1
|
Zhang M, Li H, Guo M, Zhao F, Xie Y, Zhang Z, Lv J, Qiu L. Vitamin E alleviates pyraclostrobin-induced toxicity in zebrafish (Danio rerio) and its potential mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171219. [PMID: 38408665 DOI: 10.1016/j.scitotenv.2024.171219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Strobilurin fungicides (SFs) are commonly used in agriculture worldwide and frequently detected in aquatic environments. High toxicity of SFs to aquatic organisms has caused great concerns. To explore whether vitamin E (VE) can relieve the toxicity caused by pyraclostrobin (PY), zebrafish were exposed to PY with or without VE supplementation. When co-exposure with VE (20 μM), the 96 h-LC50 values of PY to zebrafish embryos, adult, and the 24 h-LC50 value of PY to larvae increased from 43.94, 58.36 and 38.16 μg/L to 64.72, 108.62 and 72.78 μg/L, respectively, indicating that VE significantly decreased the toxicity of PY to zebrafish at different life stages. In addition, VE alleviated the deformity symptoms (pericardial edema and brain damage), reduced speed and movement distance, and decreased heart rate caused by 40 μg/L PY in zebrafish larvae. Co-exposure of PY with VE significantly reduced PY-caused larval oxidative stress and immunotoxicity via increasing the activities of superoxide dismutase, catalase and level of glutathione, as well as reducing the malondialdehyde production and the expression levels of Nrf2, Ucp2, IL-8, IFN and CXCL-C1C. Meanwhile, the expression levels of gria4a and cacng4b genes, which were inhibited by PY, were significantly up-regulated after co-exposure of PY with VE. Moreover, co-exposure with VE significantly reversed the increased mitochondrial DNA copies and reduced ATP content caused by PY in larvae, but had no effect on the expression of cox4i1l and activity of complex III that reduced by PY, suggesting VE can partially improve PY-induced mitochondrial dysfunction. In conclusion, the potential mechanisms of VE alleviating PY-induced toxicity may be ascribed to decreasing the oxidative stress level, restoring the functions of heart and nervous system, and improving the immunity and mitochondrial function in zebrafish.
Collapse
Affiliation(s)
- Mengna Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Mengyu Guo
- College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yao Xie
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhongyu Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jingshu Lv
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Sun Y, Huang C, Jiang Y, Wan Y. Urinary concentrations of fungicide carbendazim's metabolite and associations with oxidative stress biomarkers in young children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18408-18418. [PMID: 36215016 DOI: 10.1007/s11356-022-23311-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Carbendazim (CBDZ) is the most widely used fungicide in China. It is ubiquitous in environment and can induce oxidative stress in mammals, while data on occurrence of its metabolite in human urine are scarce, and the relationship between CBDZ and oxidative stress biomarkers (OSBs) in young children has not been examined. The aim of this study was to measure the concentrations of methyl 5-hydroxy-2-benzimidazolecarbamate (5-HBC, the main metabolite of CBDZ in urine) in 390 urine samples collected from 130 healthy young (< 6.6 years old) children from Shenzhen and Wuhan, in south and central China, respectively, and to evaluate the associations of 5-HBC with three selected OSBs (4-HNEMA, 8-OHG, and 8-OHdG, for lipid, RNA, and DNA, respectively). 5-HBC was found in 99.2% of the urine samples at concentrations ranging from below the method detection limit (< 0.005 ng/mL) to 10.9 ng/mL (median: 0.11 ng/mL). Moderate inter-day reproducibility was found for specific gravity-adjusted 5-HBC concentrations (intraclass correlation coefficient: 0.50). The urinary 5-HBC concentrations were significantly and positively associated with 4-HNEMA (p < 0.01). An interquartile range increase in urinary 5-HBC concentrations was associated with a 42.1% increase in 4-HNEMA, which implied that CBDZ exposure might be associated with lipid peroxidation in young children without occupational exposure. As far as we know, this pilot study is the first to report urinary 5-HBC and its associations with OSBs in children.
Collapse
Affiliation(s)
- Yanfeng Sun
- Wuhan Centers for Disease Control and Prevention, Institute of Environmental Health, Wuhan, Hubei, 430024, People's Republic of China
| | - Changgang Huang
- Wuhan Centers for Disease Control and Prevention, Institute of Environmental Health, Wuhan, Hubei, 430024, People's Republic of China
| | - Ying Jiang
- Nanshan District Centers for Disease Control and Prevention, Shenzhen, Guangdong, 518054, People's Republic of China
| | - Yanjian Wan
- Wuhan Centers for Disease Control and Prevention, Institute of Environmental Health, Wuhan, Hubei, 430024, People's Republic of China.
| |
Collapse
|
3
|
Sharma M, Maheshwari N, Khan FH, Mahmood R. Carbendazim toxicity in different cell lines and mammalian tissues. J Biochem Mol Toxicol 2022; 36:e23194. [PMID: 35929398 DOI: 10.1002/jbt.23194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/25/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
The extensive production and use of harmful pesticides in agriculture to improve crop yield has raised concerns about their potential threat to living components of the environment. Pesticides cause serious environmental and health problems both to humans and animals. Carbendazim (CBZ) is a broad spectrum fungicide that is used to control or effectively kill pathogenic microorganisms. CBZ is a significant contaminant found in food, soil and water. It exerts immediate and delayed harmful effects on humans, invertebrates, aquatic animals and soil microbes when used extensively and repeatedly. CBZ is a teratogenic, mutagenic and aneugenic agent that imparts its toxicity by enhancing generation of reactive oxygen species generation. It elevates the oxidation of thiols, proteins and lipids and decreases the activities of antioxidant enzymes. CBZ is cytotoxic causing hematological abnormalities, mitotic spindle deformity, inhibits mitosis and alters cell cycle events which lead to apoptosis. CBZ is known to cause endocrine-disruption, embryo toxicity, infertility, hepatic dysfunction and has been reported to be one of the leading causes of neurodegenerative disorders. CBZ is dangerous to human health, the most common side effects upon chronic exposure are thyroid gland dysfunction and oxidative hepato-nephrotoxicity. In mammals, CBZ has been shown to disrupt the antioxidant defense system. In this review, CBZ-induced toxicity in different cells, tissues and organisms, under in vitro and in vivo conditions, has been systematically discussed.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
4
|
An Improved POD Model for Fast Semi-Quantitative Analysis of Carbendazim in Fruit by Surface Enhanced Raman Spectroscopy. Molecules 2022; 27:molecules27134230. [PMID: 35807472 PMCID: PMC9268280 DOI: 10.3390/molecules27134230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
The current detection method of carbendazim suffers from the disadvantages of complicated preprocessing and long cycle time. In order to solve the problem of rapid quantitative screening of finite contaminants, this article proposed a qualitative method based on characteristic peaks and a semi-quantitative method based on threshold to detect carbendazim in apple, and finally the method is evaluated by a validation system based on binary output. The results showed that the detection limit for carbendazim was 0.5 mg/kg, and the detection probability was 100% when the concentration was no less than 1 mg/kg. The semi-quantitative analysis method had a false positive rate of 0% and 5% at 0.5 mg/kg and 2.5 mg/kg, respectively. The results of method evaluation showed that when the added concentration was greater than 2.5 mg/kg, the qualitative detection method was consistent with the reference method. When the concentration was no less than 5 mg/kg, the semi-quantitative method is consistent between different labs. The semi-quantitative method proposed in this study can achieve the screening of finite contaminants in blind samples and simplify the test validation process through the detection probability model, which can meet the needs of rapid on-site detection and has a good application prospect.
Collapse
|
5
|
Ebedy YA, Elshazly MO, Hassan NH, Ibrahim MA, Hassanen EI. Novel insights into the potential mechanisms underlying carbendazim-induced hepatorenal toxicity in rats. J Biochem Mol Toxicol 2022; 36:e23079. [PMID: 35437878 DOI: 10.1002/jbt.23079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/13/2022] [Accepted: 04/01/2022] [Indexed: 12/18/2022]
Abstract
Carbendazim (CBZ) is a common environmental pollutant that can contaminate food and water and severely damage human health. Some studies revealed the adverse effect of CBZ on different organs, but its detailed toxicity mechanism has not been elucidated yet. Thus, the present study aims to clarify the mechanisms of CBZ-induced hepatorenal toxicity in rats. Therefore, we partitioned 40 male Wistar rats into four groups (n = 10): a negative control group and three treatment groups, which received 100, 300, and 600 mg/kg of CBZ. All rats received the treatment daily by oral gavage. We collected blood and organ samples (liver and kidney) at 14 and 28 days postdosing. CBZ caused extensive pathological alterations in both the liver and kidneys, such as cellular degeneration and necrosis accompanied by severe inflammatory reactions in a dose- and time-dependent manner. All the CBZ-treated groups displayed strong tumor necrosis factor-α and nuclear factor-κB (NF-κB) immunopositivity. Additionally, CBZ dose-dependently elevated the alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea, and creatinine serum levels and reduced the serum albumin levels. Furthermore, CBZ-induced apoptosis, as indicated by the observed Bax gene upregulation and Bcl-2 gene downregulation in both organs. All these changes may be related to oxidative stress, as indicated by the increase in malondialdehyde levels and the decrease in total antioxidant capacity. Our results demonstrate that CBZ-induced dose- and time-dependent hepatorenal damage through oxidative stress, which activated both the NF-κB signaling pathway and Bcl-based programmed cell death.
Collapse
Affiliation(s)
- Yasmin A Ebedy
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed O Elshazly
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Neven H Hassan
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Liu H, Wang Y, Fu R, Zhou J, Liu Y, Zhao Q, Yao J, Cui Y, Wang C, Jiao B, He Y. A multicolor enzyme-linked immunoassay method for visual readout of carbendazim. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4256-4265. [PMID: 34591948 DOI: 10.1039/d1ay01028j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) with high specificity and sensitivity is one of the most popular techniques for detecting carbendazim (CBD), a commonly used benzimidazole fungicide in agriculture. However, the traditional ELISA based on the horseradish peroxidase (HRP)-3,3',5,5'-tetramethylbenzidine (TMB) system for CBD only displays the yellow color of TMB2+ from deep to light, making it difficult for the naked eye to judge whether CBD in fruits and vegetables exceeds the maximum residue limit. In this article, we intend to improve the traditional ELISA method to establish a multicolor signal output ELISA to achieve visual semiquantitative detection of CBD. This method is based on the optical properties of gold nanorods (AuNRs). After introducing AuNRs into TMB2+ solution, which was produced by the HRP-TMB system of traditional ELISA, AuNRs were quickly etched by TMB2+. Consequently, the longitudinal localized surface plasmon resonance peak of AuNRs shows a clear blue shift and a vivid color change. Different concentrations of CBD generate different amounts of TMB2+, which in turn leads to different etching degrees of AuNRs, and ultimately results in a rainbow-like color change. As a result, CBD from 0.08 to 100 ng mL-1 can be easily distinguished by the naked eye, which does not require any large instruments. Moreover, the colors displayed by 0.49 ng mL-1 (purple) and 0 ng mL-1 (pink) are significantly different from each other. It should be noted that 0.49 ng mL-1 is far below the most stringent maximum residue limit of CBD in the world. Additionally, the quantitative determination of CBD spiked in canned citrus, citrus fruits, chives, and cabbage samples showed satisfactory recoveries. The good performance of the AuNR-based ELISA makes it have a wide range of application prospects in food safety and international trade.
Collapse
Affiliation(s)
- Haoran Liu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Yiwen Wang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Ruijie Fu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Jing Zhou
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Yanlin Liu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Qiyang Zhao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Jingjing Yao
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, P. R. China.
| | - Yongliang Cui
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Chengqiu Wang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Bining Jiao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Yue He
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| |
Collapse
|
7
|
Tian X, Zhai P, Guo J, Yu Q, Xu L, Yu X, Wang R, Kong X. Fabrication of plasmonic cotton gauze-Ag composite as versatile SERS substrate for detection of pesticides residue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119766. [PMID: 33872951 DOI: 10.1016/j.saa.2021.119766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Plasmonic cotton gauze-Ag composite were fabricated through a simple, instant and cost-effective way, in which the Ag NPs were immobilized on the surface of cotton gauze through in-situ growth process. The in-situ growth of Ag NPs was started from electroless-immobilized Ag seeds on the surface of cotton fiber, which could form numerous hot spots for SERS compared with current method. The cotton gauze-Ag composite was employed as versatile substrate in surface-enhanced Raman scattering (SERS) spectroscopy. The plasmonic cotton gauze-Ag exhibited excellent uniformity, temporal stability and enhanced effect for SERS measurement. The detection limit of P-aminothiopheno (PATP) was 10-8 M. Furthermore, the plasmonic cotton gauze-Ag composite presented excellent flexibility and adsorption capability, which enable to adsorb and detect pesticide residue from irregular surface of cucumber directly by simple swabbing process, the detection limit could achieve 0.1 ppm. The cotton gauze-Ag composite also shown excellent selectivity is SERS sensing. The fabrication method could be simply extended to other cellulose compound, such as absorbent cotton, paper and even for natural fibers. This study proposed a new method for fabricating the cost-effective, eco-friendly and flexible SERS substrates.
Collapse
Affiliation(s)
- Xiaoran Tian
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Peng Zhai
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| | - Lingzi Xu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Xinghua Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
8
|
Wang SY, Shi XC, Liu FQ, Laborda P. Chromatographic Methods for Detection and Quantification of Carbendazim in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11880-11894. [PMID: 33059442 DOI: 10.1021/acs.jafc.0c04225] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbendazim (CBZ), which is a fungicide widely used for the management of plant diseases, has been detected in a number of food products. The negative effects of CBZ to human health have stimulated the reduction of the maximum residue limits (MRLs), and subsequently the development of reliable and sensitive detection methods. Here, we are reviewing for the first time all reported chromatographic methods for the detection and quantification of CBZ in food. Several techniques, including liquid chromatography (LC), thin layer chromatography (TLC), micellar electrokinetic chromatography (MEKC), and supercritical fluid chromatography (SFC), were used for the separation and detection of CBZ, showing diverse characteristics and sensitivity. Some methods allowed the specific determination of CBZ, whereas other methods were successfully applied for the simultaneous quantification of a huge number of pesticides. Most reported methods showed limits of detection (LOD) and quantification (LOQ) lower than the MRLs. Relevant efforts in the field have been directed toward the simplification and optimization of the extraction steps prior to the chromatographic separation to increase the recovery and reduce the matrix effects. In this Review, the matrices, extraction procedures, and separation and detection parameters are detailed and compared in order to provide new insights on the development of new reliable methods for the detection of CBZ in food.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Feng-Quan Liu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 226019, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
9
|
Huang L, Wu C, Xie L, Yuan X, Wei X, Huang Q, Chen Y, Lu Y. Silver-Nanocellulose Composite Used as SERS Substrate for Detecting Carbendazim. NANOMATERIALS 2019; 9:nano9030355. [PMID: 30836610 PMCID: PMC6474145 DOI: 10.3390/nano9030355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/02/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022]
Abstract
Nanocellulose is an abundant green resource that, owing to the larger surface area, length, and diameter of the fibers, can be used as a framework for loading Ag nanoparticles and serve as substrate for surface enhancement Raman scattering (SERS). These properties would cause the hydroxyl groups on the surface to adsorb the Ag ions and reduce them to Ag seed to form a load fulcrum. This paper presents a convenient and environmentally friendly method for the fabrication of silver-nanocellulose composites (NCF-Ag). A commonly used pesticide, carbendazim (CBZ), was used as a SERS probe to evaluate the properties of NCF-Ag. The results showed that NCF-Ag possesses good homogeneity, reproducibility, and stability. Additionally, CBZ was found to have a low limit of detection (LOD), i.e., 1.0 × 10−8 M, which indicates the possibility for trace analysis. Furthermore, it presents good linearity with R2 = 0.98 at 1007 and 1270 cm−1 in the range from 10−4~10−7 M CBZ.
Collapse
Affiliation(s)
- Luqiang Huang
- College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, China.
| | - Changji Wu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Lijuan Xie
- College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, China.
| | - Xue Yuan
- College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, China.
| | - Xinyu Wei
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Qun Huang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou 350002, China.
| | - Youqiang Chen
- College of Life Sciences, The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
10
|
Ma CH, Zhang J, Hong YC, Wang YR, Chen X. Determination of carbendazim in tea using surface enhanced Raman spectroscopy. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Gill KK, Sandhu HS, Kaur R. Evaluation of lipid peroxidation and antioxidant status on fenvalerate, nitrate and their co-exposure in Bubalus bubalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 123:19-23. [PMID: 26267048 DOI: 10.1016/j.pestbp.2015.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/16/2015] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
The toxic effects of pesticides and minerals have been explored in different species, but still there is paucity of information regarding their combined toxicological effects. The present investigation reports oxidative stress induced by oral subacute exposure to fenvalerate (1 mg/kg) and sodium nitrate (20 mg/kg) alone, as well as in combination daily for 21 days in buffalo calves. Fenvalerate exposure produced significant elevation in lipid peroxidation (LPO), glutathione peroxidase (GPx), while it produced significant decline in blood glutathione (GSH) levels, superoxide dismutase (SOD) and catalase (CAT). No significant alteration was evidenced in nitric oxide (NOx) levels. Oral exposure to sodium nitrate produced significant inclination in LPO and NOx, while on the other hand significant depreciation in SOD and CAT with no significant change in GPx activity. Combined exposure to fenvalerate and sodium nitrate produced severe effects with an appreciably more prominent elevation in extent of LPO and decline in blood GSH levels.
Collapse
Affiliation(s)
- Kamalpreet Kaur Gill
- Department of Pharmacology and Toxicology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.
| | - Harpal Singh Sandhu
- Department of Pharmacology and Toxicology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Rajdeep Kaur
- Department of Pharmacology and Toxicology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|