Malformations were monitored daily, and growth and development of embryos were measured at day 4 and 7, and type 2 and 3 iodothyronine deiodinase (Dio2 and Dio3), thyroid hormone receptors (TRα and TRβ) mRNA levels were also measured to assess disruption of TH synthesis. In addition, superoxide dismutase (SOD), glutathione peroxidase (GPx) and heat shock proteins (HSPs) mRNA expression were examined to evaluate the ability of scavenging ROS. Our results demonstrated a bimodal inhibitory effect of Cd on the embryo growth and development of Bufo gargarizans. Reduced mean stage, total length and weight were observed at 5, 50, 200 and 500, but not at 100μg Cd L-1. Embryos malformation occurred in all cadmium treatments. Morphological abnormalities of embryos are characterized by axial flexures, abdominal edema, stunted growth and fin flexure. Real-time PCR results show that exposure to cadmium down-regulated TRα and Dio3 mRNA expression and up-regulated Dio2 mRNA level. SOD and GPx mRNA expression was significantly up-regulated after cadmium exposure. We concluded that cadmium could change mRNA expression of TRα, Dio2 and Dio3 leading the inhibition of growth and development of B. gargarizans embryo, which suggests that cadmium might have the endocrine-disrupting effect in embryos. Moreover, the reduced ability of scavenging ROS induced by cadmium might be responsible for the teratogenic effects of cadmium.
Collapse
Affiliation(s)
- Chao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
24
|
Liu C, Cao Y, Zhou S, Khoso PA, Li S. Avermectin induced global DNA hypomethylation and over-expression of heat shock proteins in cardiac tissues of pigeon. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:52-58. [PMID: 28043331 DOI: 10.1016/j.pestbp.2016.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Despite increasing evidences pointing to residues of avermectin (AVM) pose toxic effects on non-target organisms in environment, but the data in pigeon is insufficient. The alteration of global DNA methylation and response of heat shock proteins (Hsps) are important for assessing the AVM toxicity in cardiac tissues of pigeon (Columba livia). To investigate the effects of AVM exposure in cardiac tissues of pigeon, we detected the expression levels of DNA methyltransferases (Dnmts), methylated DNA-binding domain protein 2 (MBD2), and Hsp 60, 70 and 90. Pigeons were exposed to feed containing AVM (0, 20, 40 and 60mg/kg diet) for 30, 60, 90days respectively, and cardiac tissues were collected and analyzed. We found the transcriptional levels of Dnmt1, Dnmt3a and Dnmt3b mRNA were down-regulated, but the transcriptional levels of MBD2 mRNA were up-regulated by AVM exposure in cardiac tissues of pigeon. Necrocytosis, hemorrhage, infiltration of inflammatory cells and abundant vacuoles appeared in cardiac tissues after AVM exposure. Accompanying this phenotype, the mRNA transcriptional and/or protein levels of Hsp30, Hsp60, Hsp70 and Hsp90 increased. In conclusion, these results underscored AVM exposure caused DNA methylation machinery malfunctions, and induced over-expression of Hsps to improve the protective function against cardiac injury.
Collapse
Affiliation(s)
- Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ye Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuo Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Pervez Ahmed Khoso
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
25
|
Tatay E, Font G, Ruiz MJ. Cytotoxic effects of zearalenone and its metabolites and antioxidant cell defense in CHO-K1 cells. Food Chem Toxicol 2016; 96:43-9. [PMID: 27465603 DOI: 10.1016/j.fct.2016.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022]
Abstract
Zearalenone (ZEA) and its metabolites (α-zearalenol; α-ZOL, β-zearalenol; β-ZOL) are secondary metabolites of Fusarium fungi that produce cell injury. The present study explores mycotoxin-induced cell damage and cellular protection mechanisms in CHO-K1 cells. Cytotoxicity has been determined by reactive oxygen species (ROS) production and DNA damage. ROS production was determined using the fluorescein assay and DNA strand breakage by comet assay. Intracellular protection systems were glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). The results demonstrated that all mycotoxins increased the ROS levels up to 5.3-fold the control levels in CHO-K1 cells. Zearalenone metabolites, but not ZEA, increased DNA damage 43% (α-ZOL) and 28% (β-ZOL) compared to control cells. The GSH levels decreased from 18% to 36%. The GPx and SOD activities respectively increased from 26% to 62% and from 23% to 69% in CHO-K1 cells, whereas CAT activity decreased from 14% to 52%. In addition, intracellular ROS production was induced by ZEA and its metabolites. The endogenous antioxidant system components GSH, GPx and SOD were activated against ZEA and its metabolites. These antioxidant system components thus could contribute to decrease cell injury by ZEA and its metabolites.
Collapse
Affiliation(s)
- Elena Tatay
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Guillermina Font
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Maria-Jose Ruiz
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
26
|
Karpeta-Kaczmarek J, Augustyniak M, Rost-Roszkowska M. Ultrastructure of the gut epithelium in Acheta domesticus after long-term exposure to nanodiamonds supplied with food. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:253-264. [PMID: 26921817 DOI: 10.1016/j.asd.2016.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
The biosafety of nanoparticles and the potential toxicity of nanopollutants and/or nanowastes are all currently burning issues. The increased use of nanoparticles, including nanodiamonds (ND), entails the real risk of their penetration into food chains, which may result in the contamination of animal and, as a result, human food. Knowledge about changes in the ultrastructure of tissues in organisms that have been exposed to ND is still very limited. The aim of the study was to describe the ultrastructure of the gut epithelium in Acheta domesticus after exposure to different concentrations of ND (0, 20 or 200 μg g(-1) - control, ND20 and ND200 groups, respectively) administered with food over a five-week period. The ultrastructure of the foregut, midgut and hindgut was assessed using Transmission Electron Microscopy (TEM). A number of changes in the structure of the gut in crickets that had consumed nanodiamond-contaminated food were observed. The epithelium of the midgut and hindgut were clearly damaged by ND, although the foregut was not affected. A positive relationship between the ND concentration in food and the degree of damage to the structure of epithelial cells was observed. Autophagy, especially mitophagy and reticulophagy, was activated in relation to the appearance of ND particles. A putative ND toxicity mechanizm is proposed. Extreme caution should be maintained when using nanodiamonds on a large scale.
Collapse
Affiliation(s)
- Julia Karpeta-Kaczmarek
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland.
| | - Maria Augustyniak
- Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland
| |
Collapse
|
27
|
Zhang K, Zhao P, Guo G, Guo Y, Li S, He Y, Sun X, Chai H, Zhang W, Xing M. Arsenic Trioxide Exposure Induces Heat Shock Protein Responses in Cock Livers. Biol Trace Elem Res 2016; 170:459-65. [PMID: 26329997 DOI: 10.1007/s12011-015-0487-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/18/2015] [Indexed: 12/15/2022]
Abstract
Arsenic is a trace element widely found in nature, and there are several forms of arsenic, including the most toxic form of trivalent arsenic. Arsenic trioxide (As2O3) is widespread in nature and tends to accumulate in animals and humans, thus causing great harm. Although the important role of heat shock proteins (HSPs) has been demonstrated in many types of mammals exposed to As2O3, the function of these proteins in poultry, especially in cocks, remains unclear. In this study, we used experimental animals (male chickens), which were fed a diet including 0, 7.5, 15, and 30 mg kg(-1) As2O3, respectively, in the control, low, middle, and high groups. The livers were collected after the cocks were treated with arsenic for 30, 60, and 90 days. We detected HSP27, HSP60, HSP70, and HSP90 levels in the livers of the cocks by real-time PCR and HSP60 and HSP70 levels by Western blot. The results showed that the messenger RNA and protein expression of HSPs exposed to As2O3 had obviously increased. These results demonstrated that arsenic toxicity affected the expression of HSP levels in cock livers.
Collapse
Affiliation(s)
- Kexin Zhang
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang Province, 150040, China
| | - Panpan Zhao
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang Province, 150040, China
| | - Guangyang Guo
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang Province, 150040, China
| | - Ying Guo
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang Province, 150040, China
| | - Siwen Li
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang Province, 150040, China
| | - Ying He
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang Province, 150040, China
| | - Xiao Sun
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang Province, 150040, China
| | - Hongliang Chai
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang Province, 150040, China.
| | - Wen Zhang
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang Province, 150040, China.
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang Province, 150040, China.
| |
Collapse
|
28
|
Di Giancamillo A, Rossi R, Pastorelli G, Deponti D, Carollo V, Casamassima D, Domeneghini C, Corino C. The effects of dietary verbascoside on blood and liver oxidative stress status induced by a high n-6 polyunsaturated fatty acids diet in piglets. J Anim Sci 2016; 93:2849-59. [PMID: 26115272 DOI: 10.2527/jas.2014-8607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Twenty-four weaned female Hypor piglets (10.9 ± 0.1 kg mean BW) were used to evaluate the antioxidant effect of a natural extract, titrated in verbascoside, on blood and liver oxidative status in relation to a high intake of n-6 PUFA, inducing oxidative stress. Piglets were assigned to 1 of 3 experimental groups; the first group was fed a diet with 9% sunflower oil (T1) and the second received the sunflower oil diet supplemented with 5 mg of verbascoside/kg feed from Verbenaceae extract (Lippia spp.; T2). The third group was fed a control diet (CTR), in which an isoenergetic replacement of oil by starch was done. Blood samples were collected at the beginning and the end of the trial (30 d). At the end of the trial, the animals were slaughtered and the liver specimens were collected. Oxidative stress markers, including total antiradical activity, superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, were determined in blood samples. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and γ-glutamyl transferase (GGT) plasma levels were also evaluated. Immunohistochemistry and western blot analyses were performed in liver to evaluate heat shock protein (Hsp) 70, Hsp90, and Kupffer and Ito cell activation. Liver activities of SOD, GPX, and CAT were also determined. Total antiradical activity in blood and red blood cells were affected (P < 0.01) by dietary treatments. The n-6 PUFA supplementation at a high dosage for 30 d induced oxidative stress, decreasing total antiradical activity in blood and red blood cells (CTR vs. T1 + T2; P < 0.01) and plasma CAT activity (CTR vs. T1 + T2; P = 0.088) and increasing ALT value (CTR vs. T1 + T2; P < 0.01). Also, in liver, the CAT and GPX activities tended to be lower in pigs fed n-6 PUFA diets than pigs fed a control diet (CTR vs. T1 + T2; = 0.090 and = 0.085, respectively). The liver samples presented a normal architecture and no Ito and Kupffer cell activations were observed. In liver, the SOD activity tended to be lower in the T1 group (P = 0.064) than in the CTR and T2 groups. Moreover, the level of Hsp70 was higher (P < 0.01) in the T1 group than the CTR and T2 groups. These data suggest that the dose of dietary verbascoside partially restores the antioxidant status of the liver without affecting the systemic responses to oxidative stress induced by a high-fat diet.
Collapse
|
29
|
Abd El-Fattah AA, Fahim AT, Sadik NAH, Ali BM. Resveratrol and curcumin ameliorate di-(2-ethylhexyl) phthalate induced testicular injury in rats. Gen Comp Endocrinol 2016; 225:45-54. [PMID: 26361869 DOI: 10.1016/j.ygcen.2015.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/09/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
The present study aimed to evaluate the protective role of resveratrol and curcumin on oxidative testicular damage induced by di-(2-ethylhexyl) phthalate (DEHP). Male Wistar rats were divided into six groups; three groups received oral daily doses of DEHP (2g/kgBW) for 45days to induce testicular injury. Two of these groups received either resveratrol (80mg/kgBW) or curcumin (200mg/kgBW) orally for 30days before and 45days after DEHP administration. A vehicle-treated control group was also included. Another two groups of rats received either resveratrol or curcumin alone. Oxidative damage was observed by decreased levels of total antioxidant capacity (TAC) and glutathione (GSH) and increased malondialdehyde (MDA) level in the testes of DEHP-administered rats. Serum testosterone level as well as testicular marker enzymes activities; acid and alkaline phosphatases (ACP and ALP) and lactate dehydrogenase (LDH) showed severe declines. DEHP administration caused significant increases in the testicular gene expression levels of Nrf2, HO-1, HSP60, HSP70 and HSP90 as well as a significant decrease in c-Kit protein when compared with the control group. Histopathological observations provided evidence for the biochemical and molecular analysis. These DEHP-induced pathological alterations were attenuated by pretreatment with resveratrol and curcumin. We conclude that DEHP-induced injuries in biochemical, molecular and histological structure of testis were recovered by pretreatment with resveratrol and curcumin. The chemoprotective effects of these compounds may be due to their intrinsic antioxidant properties along with boosting Nrf2, HSP 60, HSP 70 and HSP 90 gene expression levels and as such may be useful potential tools in combating DEHP-induced testicular dysfunction.
Collapse
Affiliation(s)
| | - Atef Tadros Fahim
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Cairo, Egypt
| | | | - Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Cairo, Egypt
| |
Collapse
|
30
|
Huang AG, Tu X, Liu L, Wang GX, Ling F. The oxidative stress response of myclobutanil and cyproconazole on Tetrahymena thermophila. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:211-218. [PMID: 26724607 DOI: 10.1016/j.etap.2015.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Using Tetrahymena thermophila as experimental models, the oxidative stress of triazole fungicides myclobutanil (MYC) and cyproconazole (CYP) was investigated. Results showed that 24-h EC50 values for MYC and CYP were 16.67 (13.37-19.65) and 20.44 (18.85-21.96) mg/L, respectively; 48-h EC50 values for MYC and CYP were 14.31 (13.13-15.42) and 18.76 (17.09-20.31) mg/L, respectively. Reactive oxygen species was significantly induced and cytotoxicity was caused by MYC and CYP by increasing propidium iodide (PI) fluorescence. Damage of regular wrinkles and appearing of small holes on the cell surface were observed by SEM. Furthermore, MYC and CYP also caused notable changes in enzyme activities and mRNA levels. Overall, the present study points out that MYC and CYP lead to oxidative stress on T. thermophila. The information presented in this study will provide insights into the mechanism of triazoles-induced oxidative stress on T. thermophila.
Collapse
Affiliation(s)
- Ai-Guo Huang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling 712100, Shaanxi, China
| | - Xiao Tu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling 712100, Shaanxi, China
| | - Lei Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling 712100, Shaanxi, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling 712100, Shaanxi, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling 712100, Shaanxi, China.
| |
Collapse
|
31
|
Xin L, Wang J, Fan G, Wu Y, Guo S. Activation of HSPA1A promoter by environmental pollutants: An early and rapid response to cellular damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1027-1033. [PMID: 25863329 DOI: 10.1016/j.etap.2015.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
We established the HepG2-luciferase cells containing a luciferase reporter gene regulated by human HSPA1A promoter. The screening of heat shock and three typical environmental toxicants revealed differences in their capacities to activate HSPA1A promoter in HepG2-luciferase cells. After heat shock, a progressive time-dependent increase in relative luciferase activity was detected peaking at 8h of recovery. Benzo[a]pyrene, formaldehyde and sodium bisulfite induced significant time-dependent elevation of relative luciferase activity, which were positively correlated with MDA concentration, Olive tail moment and micronuclei frequency. The significant increase in relative luciferase activity was already evident after 4h of benzo[a]pyrene, 1h of formaldehyde and sodium bisulfite exposure, when no increases in cellular damage were detected by other toxicity tests. Therefore, the HepG2-luciferase cells are useful model for examining the overall cellular responses to oxidative stress and genotoxic damage, and provide a reporter system for rapid and sensitive screening of environmental pollutants.
Collapse
Affiliation(s)
- Lili Xin
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China.
| | - Jianshu Wang
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, Jiangsu, China
| | - Guoqiang Fan
- Suzhou Industrial Park Centers for Disease Control and Prevention, 58 Suqian Road, Suzhou, Jiangsu, China
| | - Yanhu Wu
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| | - Sifan Guo
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu, China
| |
Collapse
|
32
|
Wu K, Liu X, Fang M, Wu Y, Gong Z. Zearalenone induces oxidative damage involving Keap1/Nrf2/HO-1 pathway in hepatic L02 cells. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-014-0050-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Disturbance of antioxidant capacity produced by beauvericin in CHO-K1 cells. Toxicol Lett 2014; 226:337-42. [DOI: 10.1016/j.toxlet.2014.02.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 11/19/2022]
|