1
|
Taylor M, White SA, Passos T, Sanders CJ. Pesticide and methylmercury fluxes to a marine protected region of Australia influenced by agricultural expansion. MARINE POLLUTION BULLETIN 2025; 217:118044. [PMID: 40318260 DOI: 10.1016/j.marpolbul.2025.118044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/19/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Estuarine environments provide diverse ecological services, including carbon burial and the sequestration of pollutants. Yet, urban expansion and anthropogenic activities can impact the ability of estuarine systems to retain and store pollutants, with unknown consequences for marine communities. Here, we present dated sediment cores from within the Solitarily Island Marine Park, a marine life sanctuary in Australia subject to runoff from a highly impacted catchment. We reveal historical accumulation rates of trace metals and pesticides likely associated with specific types of agricultural activities, including banana and blueberry production. Propiconazole and tebuconazole, fungicides highly reactive in marine habitats, were recorded in the sediment profile located at the site nearest the freshwater source. Furthermore, mercury content revealed elevated levels in the most recent sediments, up to 0.13 mg kg-1 in 1999, while methylmercury (MeHg) was detected ranging from 0.1 mg kg-1 in 2017 to 0.2 mg kg-1 in more recent sediments. Additionally, arsenic accumulation rates are shown here to have significantly increased from 19.1 mg m-2 year-1 in 1930 to 259.6 mg m-2 year-1 in 2020. These substances were found to be related to organic matter which was determined to be mostly of terrestrially derived sources, probably related to historical catchment deforestation, as indicated through δ13C and C:N molar ratios. This study highlights the importance in monitoring and evaluating agriculture-derived pollutant discharge to protected coastal regions and provides an initial dataset that may be used to monitor pollutant runoff in catchments impacted by expanding agricultural activities throughout Australia, and around the globe.
Collapse
Affiliation(s)
- Melanie Taylor
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW 2540, Australia
| | - Shane A White
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW 2540, Australia
| | - Tiago Passos
- The University of Sydney, School of Geosciences, NSW 2006, Australia
| | - Christian J Sanders
- National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Coffs Harbour, NSW 2540, Australia.
| |
Collapse
|
2
|
Carnib BL, Cirqueira F, de Oliveira JM, Rocha TL. Ecotoxicological impact of the fungicide tebuconazole on fish: a historical review, global trends and challenges. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107398. [PMID: 40367844 DOI: 10.1016/j.aquatox.2025.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/02/2025] [Accepted: 05/03/2025] [Indexed: 05/16/2025]
Abstract
Tebuconazole (TBZ) is a triazole fungicide broadly used to control fungal diseases in agricultural crops, fruit-bearing plants and forestry plantations. However, its increasing use and release into aquatic environments has raised concerns about its hazardous effects on the health of fish. Thus, the aim of the present study was to review the scientific literature on the ecotoxicological effects of TBZ and TBZ-based commercial formulations on fish. Historical review data (publication year and geographical distribution), TBZ type, experimental design, fish species, habitat, life stage, tissue/organ, lethal concentration (LC50), concentration and exposure time, biomarkers and effects were compiled and critically analyzed. Studies were mainly conducted with freshwater species at adult and larval stages, whereas no data were find for marine fish species. Zebrafish, (Danio rerio) was the most assessed species. Both TBZ and TBZ-based commercial formulations induced oxidative stress, endocrine disruption, neurotoxicity, genotoxicity, histopathologies, behavior impairments and mortality on fish. TBZ can induce synergistic and antagonistic effects on fish when it is combined to other pesticides. Overall, the current study has shown the potential hazardous effects of TBZ and TBZ-based commercial formulations on the health of fish.
Collapse
Affiliation(s)
- Bianca Leite Carnib
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Felipe Cirqueira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Jerusa Maria de Oliveira
- Strategic Materials Laboratory, Institute of Physics, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
3
|
Mackei M, Huber F, Sebők C, Vörösházi J, Tráj P, Márton RA, Neogrády Z, Mátis G. Effective adaptation of flight muscles to tebuconazole-induced oxidative stress in honey bees. Heliyon 2025; 11:e41291. [PMID: 39811324 PMCID: PMC11730214 DOI: 10.1016/j.heliyon.2024.e41291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The widespread and excessive agricultural use of azole fungicide tebuconazole poses a major threat to pollinator species including honey bee colonies as highlighted by recent studies. This issue is of growing importance, due to the intensification of modern agriculture and the increasing amount of the applied chemicals, serving as a major and recent problem from both an ecotoxicological and an agricultural point of view. The present study aims to detect the effects of acute sublethal tebuconazole exposure focusing on the redox homeostasis of honey bee flight muscles. The results show that the redox homeostasis, especially the glutathione system, of the exposed animals is severely impaired by the treatment, but flight muscles are able to successfully counteract the detrimental effects by the effective activation of protective processes. This efficient adaptation may have led to overcompensation processes eventually resulting in lower hydrogen peroxide and malondialdehyde concentrations after exposure. It could also be assumed that tebuconazole has a non-monotonic dose-response curve similarly to many other substances with endocrine-disrupting activity concerning parameters such as superoxide dismutase activity or total antioxidant capacity. These findings shed light on the detrimental impact of tebuconazole on the redox balance of honey bee flight muscles, also highlighting, that unlike other organs such as the brain, they may effectively adapt to acute tebuconazole exposure.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| | - Fanni Huber
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
4
|
Pamanji R, Ragothaman P, Koigoora S, Sivan G, Selvin J. Network analysis of toxic endpoints of fungicides in zebrafish. Toxicol Res (Camb) 2024; 13:tfae087. [PMID: 38845614 PMCID: PMC11150978 DOI: 10.1093/toxres/tfae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Zebrafish being the best animal model to study, every attempt has been made to decipher the toxic mechanism of every fungicide of usage and interest. It is important to understand the multiple targets of a toxicant to estimate the toxic potential in its totality. A total of 22 fungicides of different classes like amisulbrom, azoxystrobin, carbendazim, carboxin, chlorothalonil, difenoconazole, etridiazole, flusilazole, fluxapyroxad, hexaconazole, kresoxim methyl, mancozeb, myclobutanil, prochloraz, propiconazole, propineb, pyraclostrobin, tebuconazole, thiophanate-methyl, thiram, trifloxystrobin and ziram were reviewed and analyzed for their multiple explored targets in zebrafish. Toxic end points in zebrafish are highly informative when it comes to network analysis. They provide a window into the molecular and cellular pathways that are affected by a certain toxin. This can then be used to gain insights into the underlying mechanisms of toxicity and to draw conclusions on the potential of a particular compound to induce toxicity. This knowledge can then be used to inform decisions about drug development, environmental regulation, and other areas of research. In addition, the use of zebrafish toxic end points can also be used to better understand the effects of environmental pollutants on ecosystems. By understanding the pathways affected by a given toxin, researchers can determine how pollutants may interact with the environment and how this could lead to health or environmental impacts.
Collapse
Affiliation(s)
- Rajesh Pamanji
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Prathiviraj Ragothaman
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Srikanth Koigoora
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur -Tenali Rd, Vadlamudi 522213, AP, India
| | - Gisha Sivan
- Division of Medical Research, SRM SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Potheri, SRM Nagar, Kattankulathur, Chennai 603203, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| |
Collapse
|
5
|
Rosa MJ, Armendáriz-Arnez C, Gudayol-Ferré E, Prehn M, Fuhrimann S, Eskenazi B, Lindh CH, Mora AM. Association of pesticide exposure with neurobehavioral outcomes among avocado farmworkers in Mexico. Int J Hyg Environ Health 2024; 256:114322. [PMID: 38219443 PMCID: PMC10956701 DOI: 10.1016/j.ijheh.2024.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND AIM To date, few studies have focused on the health effects of pesticide exposure among avocado farmworkers. We examined the association of exposure to insecticides, fungicides, and herbicides with cognitive and mental health outcomes among these avocado workers from Michoacan, Mexico. MATERIALS AND METHODS We conducted a cross-sectional study of 105 avocado farmworkers between May and August 2021. We collected data on self-reported pesticide use during the 12 months prior to the baseline survey and estimated annual exposure-intensity scores (EIS) using a semi-quantitative exposure algorithm. We calculated specific gravity adjusted average concentrations of 12 insecticide, fungicide, or herbicide metabolites measured in urine samples collected during two study visits (8-10 weeks apart). We assessed participants' cognitive function and psychological distress using the NIH Toolbox Cognition Battery and the Brief Symptom Inventory 18 (BSI-18), respectively. We examined individual associations of EIS and urinary pesticide metabolites with neurobehavioral outcomes using generalized linear regression models. We also implemented Bayesian Weighted Quantile Sum (BWQS) regression to evaluate the association between a pesticide metabolite mixture and neurobehavioral outcomes. RESULTS In individual models, after adjusting for multiple comparisons, higher concentrations of hydroxy-tebuconazole (OH-TEB, metabolite of fungicide tebuconazole) were associated with higher anxiety (IRR per two-fold increase in concentrations = 1.26, 95% CI:1.08, 1.48) and Global Severity Index (GSI) (IRR = 1.89, 95% CI:1.36, 2.75) scores, whereas higher concentrations of 3,5,6-trichloro-2-pyridinol (TCPy, metabolite of chlorpyrifos) were associated with lower GSI scores (IRR = 0.69, 95% CI: 0.56, 0.85). In BWQS analyses, we found evidence of a mixture association of urinary pesticide metabolites with higher anxiety (IRR = 1.72, 95% CrI: 1.12, 2.55), depression (IRR = 4.60, 95% CrI: 2.19, 9.43), and GSI (IRR = 1.99, 95% CrI: 1.39, 2.79) scores. OH-TEB and hydroxy-thiabendazole (metabolite of fungicide thiabendazole) combined contributed 54%, 40%, and 54% to the mixture effect in the anxiety symptoms, depression symptoms, and overall psychological distress models, respectively. CONCLUSIONS We found that exposure to tebuconazole and thiabendazole, fungicides whose effects have been rarely studied in humans, may be associated with increased psychological distress among avocado farmworkers. We also observed that exposure to chlorpyrifos may be associated with decreased psychological distress.
Collapse
Affiliation(s)
- Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Cynthia Armendáriz-Arnez
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Esteve Gudayol-Ferré
- Facultad de Psicología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Manuela Prehn
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Samuel Fuhrimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, United States
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ana M Mora
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
6
|
Dong B. A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: Insights on pesticide management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168264. [PMID: 37918741 DOI: 10.1016/j.scitotenv.2023.168264] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Tebuconazole has been widely applied over three decades because of its high efficiency, low toxicity, and broad spectrum, and it is still one of the most popular fungicides worldwide. Tebuconazole residues have been frequently detected in environmental samples and food, posing potential hazards for humans. Understanding the toxicity of pesticides is crucial to ensuring human and ecosystem health, but the toxic mechanisms and toxicity of tebuconazole are still unclear. Moreover, pesticides could transform into transformation products (TPs) that may be more persistent and toxic than their parents. Herein, the toxicities of tebuconazole to humans, mammals, aquatic organisms, soil animals, amphibians, soil microorganisms, birds, honeybees, and plants were summarized, and its TPs were reviewed. In addition, the toxicity of tebuconazole TPs to aquatic organisms and mammals was predicted. Tebuconazole posed potential developmental toxicity, genotoxicity, reproductive toxicity, mutagenicity, hepatotoxicity, neurotoxicity, cardiotoxicity, and nephrotoxicity, which were induced via reactive oxygen species-mediated apoptosis, metabolism and hormone perturbation, DNA damage, and transcriptional abnormalities. In addition, tebuconazole exhibited apparent endocrine-disrupting effects by modulating hormone levels and gene transcription. The toxicity of some TPs was equivalent to and higher than tebuconazole. Therefore, further investigation is necessary into the toxicological mechanisms of tebuconazole and the combined toxicity of a mixture of tebuconazole and its TPs.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
7
|
Somuncu S, Atmaca H, Ilhan S. Effects of acute exposure to environmentally realistic tebuconazole concentrations on stress responses of kidney and digestive gland of Lymnaea stagnalis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104352. [PMID: 38141841 DOI: 10.1016/j.etap.2023.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
This study aimed to investigate the effects of 24 and 72 h exposure to environmentally relevant concentrations of tebuconazole (TEB) (10, 100 and 500 µg/L) fungicide on the freshwater snail Lymnaea stagnalis. The focus was induction of oxidative stress, alteration of gene expressions and histopathological changes in the kidney and digestive gland. TEB treatment induced a time- and concentration-dependent increase in intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels, while the total antioxidant capacity (TAC) was decreased. The activities of glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT) also increased in a time- and concentration-dependent manner in both tissues. TEB exposure significantly increased the mRNA levels of CAT, GPx, GR, heat shock proteins HSP40 and HSP70. Histological analysis revealed nephrocyte degeneration and disrupted digestive cells. The study concludes that acute exposure to TEB induces oxidative stress, alters antioxidant defense mechanisms, and leads to histopathological changes in L. stagnalis.
Collapse
Affiliation(s)
- Sezgi Somuncu
- Department of Biology, Faculty of Science, Sakarya University, 54050 Serdivan, Türkiye
| | - Harika Atmaca
- Department of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, 45140 Manisa, Türkiye
| | - Suleyman Ilhan
- Department of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, 45140 Manisa, Türkiye.
| |
Collapse
|
8
|
Folorunso EA, Gebauer R, Bohata A, Velíšek J, Třešnáková N, Dvořák P, Tomčala A, Kuebutornye FKA, Mráz J. Runoff of foliar-applied natural fungicides in aquaponics: Implications for fish and nitrification. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104341. [PMID: 38072218 DOI: 10.1016/j.etap.2023.104341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Aquaponics is a method of producing food in a sustainable manner through the integration of aquaculture and hydroponics, which allows simultaneous cultivation of fish and economic crops. The use of natural fungicides are crucial to the sustainable control of diseases in aquaponics. We assessed the potential impacts of natural fungicides, such as clove oil and lecithin, as well as a synthetic fungicide, tebuconazole, following foliar application in aquaponics. This study examined the runoff rates of the fungicides in decoupled aquaponics, and the subsequent effects of the runoffs on nitrification processes and Nile tilapia (Oreochromis niloticus). The runoffs of the foliar-applied fungicides, clove oil, lecithin, and tebuconazole, were detected in aquaponics water at a percentage runoff rate of 0.3 %, 2.3 %, and 0.3-0.8 % respectively. In the biofilter, lecithin altered the ammonium levels by increasing ammonium-nitrogen levels by 7 mg L-1, 6 h post application. Clove oil, on the other hand, showed no significant effect on ammonium, nitrite, and nitrate-nitrogen. Similarly, the toxicity test showed that eugenol had no significant effects on the hematological, biochemical and antioxidative activities of O. niloticus. Conversely, tebuconazole exhibited significant and persistent effects on various biochemical parameters, including lactate, albumin, and total protein, as well as hematological parameters like hemoglobin and MCH. The use of lecithin and tebuconazole should only be limited to decoupled aquaponics.
Collapse
Affiliation(s)
- Ewumi Azeez Folorunso
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Radek Gebauer
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Andrea Bohata
- University of South Bohemia in Ceske Budejovice, Faculty of Agriculture and Technology, Department of Plant Protection, Studentska 1668, České Budějovice 370 05, Czech Republic
| | - Josef Velíšek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Nikola Třešnáková
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Petr Dvořák
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Aleš Tomčala
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Felix Kofi Agbeko Kuebutornye
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic
| | - Jan Mráz
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 370 05, Czech Republic.
| |
Collapse
|
9
|
Liu Y, Gao Z, Ji X, Wang Y, Zhang Y, Sun H, Li W, Wang L, Duan J. Efficient Adsorption of Tebuconazole in Aqueous Solution by Calcium Modified Water Hyacinth-Based Biochar: Adsorption Kinetics, Mechanism, and Feasibility. Molecules 2023; 28:molecules28083478. [PMID: 37110715 PMCID: PMC10145345 DOI: 10.3390/molecules28083478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The application of fungicides (such as tebuconazole) can impose harmful impacts on the ecosystem and humans. In this study, a new calcium modified water hyacinth-based biochar (WHCBC) was prepared and its effectiveness for removing tebuconazole (TE) via adsorption from water was tested. The results showed that Ca was loaded chemically (CaC2O4) onto the surface of WHCBC. The adsorption capacity of the modified biochar increased by 2.5 times in comparison to that of the unmodified water hyacinth biochar. The enhanced adsorption was attributed to the improved chemical adsorption capacity of the biochar through calcium modification. The adsorption data were better fitted to the pseudo-second-order kinetics and the Langmuir isotherm model, indicating that the adsorption process was dominated by monolayer adsorption. It was found that liquid film diffusion was the main rate-limiting step in the adsorption process. The maximum adsorption capacity of WHCBC was 40.5 mg/g for TE. The results indicate that the absorption mechanisms involved surface complexation, hydrogen bonding, and π-π interactions. The inhibitory rate of Cu2+ and Ca2+ on the adsorption of TE by WHCBC were at 4.05-22.8%. In contrast, the presence of other coexisting cations (Cr6+, K+, Mg2+, Pb2+), as well as natural organic matter (humic acid), could promote the adsorption of TE by 4.45-20.9%. In addition, the regeneration rate of WHCBC was able to reach up to 83.3% after five regeneration cycles by desorption stirring with 0.2 mol/L HCl (t = 360 min). The results suggest that WHCBC has a potential in application for removing TE from water.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Zhonglu Gao
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xianguo Ji
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Ying Wang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yan Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Hongwei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lide Wang
- Ningxia Branch of China Design Group Co., Ltd., Yinchuan 750001, China
| | - Jinming Duan
- Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| |
Collapse
|
10
|
Ma X, Chen X, Hou H, Liu D, Liu X, Wang P, Zhou Z. Low Dose of Carbendazim and Tebuconazole: Accumulation in Tissues and Effects on Hepatic Oxidative Stress in Mice. TOXICS 2023; 11:326. [PMID: 37112553 PMCID: PMC10142364 DOI: 10.3390/toxics11040326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
As two commonly used fungicides, carbendazim and tebuconazole are widely found in the environment and in foods. Studies have reported that these fungicides can induce hepatic oxidative stress and other health risks. Nevertheless, the influences of exposure to carbendazim and tebuconazole at their acceptable daily intake (ADI) doses on hepatic oxidative stress, and the residual distributions in mice remain unclear. To fill these gaps, ICR (CD-1) mice were exposed to carbendazim and tebuconazole at their ADI doses by oral administration for 4 weeks in this study. The results showed that tebuconazole accumulated primarily in the epididymal fat of mice (16.84 μg/kg), whereas no significant residues of carbendazim in the tissues were observed. In addition, exposure to ADI doses of tebuconazole significantly reduced liver coefficients and induced hepatic oxidative stress in mice, including elevating the levels of glutathione and malonaldehyde. However, no significant impacts were observed on the hepatic redox homeostasis in mice after exposure to carbendazim at its ADI dose. The results could be helpful for understanding the exposure risks of carbendazim and tebuconazole in terms of low doses and long term.
Collapse
|
11
|
Tresnakova N, Famulari S, Zicarelli G, Impellitteri F, Pagano M, Presti G, Filice M, Caferro A, Gulotta E, Salvatore G, Sandova M, Vazzana I, Imbrogno S, Capillo G, Savoca S, Velisek J, Faggio C. Multi-characteristic toxicity of enantioselective chiral fungicide tebuconazole to a model organism Mediterranean mussel Mytilus galloprovincialis Lamarck, 1819 (Bivalve: Mytilidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160874. [PMID: 36521610 DOI: 10.1016/j.scitotenv.2022.160874] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 05/24/2023]
Abstract
The survey of available scientific literature shows a lack of data on the chronic effects of tebuconazole (TEB) on non-target aquatic organisms. Therefore, this study evaluates toxicity (10 and 20 days) of two considered concentrations 2 ng/L (E1) and 2 μg/L (E2) of TEB to bioindicator species Mytilus galloprovincialis. To this end, the TEB concentrations measured in soft mussel tissues showed a time-dependent increasing trend. The viability of haemocyte and digestive gland (DG) cells was higher than 95 % during the experiment. However, DG cells lost the ability to regulate their volume in both groups after 20-d. The E1 treatment increased Cl- and Na+ levels, and E2 decreased Na+ levels in the haemolymph. In addition, levels of superoxide dismutase (SOD) activity and oxidatively modified protein (OMP) increased after 10- and 20-d in both treatments. Histopathological findings showed abnormalities in the E2, e.g., haemocyte infiltration, hypertrophy, and hyperplasia in gills and DG. This study reveals the potential risks of TEB usage in the model organism M. galloprovincialis, primarily via bioaccumulation of TEB in food web links, and improves knowledge about its comprehensive toxicity.
Collapse
Affiliation(s)
- Nikola Tresnakova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Sergio Famulari
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Giorgia Zicarelli
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Federica Impellitteri
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Maria Pagano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Presti
- Chemical Laboratory of Palermo, Italian Agency of Customs and Monopolies, via Crispi, 143, 90133 Palermo, Italy
| | - Mariacristina Filice
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Alessia Caferro
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Eleonora Gulotta
- Chemical Laboratory of Palermo, Italian Agency of Customs and Monopolies, via Crispi, 143, 90133 Palermo, Italy
| | - Guiliano Salvatore
- Chemical Laboratory of Palermo, Italian Agency of Customs and Monopolies, via Crispi, 143, 90133 Palermo, Italy
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Irene Vazzana
- Zooprophylactic Institute of Sicily, Via Gino Marinuzzi, Italy
| | - Sandra Imbrogno
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy; Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100 Messina, Italy
| | - Serena Savoca
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100 Messina, Italy; Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
12
|
Yan W, Li G, Lu Q, Hou J, Pan M, Peng M, Peng X, Wan H, Liu X, Wu Q. Molecular Mechanisms of Tebuconazole Affecting the Social Behavior and Reproduction of Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3928. [PMID: 36900939 PMCID: PMC10002025 DOI: 10.3390/ijerph20053928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to explore the underlying mechanism of adverse effects caused by tebuconazole (TEB) on the reproduction of aquatic organisms In the present study, in order to explore the effects of TEB on reproduction, four-month-old zebrafish were exposed to TEB (0, DMSO, 0.4 mg/L, 0.8 mg/L, and 1.6 mg/L) for 21 days. After exposure, the accumulations of TEB in gonads were observed and the cumulative egg production was evidently decreased. The decline of fertilization rate in F1 embryos was also observed. Then the changes in sperm motility and histomorphology of gonads were discovered, evaluating that TEB had adverse effects on gonadal development. Additionally, we also found the alternations of social behavior, 17β-estradiol (E2) level, and testosterone (T) level. Furthermore, the expression levels of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis and social behavior were remarkably altered. Taken together, it could be concluded that TEB affected the egg production and fertilization rate by interfering with gonadal development, sex hormone secretion, and social behavior, which were eventually attributed to the disruption of the expressions of genes associated with the HPG axis and social behavior. This study provides a new perspective to understanding the mechanism of TEB-induced reproductive toxicity.
Collapse
Affiliation(s)
- Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiqi Lu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomin Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xitian Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hui Wan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| |
Collapse
|
13
|
Pesticides and Their Impairing Effects on Epithelial Barrier Integrity, Dysbiosis, Disruption of the AhR Signaling Pathway and Development of Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms232012402. [PMID: 36293259 PMCID: PMC9604036 DOI: 10.3390/ijms232012402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The environmental and occupational risk we confront from agricultural chemicals increases as their presence in natural habitats rises to hazardous levels, building a major part of the exposome. This is of particular concern in low- and middle-income countries, such as Brazil, known as a leading producer of agricultural commodities and consumer of pesticides. As long as public policies continue to encourage the indiscriminate use of pesticides and governments continue to support this strategy instead of endorsing sustainable agricultural alternatives, the environmental burden that damages epithelial barriers will continue to grow. Chronic exposure to environmental contaminants in early life can affect crucial barrier tissue, such as skin epithelium, airways, and intestine, causing increased permeability, leaking, dysbiosis, and inflammation, with serious implications for metabolism and homeostasis. This vicious cycle of exposure to environmental factors and the consequent damage to the epithelial barrier has been associated with an increase in immune-mediated chronic inflammatory diseases. Understanding how the harmful effects of pesticides on the epithelial barrier impact cellular interactions mediated by endogenous sensors that coordinate a successful immune system represents a crucial challenge. In line with the epithelial barrier hypothesis, this narrative review reports the available evidence on the effects of pesticides on epithelial barrier integrity, dysbiosis, AhR signaling, and the consequent development of immune-mediated inflammatory diseases.
Collapse
|
14
|
Liu F, Wang Y, Chen L, Bello BK, Zhang T, Yang H, Li X, Pan E, Feng H, Dong J. Difenoconazole disrupts the blood-brain barrier and results in neurotoxicity in carp by inhibiting the Nrf2 pathway mediated ROS accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114081. [PMID: 36113268 DOI: 10.1016/j.ecoenv.2022.114081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Excessive use of hard-to-degrade pesticides threatens the ecological health of aquatic systems. This study aimed to investigate difenoconazole (DFZ) residues in the environment induced neurotoxicity in carp and the underlying mechanisms. A total of thirty-six carps were divided into three groups and exposed to 0, 0.5, and 2.0 mg/L DFZ for 96 h, respectively. The alterations in behavior and blood-brain barrier (BBB) were examined, and potential mechanisms were explored using immunological assays and biochemical methods. The results showed that DFZ exposure caused behavioral freezing, reduced feeding, and neuronal necrosis in carp. Mechanistically, DFZ triggered ROS accumulation and destroyed the balance between oxidation and antioxidation with increased lipid peroxidation product MDA contents and reduced antioxidant enzymes SOD and CAT activities in the carp brain by inhibiting the NF-E2-related factor 2 (Nrf2) pathway. The activation of oxidative stress further reduced tight junction proteins and MMP levels, thereby destroying BBB and leading to DFZ leakage into the brain. Increased BBB permeability additionally led to DFZ activation of nuclear factor kappa-B signaling-mediated inflammatory cytokine storm, exacerbating neuroinflammation. Meanwhile, DFZ exposure activated mitochondria-associated apoptosis in the carp's brain by up-regulating Bcl-2 associated X protein, cleaved-caspase3, and cytochrome C and decreasing B-cell lymphoma-2 levels. Interestingly, the carp's brain initiated a protective autophagic response via the PI3K/AKT/TOR pathway intending to counteract the neurotoxicity of DFZ. Overall, we concluded that accumulation of DFZ at high concentrations in the aquatic systems disrupted the BBB and resulted in neurotoxicity in carp through inhibition of Nrf2 pathway-mediated ROS accumulation. This study provides a reference for monitoring DFZ residues in the environment and a new target for the treatment of DFZ-induced neurotoxicity in carp.
Collapse
Affiliation(s)
- Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Li Chen
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222000, China
| | - Babatunde Kazeem Bello
- State Key Laboratory of Rice Biology, Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China
| | - Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|