1
|
Chen Z, Mo Q, Luo S, Liang J, Li Y, Gao Y, Zhang C, Jiang L, Ma J, Yang S, Jiang F, Liu M, Liu S, Yang J. Exploring antiviral effect and mechanism of Jinye Baidu granules(JYBD)against influenza A virus through network pharmacology and in vitro and invivo experiments. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118720. [PMID: 39197802 DOI: 10.1016/j.jep.2024.118720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinye Baidu granules (JYBD) have been used to treat acute respiratory tract infections and demonstrated clinical efficacy for the treatment of emerging or epidemic respiratory viruses such as SARS-CoV-2 and influenza virus. AIM OF THE STUDY This study is to investigate the antiviral effect of JYBD against influenza A viruses (IAV) in vitro and in vivo and elucidate its underlying mechanism. MATERIALS AND METHODS Ultra-high-performance liquid chromatography connected with Orbitrap mass spectrometer (UHPLC-Orbitrap MS) was employed to describe the chemical profile of JYBD. The potential pathways and targets involved in JYBD against IAV infection were predicted by network pharmacology. The efficacy and mechanism of JYBD were validated through both in vivo and in vitro experiments. Moreover, combination therapy with JYBD and the classic anti-influenza drugs was also investigated. RESULTS A total of 126 compounds were identified by UHPLC-Orbitrap MS, of which 9 compounds were unambiguously confirmed with reference standards. JYBD could significantly inhibit the replication of multiple strains of IAV, especially oseltamivir-resistant strains. The results of qRT-PCR and WB demonstrated that JYBD could inhibit the excessive induction of pro-inflammatory cytokines induced by IAV infection and regulate inflammatory response through inhibiting JAK/STAT, NF-κB and MAPK pathways. Moreover, both JYBD monotherapy or in combination with oseltamivir could alleviate IAV-induced severe lung injury in mice. CONCLUSIONS JYBD could inhibit IAV replication and mitigate virus-induced excessive inflammatory response. Combinations of JYBD and neuraminidase inhibitors conferred synergistic suppression of IAV both in vitro and in vivo. It might provide a scientific basis for clinical applications of JYBD against influenza virus infected diseases.
Collapse
Affiliation(s)
- Zhixuan Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Qinxian Mo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Sinopharm Zhonglian Pharmaceutical Co., Ltd., Wuhan 430000, PR China
| | - Siqi Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jinlong Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yinyan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yinhuang Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Chunyu Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Linrui Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jun Ma
- Sinopharm Zhonglian Pharmaceutical Co., Ltd., Wuhan 430000, PR China
| | - Sizu Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Feng Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Jie Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
2
|
Zhang W, Ma L, Xie W, Li X, Zhang J, Sun J. Advances in the application of traditional Chinese medicine during the COVID-19 recovery period: A review. Medicine (Baltimore) 2024; 103:e37683. [PMID: 38579075 PMCID: PMC10994423 DOI: 10.1097/md.0000000000037683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
Since the emergence of the Coronavirus Disease 2019 (COVID-19) outbreak, significant advancements has been made in research, from limited knowledge about the disease to the development of a vaccine. Although the severity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) appears to be decreasing and the threat of COVID-19 is waning, there have been widespread concerns about persistent symptoms or sequelae experienced by some patients even after recovering from COVID-19. Traditional Chinese medicine (TCM) has shown favorable treatment outcomes during the onset of COVID-19, and extensive studies have been carried out to explore the efficacy of TCM interventions during the COVID-19 recovery period. The purpose of this review is to comprehensively analyze these studies and provide new insights for the prevention and treatment of the post-COVID-19 condition.
Collapse
Affiliation(s)
- Weixin Zhang
- Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linlin Ma
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wei Xie
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xingxing Li
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juhua Zhang
- Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ji Sun
- Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Nursing and Allied Health Sciences, St. Paul University Manila, Manila, Philippines
| |
Collapse
|
3
|
Gasmi A, Tippairote T, Mujawdiya PK, Menzel A, Lysiuk R, Shanaida M, Lenchyk L, Peana M, Bjørklund G. Traditional Chinese Medicine as the Preventive and Therapeutic Remedy for COVID-19. Curr Med Chem 2024; 31:3118-3131. [PMID: 36999715 DOI: 10.2174/0929867330666230331084126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 04/01/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic still has tremendous impacts on the global socio-economy and quality of living. The traditional Chinese Medicines (TCM) approach showed encouraging results during previous outbreaks of Severe Acute Respiratory Syndrome-related Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). With limited treatment availability, TCM herbs and formulations could be useful to reduce COVID-19 symptoms and potential sources for discovering novel therapeutic targets. We reviewed 12 TCM herbs and formulations recommended for COVID-19 management by the National Health Commission and as National Administration of Traditional Chinese Medicine of the People's Republic of China. This article explored the Chinese national authorities' guidelines from 2003 to 2020, the scientific data in public databases for the recommended TCM remedies, and their potential mechanistic actions in COVID-19 management. Several TCM herbs and formulations could potentially benefit COVID-19 management. The recommended TCM oral preparations list includes Huoxiang zhengqi, Jinhua Qinggan, Lianhua Qingwen, and Shufeng jiedu; the recommended injection preparations comprise Xiyanping Xuebijing, Re-Du-Ning, Tanreqing, Xingnaojing, Shenfu, Shengmai, and Shenmai. TCM remedies are viable options for symptom alleviation and management of COVID-19. The current SARS-CoV-2 pandemic presents an opportunity to find novel therapeutic targets from TCM-active ingredients. Despite the recommendations in Chinese National guidelines, these remedies warrant further assessments in well-designed clinical trials to ascertain their efficacy in the treatment of COVID-19.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Torsak Tippairote
- Nutritional and Environmental Section, Thailand Initiatives for Functional Medicine, Bangkok, Thailand
- Nutritional and Environmental Medicine, Healing Passion Medical Center, Bangkok, Thailand
| | | | - Alain Menzel
- Laboratoires Réunis, Junglinster, Luxembourg, UK
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Larysa Lenchyk
- Department of Quality, Standardization and Certification of Medicines of IATPS, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
4
|
Liu K, Jin Y, Gu L, Li M, Wang P, Yin G, Wang S, Wang T, Wang L, Wang B. Classification and Authentication of Lonicerae Japonicae Flos and Lonicerae Flos by Using 1H-NMR Spectroscopy and Chemical Pattern Recognition Analysis. Molecules 2023; 28:6860. [PMID: 37836702 PMCID: PMC10574709 DOI: 10.3390/molecules28196860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Lonicerae japonicae flos and Lonicerae flos are increasingly widely used in food and traditional medicine products around the world. Due to their high demand and similar appearance, they are often used in a confused or adulterated way; therefore, a rapid and comprehensive analytical method is highly required. In this case, the comparative analysis of a total of 100 samples with different species, growth modes, and processing methods was carried out by nuclear magnetic resonance (1H-NMR) spectroscopy and chemical pattern recognition analysis. The obtained 1H-NMR spectrums were employed by principal component analysis (PCA), partial least-squares discriminant analysis (PLS-DA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and linear discriminant analysis (LDA). Specifically, after the dimensionality reduction of data, linear discriminant analysis (LDA) exhibited good classification abilities for the species, growth modes, and processing methods. It is worth noting that the sample prediction accuracy from the testing set and the cross-validation predictions of the LDA models were higher than 95.65% and 98.1%, respectively. In addition, the results showed that macranthoidin A, macranthoidin B, and dipsacoside B could be considered as the main differential components of Lonicerae japonicae flos and Lonicerae Flos, while secoxyloganin, secologanoside, and sweroside could be responsible for distinguishing cultivated and wild Lonicerae japonicae Flos. Accordingly, 1H-NMR spectroscopy combined with chemical pattern recognition gives a comprehensive overview and provides new insight into the quality control and evaluation of Lonicerae japonicae flos.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lijun Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (K.L.); (Y.J.); (L.G.); (M.L.); (P.W.); (G.Y.); (S.W.); (T.W.)
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (K.L.); (Y.J.); (L.G.); (M.L.); (P.W.); (G.Y.); (S.W.); (T.W.)
| |
Collapse
|
5
|
Qiao X, Huang F, Shi X, Deng X, Zhang C, Mei S, Wang Z, Zhou C, Jiang C, Tan X. Herbal small RNAs in patients with COVID-19 linked to reduced DEG expression. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1280-1289. [PMID: 36738432 PMCID: PMC9898691 DOI: 10.1007/s11427-022-2225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/16/2022] [Indexed: 02/05/2023]
Abstract
In China, more than 80% of patients with coronavirus disease 2019 (COVID-19) received traditional Chinese medicine (TCM) as a treatment and their clinical efficacy have been reported. However, the underlying molecular mechanism remains unclear. Previous studies have identified herbal small RNAs (sRNAs) as novel functional components. In this study, a cohort of 22 patients with COVID-19 treated with Toujie Quwen (TQ) granules was analyzed. We observed thousands of herbal small RNAs that entered the blood cells of patients after the consumption of TQ granules. In response to this treatment, the reduced differentially expressed genes (DEGs) were highly correlated with the predicted target genes of the most prevalent herbal sRNAs detected in the blood. Moreover, the predicted target genes of the top 30 sRNAs from each of the 245 TCMs in the Bencao sRNA Atlas overlapped with 337 upregulated DEGs in patients with mild COVID-19, and 33 TCMs, with more than 50% overlapping genes were identified as effective TCMs. These predicted target genes of top 30 sRNAs from Juhong, Gualoupi and Foshou were confirmed experimentally. Our results not only elucidated a novel molecular mechanism of TCM potential clinical efficacy for COVID-19 patients, but also provided 33 effective COVID-19 TCMs for prescription optimization.
Collapse
Affiliation(s)
- Xiangyu Qiao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fengming Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiaohu Shi
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xingyu Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Cong Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Song Mei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Zhiqing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Congzhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xinghua Tan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China.
| |
Collapse
|
6
|
Zhao N, Pandey K, Lakshmanan S, Zhao R, Fan J, Zhang J, Bachmann MO, Fan H, Song F. Characteristics and result reporting of registered COVID-19 clinical trials of Chinese and Indian traditional medicine: A comparative analysis. Front Med (Lausanne) 2023; 10:1118269. [PMID: 36873866 PMCID: PMC9981796 DOI: 10.3389/fmed.2023.1118269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Objective To assess the main characteristics and result reporting of registered COVID-19 interventional trials of traditional Chinese medicine and traditional Indian medicine. Materials and methods We assessed design quality and result reporting of COVID-19 trials of traditional Chinese medicine (TCM) and traditional Indian medicine (TIM) registered before 10 February 2021, respectively, on Chinese Clinical Trial Registry (ChiCTR) and Clinical Trial Registry-India (CTRI). Comparison groups included registered COVID-19 trials of conventional medicine conducted in China (WMC), India (WMI), and in other countries (WMO). Cox regression analysis was used to assess the association between time from trial onset to result reporting and trial characteristics. Results The proportion of COVID-19 trials investigating traditional medicine was 33.7% (130/386) among trials registered on ChiCTR, and 58.6% (266/454) on CTRI. Planned sample sizes were mostly small in all COVID-19 trials (median 100, IQR: 50-200). The proportion of trials that were randomized was 75.4 and 64.8%, respectively, for the TCM and TIM trials. Blinding measures were used in 6.2% of the TCM trials, and 23.6% of the TIM trials. Cox regression analysis revealed that planned COVID-19 clinical trials of traditional medicine were less likely to have results reported than trials of conventional medicine (hazard ratio 0.713, 95% confidence interval: 0.541-0.939; p = 0.0162). Conclusion There were considerable between-country and within-country differences in design quality, target sample size, trial participants, and reporting of trial results. Registered COVID-19 clinical trials of traditional medicine were less likely to report results than trials of conventional medicine.
Collapse
Affiliation(s)
- Nan Zhao
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Kritika Pandey
- Integrative Ayurveda Network, Aarogyam (UK) CIC, Leicester, United Kingdom
| | | | - Ran Zhao
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingchun Fan
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Junhua Zhang
- Evidence-Based Medicine Centre, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Max O Bachmann
- Faculty of Medicine and Health Science, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hong Fan
- School of Nursing, Nanjing Medical University, Nanjing, China.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fujian Song
- Faculty of Medicine and Health Science, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
7
|
Zeng Z. Assessment of the potential value of combining western medicine therapies with traditional chinese medicine in the treatment of COVID-19: Mechanistic perspectives. Technol Health Care 2023; 31:169-184. [PMID: 37038790 PMCID: PMC10200170 DOI: 10.3233/thc-236015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
BACKGROUND The pandemic caused by the novel coronavirus disease (COVID-19) since early 2020 is one of the most significant global health issues in history. Although there is currently no specific treatment for COVID-19, researchers have provided a whole array of potential treatments, both from the Western medicine approach, which is molecular target and pathogenesis based, and from the traditional Chinese medicine (TCM) approach, which is based on the exposure to toxins/pathogens and the balance of the body to combat them for recovery. OBJECTIVE The aim of this research is to find combinations of Western medicine and TCM that may offer better therapeutic efficacy synergystically with a better adverse events profile. The findings of the research may provide a new insight in the development of the treatment of COVID-19. METHODS From the Western medicine perspective, drugs target the mechanisms of viral infection, including the stages of viral entry (Arbidol, Camostat Mesylate, Convalescent Plasma therapy) and viral replication (Lopinavir/Ritonavir, Redemsivir, Ribavirin). Additional therapies target host defenses, preventing cytokine storms (Tocilizumab) and stimulating the immune system (Interferons). On the other hand, TCM also proposed a number of treatment methods for COVID-19 with new scientific approaches identifying their antiviral and immunomodulatory activities. The novel combination of Western medicine and TCM can be proposed by analyzing their respective molecular targets. RESULTS Although TCM is not generally accepted in the Western community because of the general lack of knowledge on their detailed mechanisms, studies and clinical trials suggest that TCM could be beneficial in combating COVID-19. CONCLUSION Based on the principle of combining TCM and Western medicine, two combinations are tested effective in clinical trials, and three possible combinations that might be effective are proposed in the paper.
Collapse
Affiliation(s)
- Zirui Zeng
- International Department, The Affiliated High School of South China Normal University, Guangzhou, Guangdong, China
- University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
8
|
Zheng S, Liu S, Hou A, Wang S, Na Y, Hu J, Jiang H, Yang L. Systematic review of Lonicerae Japonicae Flos: A significant food and traditional Chinese medicine. Front Pharmacol 2022; 13:1013992. [PMID: 36339557 PMCID: PMC9626961 DOI: 10.3389/fphar.2022.1013992] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
Lonicerae Japonicae Flos has been used as a tea and medicine for more than 1,500 years. It has the functions of clearing heat, detoxification, and is often used to treat carbuncle, furuncle, throat arthralgia, erysipelas, heat-toxic blood dysentery, febrile fever. This paper summarizes the botany, ethnopharmacology, chemical composition and pharmacological action of Lonicerae Japonicae Flos from 1986 to 2022, and looks forward to the future research direction of Lonicerae Japonicae Flos. At present, the components isolated from Lonicerae Japonicae Flos include essential oils, organic acids, flavonoids, iridoids, saponins and other compounds. It has the effects of anti-inflammation, anti-virus, anti-bacteria, anti-oxidation, anti-tumor, protect liver and galltesticles, hypotensive, hypolipidemic, anti-thrombosis, anti-allergy, immune regulation and so on. It is often used in clinical treatment of diarrhea, hematochezia, febrile disease, exogenous wind-heat, and cold, swelling and toxin of carbuncle, sore throat and so on. The comprehensive evaluation of the quality of Lonicerae Japonicae Flos and the understanding of multi-target network pharmacology also need to be studied. As a kind of health food with high value, LJF is worthy of further promotion and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hai Jiang
- *Correspondence: Hai Jiang, ; Liu Yang,
| | - Liu Yang
- *Correspondence: Hai Jiang, ; Liu Yang,
| |
Collapse
|
9
|
Plant Metabolites as SARS-CoV-2 Inhibitors Candidates: In Silico and In Vitro Studies. Pharmaceuticals (Basel) 2022; 15:ph15091045. [PMID: 36145266 PMCID: PMC9501068 DOI: 10.3390/ph15091045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/08/2023] Open
Abstract
Since it acquired pandemic status, SARS-CoV-2 has been causing all kinds of damage all over the world. More than 6.3 million people have died, and many cases of sequelae are in survivors. Currently, the only products available to most of the world’s population to fight the pandemic are vaccines, which still need improvement since the number of new cases, admissions into intensive care units, and deaths are again reaching worrying rates, which makes it essential to compounds that can be used during infection, reducing the impacts of the disease. Plant metabolites are recognized sources of diverse biological activities and are the safest way to research anti-SARS-CoV-2 compounds. The present study computationally evaluated 55 plant compounds in five SARS-CoV-2 targets such Main Protease (Mpro or 3CL or MainPro), RNA-dependent RNA polymerase (RdRp), Papain-Like Protease (PLpro), NSP15 Endoribonuclease, Spike Protein (Protein S or Spro) and human Angiotensin-converting enzyme 2 (ACE-2) followed by in vitro evaluation of their potential for the inhibition of the interaction of the SARS-CoV-2 Spro with human ACE-2. The in silico results indicated that, in general, amentoflavone, 7-O-galloylquercetin, kaempferitrin, and gallagic acid were the compounds with the strongest electronic interaction parameters with the selected targets. Through the data obtained, we can demonstrate that although the indication of individual interaction of plant metabolites with both Spro and ACE-2, the metabolites evaluated were not able to inhibit the interaction between these two structures in the in vitro test. Despite this, these molecules still must be considered in the research of therapeutic agents for treatment of patients affected by COVID-19 since the activity on other targets and influence on the dynamics of viral infection during the interaction Spro x ACE-2 should be investigated.
Collapse
|
10
|
Zhang L, Ma Y, Shi N, Tong L, Liu S, Ji X, Chen R, Fan Y, Liang N, Ge Y, Gao H, Chen G, Wang W, Zhang H, Wang Y, Wang Y. Effect of Qingfei Paidu decoction combined with Western medicine treatments for COVID-19: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154166. [PMID: 35636170 PMCID: PMC9107386 DOI: 10.1016/j.phymed.2022.154166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Qingfei Paidu decoction (QFPDD) showed to be beneficial for the treatment of coronavirus disease 2019 (COVID-19) in China. PURPOSE This study aimed to systematically assemble the evidence on the efficacy and safety of QFPDD combined with Western medicine treatments (WMT) for COVID-19. STUDY DESIGN Systematic review and meta-analysis. METHODS A comprehensive literature search was conducted in PubMed, Embase, Cochrane Library, CNKI, CSTJ, CBM, Wanfang Data for clinical trials with a control arm until January 13, 2022. Studies matched the selection criteria were included. Data extraction and quality assessment of the included studies were independently conducted by two reviewers. Review Manager 5.4 was used for meta-analysis. RESULTS A total of 9 trials including 1108 COVID-19 patients met the selection criteria. Meta-analysis demonstrated that QFPDD combined with WMT reduced aggravation rate (AR) by 71% [risk ratio (RR) = 0.29, 95% confidence intervals (CI) (0.17, 0.51)], increased effective rate (ER) by 13% [RR = 1.13, 95%CI (1.04, 1.22)], shortened 4.78 days of viral shedding [95%CI (-5.79, -3.77)] and 4.45 days of hospital stay [95%CI (-6.05, -2.86)], also decreased the incidence of adverse events (AE) by 56% [RR = 0.44, 95%CI (0.22, 0.89)]. CONCLUSION QFPDD combined with WMT might reduce the proportion of severe cases and the incidence of AE, shorten the duration of viral shedding and length of hospital stay. More randomized controlled trials (RCTs) are required to confirm our findings in the future.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Ma
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lin Tong
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sihong Liu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinyu Ji
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Renbo Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yipin Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ning Liang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Youwen Ge
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjie Gao
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangkun Chen
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Wang
- President's Office, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huamin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yongyan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
11
|
Therapeutic mechanisms and impact of traditional Chinese medicine on COVID-19 and other influenza diseases. PHARMACOLOGICAL RESEARCH. MODERN CHINESE MEDICINE 2022; 2:100029-100029. [PMCID: PMC8666147 DOI: 10.1016/j.prmcm.2021.100029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
Abstract
Coronavirus disease 2019 (COVID-19), first reported in Wuhan, China, has rapidly spread worldwide. Traditional Chinese medicine (TCM) has been used to prevent and treat viral epidemics and plagues for over 2,500 years. In the guidelines on fighting against COVID-19, the National Health Commission of the People's Republic of China has recommended certain TCM formulas, namely Jinhua Qinggan granule (JHQGG), Lianhua Qingwen granule (LHQWG), Qingfei Paidu decoction (QFPDD), Xuanfei Baidu granule (XFBD), Xuebijing injection (XBJ), and Huashi Baidu granule (HSBD) for treating COVID-19 infected individuals. Among these six TCM formulas, JHQGG and LHQWG effectively treated mild/moderate and severe COVID-19 infections. XFBD therapy is recommended for mild COVID-19 infections, while XBJ and HSBD effectively treat severe COVID-19 infections. The internationalization of TCM faces many challenges due to the absence of a clinical efficacy evaluation system, insufficient research evidence, and a lack of customer trust across the globe. Therefore, evidence-based research is crucial in battling this infectious disease. This review summarizes SARS-CoV-2 pathogenesis and the history of TCM used to treat various viral epidemics, with a focus on six TCM formulas. Based on the evidence, we also discuss the composition of various TCM formulas, their underlying therapeutic mechanisms, and their role in curing COVID-19 infections. In addition, we evaluated the roles of six TCM formulas in the treatment and prevention of other influenza diseases, such as influenza A (H1N1), severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). Furthermore, we highlighted the efficacy and side effects of single prescriptions used in TCM formulas.
Collapse
|
12
|
Li J, Yang Y, Xiong B, Lu J, Zhou Y, Li C, Hu X. The immunomodulatory effects of Qushi Jianpi Hewei Decoction (QJHD) for patients with COVID-19 by metagenomics and transcriptomic sequencing. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022. [PMCID: PMC8759103 DOI: 10.1016/j.prmcm.2022.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ethnopharmacological relevance Several studies have confirmed that intestinal microflora dysbiosis correlates with the severity of COVID-19 patients. Clinical meta-analysis and our data show that the circulating miRNAs like miRNA-146 and the levels of serum cytokines in the peripheral blood are closely related to mild to moderate COVID-19 patients. Despite the widespread use of traditional herbal medicine for COVID-19 in China, the mechanisms remain largely uncovered. Aim of the study We conducted an observational case-control study to verify the efficacy and safety of traditional Chinese herbal medicine Qushi Jianpi Hewei Decoction (QJHD) for mild to moderate COVID-19 patients, and investigated the potential biomolecular mechanisms through metagenomics and transcriptomic sequencing methods. Materials and methods QJHD was given orally twice a day individually for 14 to 28 days. A total of 10 patients were enrolled in the study and given QJHD. We observed advantages in clinical cure time rate, and the relief of gastrointestinal symptoms as compared with reports in the literature. The metagenomics sequencing data of fecal microflora and transcriptomic sequencing data of blood cell in patients with SARS-Cov-2 infection patients were selected compared to the healthy control donors. Results No serious adverse events were reported. Meanwhile, the transcriptome analysis showed a decrease of the hsa-miR-21-5p expression in peripheral blood without QJHD. The species composition analysis showed an increase in the expression of Faecalibacterium prausnitzii in the intestinal tract; The interleukin-10 (IL-10) expression also in COVID-19 patient decreased in peripheral blood compared with healthy control donors. And we found an improvement in these parameters in patients taking QJHD. Conclusions Our findings show that QJHD could improve clinical outcomes of mild to moderate COVID-19 patients, probably through beneficial immunomodulatory effects by regulating Faecalibacterium prausnitzii in the intestinal tract and hsa-miR-21 and IL-10 expression in peripheral blood. (chictr.org.cn, ChiCTR2000030305)
Collapse
|
13
|
Abstract
COVID-19, the infectious disease caused by the beta-corona virus SARS-CoV2, has posed a global health threat causing more than five million of deaths in the last two years in the world. Although the disease often presents with mild cold-like symptoms, it may have lethal consequences following thromboembolisms, hyperinflammation and cytokine storm eventually leading to pulmonary fibrosis and multiple organ failure. Despite the progress made in the understanding of the SARS-CoV2 pathology and the clinical management of COVID-19, the viral illness is still a health concern since outbreaks continue to resurge due to the emergence of mutant variants of the virus that resist the vaccines. Therefore, there is an urgent need for therapeutics that can block SARS-CoV2 viral transmission and the progression from infection to severe symptomatic illness. Natural products could be a valuable source of drugs for the management of COVID-19 disease, particularly because they can act on multitargets and through different mechanisms including inhibition of biochemical pathways, epigenetic regulation of gene expression, modulation of immune response, regulation of pathophysiological stress response. Here we present an overview of the natural products that possess SARS-CoV2 antiviral activity and the potential to benefit the management of COVID-19.
Collapse
Affiliation(s)
- Ciro Isidoro
- Corresponding author. Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via P. Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
14
|
Hasan A, Biswas P, Bondhon TA, Jannat K, Paul TK, Paul AK, Jahan R, Nissapatorn V, Mahboob T, Wilairatana P, Hasan MN, de Lourdes Pereira M, Wiart C, Rahmatullah M. Can Artemisia herba-alba Be Useful for Managing COVID-19 and Comorbidities? Molecules 2022; 27:492. [PMID: 35056809 PMCID: PMC8779608 DOI: 10.3390/molecules27020492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The focus of this roadmap is to evaluate the possible efficacy of Artemisia herba-alba Asso. (Asteraceae) for the treatment of COVID-19 and some of its symptoms and several comorbidities using a combination of in silico (molecular docking) studies, reported ethnic uses, and pharmacological activity studies of this plant. In this exploratory study, we show that various phytochemicals from Artemisia herba-alba can be useful against COVID-19 (in silico studies) and for its associated comorbidities. COVID-19 is a new disease, so reports of any therapeutic treatments against it (traditional or conventional) are scanty. On the other hand, we demonstrate, using Artemisia herba-alba as an example, that through a proper search and identification of medicinal plant(s) and their phytochemicals identification using secondary data (published reports) on the plant's ethnic uses, phytochemical constituents, and pharmacological activities against COVID-19 comorbidities and symptoms coupled with the use of primary data obtained from in silico (molecular docking and molecular dynamics) studies on the binding of the selected plant's phytochemicals (such as: rutin, 4,5-di-O-caffeoylquinic acid, and schaftoside) with various vital components of SARS-CoV-2, it may be possible to rapidly identify plants that are suitable for further research regarding therapeutic use against COVID-19 and its associated symptoms and comorbidities.
Collapse
Affiliation(s)
- Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (A.H.); (T.A.B.); (K.J.); (T.K.P.); (R.J.)
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (P.B.); (M.N.H.)
| | - Tohmina Afroze Bondhon
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (A.H.); (T.A.B.); (K.J.); (T.K.P.); (R.J.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (A.H.); (T.A.B.); (K.J.); (T.K.P.); (R.J.)
| | - Tridib K. Paul
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (A.H.); (T.A.B.); (K.J.); (T.K.P.); (R.J.)
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (A.H.); (T.A.B.); (K.J.); (T.K.P.); (R.J.)
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand; (V.N.); (T.M.)
| | - Tooba Mahboob
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand; (V.N.); (T.M.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (P.B.); (M.N.H.)
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (A.H.); (T.A.B.); (K.J.); (T.K.P.); (R.J.)
| |
Collapse
|
15
|
Wu H, Dai R, He P, Liang J, Li Q, Yang J, Lu H, Guo Q, Mao W, Ji C. Characteristics analysis for clinical study design relating to COVID-19 based on the database of ClinicalTrials.gov. Int J Infect Dis 2022; 116:210-215. [PMID: 35017106 PMCID: PMC8743275 DOI: 10.1016/j.ijid.2022.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Objective The novel coronavirus disease (COVID-19) outbreak is currently ravaging populations worldwide. Many studies were registered and conducted in rapid response to the epidemic, but how to choose the proper design for clinical trials remains the main concern. This study aimed to determine the fundamental characteristics of study design during the COVID-19 pandemic and provide references for other emerging infectious diseases. Methods We searched the database of ClinicalTrials.gov with the keyword “COVID-19” and compared the results with the design features of other conventional studies except for COVID-19. Results From January 1, 2020 to September 30, 2021, 55,334 trials were registered at ClinicalTrials.gov. Of all the registered trials, 6,408 were related to COVID-19 (11.58%). There were significant differences in the proportion of observational studies between COVID-19 (43.48%) and others (23.27%). The completion rate of observational trials and interventional trials in COVID-19 was 29.04% and 25.84%, respectively. COVID-19 trials showed a higher rate of completion than others (P<0.01). The time distribution and trend of observational studies and interventional studies varied considerably. Conclusion Appropriately designed trials can help to improve research efficiency and reduce the possibility of research failure. In addition to randomized controlled trials, observational and single-armed studies are also worth considering.
Collapse
Affiliation(s)
- Hanting Wu
- School of Public Health, Zhejiang Chinese Medical University
| | - Rongchen Dai
- School of Public Health, Zhejiang Chinese Medical University
| | - Peijie He
- School of Public Health, Zhejiang Chinese Medical University
| | - Juan Liang
- School of Public Health, Zhejiang Chinese Medical University
| | - Qiushuang Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University
| | - Junchao Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University
| | - Hanti Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University
| | - Qing Guo
- School of Public Health, Zhejiang Chinese Medical University
| | - Wei Mao
- The First Affiliated Hospital of Zhejiang Chinese Medical University
| | - Conghua Ji
- School of Public Health, Zhejiang Chinese Medical University; The First Affiliated Hospital of Zhejiang Chinese Medical University
| |
Collapse
|
16
|
Liu J, Dong F, Robinson N. State-of-the-art evidence of traditional Chinese medicine for treating coronavirus disease 2019. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [PMCID: PMC8741624 DOI: 10.1016/j.jtcms.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Traditional Chinese medicine has widely been used internationally in the treatment of coronavirus disease 2019 (COVID-19) since January 2020. There has been great interest in initiating clinical studies testing different Chinese medicine therapies for COVID-19, but the majority of registered studies have yet to move forward due to a lack of COVID-19 patients in mainland China. The aim of this article was to systematically review the current clinical research evidence on Chinese medicine for treating COVID-19 from international and domestic bibliographic databases to reflect on the advances in this field.
Collapse
|
17
|
Xiong Y, Tian Y, Ma Y, Liu B, Ruan L, Lu C, Huang L. The effect of Huashibaidu formula on the blood oxygen saturation status of severe COVID-19: A retrospective cohort study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153868. [PMID: 34929564 PMCID: PMC8641428 DOI: 10.1016/j.phymed.2021.153868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/08/2021] [Accepted: 11/27/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Huashibaidu Formula (HSBD) for the COVID-19 treatment has been supported by the China's Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia. However, it is not clear whether HSBD can improve blood oxygen saturation and when it should be used with conventional therapies. PURPOSE To access the effect of HSBD combined with conventional treatment on blood oxygen saturation of COVID-19 patients. METHODS A single-center retrospective cohort study was conducted to collect the confirmed severe COVID-19 patients' information, treated by the National Traditional Chinese Medicine Medical Team at the Jinyintan hospital between January 24 and March 31, 2020. According to whether HSBD was used during hospitalization, participants were separated into the conventional treatment group and the HSBD group (HSBD and conventional treatment). The primary observation indicators included the time for relieving blood oxygen saturation and the improvement ratio of blood oxygen saturation in each group. RESULTS Of 111 patients with severe COVID-19, 53.2% (59/111) received HSBD, and 46.8% (52/111) only received conventional treatment, respectively. No statistically significant difference was found in image, clinical symptoms, and past medical history between the two groups (p > 0.05). Notably, the median time for relieving blood oxygen saturation in the conventional treatment group was 11 days (IQR, 8-14.25), while that in the HSBD group was only 6 days (IQR, 3.25-10.75), which was significantly shortened by 4.09 days (95%CI, 2.07-6.13; p= 0.0001), compared with the conventional treatment group. After repeated measurement design analysis, the main effect within times (p< 0.001) and the main effect were significantly different under the oxygen saturation dimension between two groups (p= 0.004). However, time and group interaction were observed no significant difference (p= 0.094). After 14 days of treatment, the improvement ratio of the HSBD group over the conventional treatment group was 1.20 (95%CI, 0.89-1.61). CONCLUSION For severe COVID-19 patients, the HSBD has a tendency to shorten the time for relieving blood oxygen saturation. After taking a course of HSBD, the effect can be more obvious.
Collapse
Affiliation(s)
- Yibai Xiong
- Institute of Basic Research In Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yaxin Tian
- Institute of Basic Research In Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Ma
- Institute of Basic Research In Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bin Liu
- Institute of Basic Research In Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lianguo Ruan
- Department of Infectious Diseases, Jinyintan hospital, Wuhan, 430024, China
| | - Cheng Lu
- Institute of Basic Research In Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
18
|
Li Y, Li B, Wang P, Wang Q. Traditional Chinese Medicine, Qingfei Paidu Decoction and Xuanfei Baidu Decoction, Inhibited Cytokine Production via NF-κB Signaling Pathway in Macrophages: Implications for Coronavirus Disease 2019 (COVID-19) Therapy. Front Pharmacol 2021; 12:722126. [PMID: 34764867 PMCID: PMC8576273 DOI: 10.3389/fphar.2021.722126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Aims: Qingfei Paidu decoction (QPD) and Xuanfei Baidu decoction (XBD) are two typical traditional Chinese medicines with proven efficacy for the treatment of SARS-CoV-2, although the underlying mechanism is not well defined. Blunted immune response and enhanced production of pro-inflammatory cytokines (cytokine storm) are two main features observed in patients infected with SARS-CoV-2. Analysis based on network pharmacology has revealed that both QPD and XBD played an important role in the regulation of host immunity. We therefore investigated the role of QPD and XBD in the modulation of innate immunity in vitro, focusing on the type 1 interferon (IFN) signaling pathway in A549 cells and pro-inflammatory cytokine production in macrophages. Methods: A549 cells were treated with QPD or XBD and the production of endogenous IFNα and IFNβ as well as the expression levels of some interferon-stimulated genes (ISGs) were detected by reverse transcriptase-quantitative PCR (RT-qPCR). Macrophages derived from THP-1 cells were treated with QPD or XBD and their pro-inflammatory cytokine expression levels were measured by RT-qPCR, 6 h post LPS stimulation. In addition, the expression levels of some pro-inflammatory cytokines were further analyzed by ELISA. The effect of QPD and XBD on the NF-κB signaling pathway and the pinocytosis activity of THP-1-derived macrophages were evaluated by Western blot and neutral red uptake assay, respectively. Results: Although QPD and XBD showed very little effect on the type 1 IFN signaling pathway in A549 cells, either QPD or XBD markedly inhibited the production of pro-inflammatory markers including interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and chemokine ligand 10 in THP-1-derived M1 macrophages. In addition, the phosphorylation of IκBα and NF-κB p65 during the process of macrophage polarization was significantly suppressed following QPD or XBD treatment. QPD and XBD also suppressed the pinocytosis activity of macrophages. Conclusion: QPD and XBD have been shown to have robust anti-inflammatory activities in vitro. Our study demonstrated that both QPD and XBD decreased pro-inflammatory cytokine expression, inhibited the activation of the NF-κB signaling pathway, and blunted pinocytosis activity in THP-1-derived macrophages.
Collapse
Affiliation(s)
- Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- The Joint Laboratory on Transfusion-transmitted Diseases (TTD) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning, China
| | - Bin Li
- The Joint Laboratory on Transfusion-transmitted Diseases (TTD) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning, China
| | - Pan Wang
- The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, China
| | - Qinghua Wang
- The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, China
| |
Collapse
|
19
|
Zhao H, Zeng S, Chen L, Sun Q, Liu M, Yang H, Ren S, Ming T, Meng X, Xu H. Updated pharmacological effects of Lonicerae japonicae flos, with a focus on its potential efficacy on coronavirus disease-2019 (COVID-19). Curr Opin Pharmacol 2021; 60:200-207. [PMID: 34461565 PMCID: PMC8402937 DOI: 10.1016/j.coph.2021.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
Lonicerae japonicae flos (LJF), known as Jin Yin Hua in Chinese, is one of the most commonly used traditional Chinese herbs and nutraceuticals. Nowadays, LJF is broadly applied in an array of afflictions, such as fever, sore throat, flu infection, cough, and arthritis, with the action mechanism to be elucidated. Here, we strove to summarize the main phytochemical components of LJF and review its updated pharmacological effects, including inhibition of inflammation, pyrexia, viruses, and bacteria, immunoregulation, and protection of the liver, nervous system, and heart, with a focus on the potential efficacy of LJF on coronavirus disease–2019 based on network pharmacology so as to fully underpin the utilization of LJF as a medicinal herb and a favorable nutraceutical in daily life.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Safarchi A, Fatima S, Ayati Z, Vafaee F. An update on novel approaches for diagnosis and treatment of SARS-CoV-2 infection. Cell Biosci 2021; 11:164. [PMID: 34420513 PMCID: PMC8380468 DOI: 10.1186/s13578-021-00674-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) has made a serious public health and economic crisis worldwide which united global efforts to develop rapid, precise, and cost-efficient diagnostics, vaccines, and therapeutics. Numerous multi-disciplinary studies and techniques have been designed to investigate and develop various approaches to help frontline health workers, policymakers, and populations to overcome the disease. While these techniques have been reviewed within individual disciplines, it is now timely to provide a cross-disciplinary overview of novel diagnostic and therapeutic approaches summarizing complementary efforts across multiple fields of research and technology. Accordingly, we reviewed and summarized various advanced novel approaches used for diagnosis and treatment of COVID-19 to help researchers across diverse disciplines on their prioritization of resources for research and development and to give them better a picture of the latest techniques. These include artificial intelligence, nano-based, CRISPR-based, and mass spectrometry technologies as well as neutralizing factors and traditional medicines. We also reviewed new approaches for vaccine development and developed a dashboard to provide frequent updates on the current and future approved vaccines.
Collapse
Affiliation(s)
- Azadeh Safarchi
- School of Biotechnology and Biomolecular Science, University of New South Wales, NSW Sydney, Australia
| | - Shadma Fatima
- School of Biotechnology and Biomolecular Science, University of New South Wales, NSW Sydney, Australia
- Ingham Institute of Applied Medical Research, Liverpool, Australia
| | - Zahra Ayati
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Science, University of New South Wales, NSW Sydney, Australia
- UNSW Data Science Hub University of New South Wales, NSW Sydney, Australia
| |
Collapse
|
21
|
Chen Z, Lv Y, Xu H, Deng L. Herbal Medicine, Gut Microbiota, and COVID-19. Front Pharmacol 2021; 12:646560. [PMID: 34305582 PMCID: PMC8293616 DOI: 10.3389/fphar.2021.646560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 19 (COVID-19) is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has grown to a worldwide pandemic with substantial mortality. The symptoms of COVID-19 range from mild flu-like symptoms, including cough and fever, to life threatening complications. There are still quite a number of patients with COVID-19 showed enteric symptoms including nausea, vomiting, and diarrhea. The gastrointestinal tract may be one of the target organs of SARS-CoV-2. Angiotensin converting enzyme 2 (ACE2) is the main receptor of SARS-CoV-2 virus, which is significantly expressed in intestinal cells. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Intestinal flora imbalance and endotoxemia may accelerate the progression of COVID-19. Many herbs have demonstrated properties relevant to the treatment of COVID-19, by supporting organs and systems of the body affected by the virus. Herbs can restore the structure of the intestinal flora, which may further modulate the immune function after SARS-CoV-2 infection. Regulation of intestinal flora by herbal medicine may be helpful for the treatment and recovery of the disease. Understanding the role of herbs that regulate intestinal flora in fighting respiratory virus infections and maintaining intestinal flora balance can provide new ideas for preventing and treating COVID-19.
Collapse
Affiliation(s)
- Ziqi Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Medical College, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
22
|
Qi F, Tang W. Traditional Chinese medicine for treatment of novel infectious diseases: Current status and dilemma. Biosci Trends 2021; 15:201-204. [PMID: 34193750 DOI: 10.5582/bst.2021.01263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Traditional Chinese medicine (TCM) is a valuable form of medicine with a long history in China. It has played a significant role in the control and prevention of infectious diseases including SARS and H7N9 flu. After the outbreak of COVID-19, China's National Health Commission included TCM in the Diagnosis and Treatment Protocol for COVID-19. During the COVID-19 pandemic, three traditional Chinese medicines (Jinhua Qinggan granules, Lianhua Qingwen medicine, and a Xuebijing Injection) and three TCM preparations (a Qingfei Paidu decoction, a Huashi Baidu decoction, and a Xuanfei Baidu decoction) have been screened for their efficacy against COVID-19. More than 150 trials involving TCMs are registered in the Chinese Clinical Trial Registry (ChiCTR), and those trials cover prevention, treatment, recovery, and illnesses diagnosed in accordance with TCM principles. TCM can effectively alleviate the symptoms of patients with COVID-19, delay the disease's progression from mild to severe or critical, and reduce severe and critical all-cause mortality. The underlying mechanisms of TCM mainly involve action against SARS-CoV-2, anti-inflammatory and immunomodulatory action, and organ protection. The current work provides a brief description of the current status of and issues with TCM to treat this novel infectious disease. The hope is that TCM can help considerably to control this global epidemic.
Collapse
Affiliation(s)
- Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Wei Tang
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Chakravarty K, Antontsev VG, Khotimchenko M, Gupta N, Jagarapu A, Bundey Y, Hou H, Maharao N, Varshney J. Accelerated Repurposing and Drug Development of Pulmonary Hypertension Therapies for COVID-19 Treatment Using an AI-Integrated Biosimulation Platform. Molecules 2021; 26:molecules26071912. [PMID: 33805419 PMCID: PMC8037385 DOI: 10.3390/molecules26071912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has reached over 100 million worldwide. Due to the multi-targeted nature of the virus, it is clear that drugs providing anti-COVID-19 effects need to be developed at an accelerated rate, and a combinatorial approach may stand to be more successful than a single drug therapy. Among several targets and pathways that are under investigation, the renin-angiotensin system (RAS) and specifically angiotensin-converting enzyme (ACE), and Ca2+-mediated SARS-CoV-2 cellular entry and replication are noteworthy. A combination of ACE inhibitors and calcium channel blockers (CCBs), a critical line of therapy for pulmonary hypertension, has shown therapeutic relevance in COVID-19 when investigated independently. To that end, we conducted in silico modeling using BIOiSIM, an AI-integrated mechanistic modeling platform by utilizing known preclinical in vitro and in vivo datasets to accurately simulate systemic therapy disposition and site-of-action penetration of the CCBs and ACEi compounds to tissues implicated in COVID-19 pathogenesis.
Collapse
|
24
|
Ma LL, Liu HM, Luo CH, He YN, Wang F, Huang HZ, Han L, Yang M, Xu RC, Zhang DK. Fever and Antipyretic Supported by Traditional Chinese Medicine: A Multi-Pathway Regulation. Front Pharmacol 2021; 12:583279. [PMID: 33828481 PMCID: PMC8020597 DOI: 10.3389/fphar.2021.583279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease, 2019 (COVID-19), has spread rapidly around the world and become a major public health problem facing the world. Traditional Chinese medicine (TCM) has been fully committed to treat COVID-19 in China. It improved the clinical symptoms of patients and reduced the mortality rate. In light of the fever was identified as one of leading clinical features of COVID-19, this paper will first analyze the material basis of fever, including pyrogenic cytokines and a variety of the mediators of fever. Then the humoral and neural pathways of fever signal transmission will be described. The scattered evidences about fever recorded in recent years are connected in series. On this basis, the understanding of fever is further deepened from the aspects of pathology and physiology. Finally, combining with the chemical composition and pharmacological action of available TCM, we analyzed the mechanisms of TCMs to play the antipyretic effect through multiple ways. So as to further provide the basis for the research of antipyretic compound preparations of TCMs and explore the potential medicines for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Le-Le Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hui-Min Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Chuan-Hong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ya-Nan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Fang Wang
- State key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Hao-Zhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ming Yang
- State key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Run-Chun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
25
|
Wu J, Sun B, Hou L, Guan F, Wang L, Cheng P, Scobell S, Cheng YC, Lam W. Prospective: Evolution of Chinese Medicine to Treat COVID-19 Patients in China. Front Pharmacol 2021; 11:615287. [PMID: 33716728 PMCID: PMC7947616 DOI: 10.3389/fphar.2020.615287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
During the outbreak of the novel coronavirus disease (COVID-19), the Chinese government took a series of public health measures to tackle the outbreak and recommended six traditional Chinese medicine (TCM) evolved formulas, collectively referred to as "3-drugs-3-formulas", for the treatment. In this prospective article, we will discuss how these six formulas evolved from TCM and what their underlying mechanisms of actions may be by evaluating the historical usage of the component formulas, the potential targeted pathways for the individual herbs used by STAR (signal transduction activity response) database from our laboratory, and the pathogenesis of COVID-19. Five of the six recommended formulas are administered orally, while the sixth is taken as an injection. Five classic categories of herbs in the six formulas including "Qing-Re", "Qu-Shi", "Huo-Xue", "Bu-Yi" and "Xing-Qi" herbs are used based on different stages of disease. All five oral formulas build upon the core formula Maxingshigan Decoction (MD) which has anti-inflammatory and perhaps antiviral actions. While MD can have some desired effects, it may not be sufficient to treat COVID-19 on its own; consequently, complementary classic formulas and/or herbs have been added to potentiate each recommended formula's anti-inflammatory, and perhaps anti-renin-angiotensin system (RAS)-mediated bradykinin storm (RBS) and antiviral effects to address the unique medical needs for different stages of COVID-19. The key actions of these formulas are likely to control systemic inflammation and/or RBS. The usage of Chinese medicine in the six formulas is consistent with the pathogenesis of COVID-19. Thus, an integrative systems biology approach-combining botanical treatments of conventional antiviral, anti-inflammatory or anti-RBS drugs to treat COVID-19 and its complications - should be explored.
Collapse
Affiliation(s)
- Jieya Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baoguo Sun
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li Hou
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fulan Guan
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Liyuan Wang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Institute of TCM and Health Development, Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Peikwen Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Yiviva, Inc., New York, NY, United States
| | - Sophia Scobell
- Department of Biology, Wesleyan University, Middletown, CT, United States
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|