1
|
Tadros E, Keerthana S, Padder S, Totlani J, Hirsch D, Kaidbay DN, Contreras L, Naqvi A, Miles S, Mercado K, Meyer A, Renteria S, Pechnick RN, Danovitch I, IsHak WW. Anxiety disorders, PTSD and OCD: systematic review of approved psychiatric medications (2008-2024) and pipeline phase III medications. Drugs Context 2025; 14:2024-11-2. [PMID: 40225810 PMCID: PMC11991790 DOI: 10.7573/dic.2024-11-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/07/2025] [Indexed: 04/15/2025] Open
Abstract
Objective This systematic review examines psychiatric medications approved by the FDA for anxiety disorders, post-traumatic stress disorder (PTSD) and obsessive-compulsive disorder (OCD) from 2008 to 2024 and describes the mechanism of action, indications for both labelled and off-label uses, evidence for efficacy, dosing and adverse effects for each medication. Methods The methodology involved a literature search of the PubMed database for studies published from 1 January 2008 to 31 December 2024 on FDA-approved psychiatric medications and phase III pipeline medications, using the keywords: "anxiety" OR "PTSD" OR "OCD" AND "psychopharm*" OR "medic*" OR "pharm*". The authors conducted independent assessments of the resulting articles and reached a consensus on eligible studies to include in this systematic review. Results Our review revealed that, in the past 16 years, the FDA approved only two medications for anxiety disorders (a delayed-release form of duloxetine for generalized anxiety disorder and an extended-release form of lorazepam) and none for PTSD or OCD. We also identified 14 pipeline medications for anxiety disorders, eight for PTSD and one for OCD, all of which are currently in phase III clinical trials. Conclusion Our results showed a paucity of new medications for anxiety disorders and none for PTSD and OCD in the past 16 years. However, phase III psychiatric medications for anxiety disorders, PTSD and OCD seem to show several agents with novel mechanisms of action, various modes of administration, and improved side-effect profiles.
Collapse
Affiliation(s)
- Emile Tadros
- Cedars-Sinai Medical Center, Los Angeles, CA,
USA
- Corewell Health East, Dearborn, MI,
USA
| | | | - Samar Padder
- Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Jayant Totlani
- Virginia Commonwealth University Health System, Richmond, VA,
USA
| | - Drew Hirsch
- Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | | | - Lorena Contreras
- Keck Medicine of University of Southern California, Los Angeles, CA,
USA
| | - Aasim Naqvi
- Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Samuel Miles
- Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Krista Mercado
- University of Cincinnati College of Medicine, Cincinnati, OH,
USA
| | - Ashley Meyer
- University of California Irvine School of Medicine, Irvine, CA,
USA
| | | | | | | | - Waguih William IsHak
- Cedars-Sinai Medical Center, Los Angeles, CA,
USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USASchool of Medicine, New Haven, CT,
USA
| |
Collapse
|
2
|
Natarajan D, Ekambaram S, Tarantini S, Nagaraja RY, Yabluchanskiy A, Hedrick AF, Awasthi V, Subramanian M, Csiszar A, Balasubramanian P. Chronic β3 adrenergic agonist treatment improves neurovascular coupling responses, attenuates blood-brain barrier leakage and neuroinflammation, and enhances cognition in aged mice. Aging (Albany NY) 2025; 17:448-463. [PMID: 39976587 PMCID: PMC11892913 DOI: 10.18632/aging.206203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and altered adipokine profile, which together contribute to microvascular endothelial dysfunction. Hence, in the present study, we aimed to test whether thermogenic stimulation, an intervention known to improve adipose and systemic metabolism by increasing cellular energy expenditure, could mitigate brain endothelial dysfunction and improve cognition in the aging population. Eighteen-month-old C57BL/6J mice were treated with saline or β3-adrenergic agonist (CL 316, 243, CL) for 6 weeks followed by functional analysis to assess endothelial function and cognition. CL treatment improved neurovascular coupling responses and rescued brain glucose uptake in aged animals. In addition, CL treatment also attenuated blood-brain barrier leakage and associated neuroinflammation in the cortex and increased microvascular density in the hippocampus of aged mice. More importantly, these beneficial changes in microvascular function translated to improved cognitive performance in aged mice. Our results suggest that β3-adrenergic agonist treatment improves multiple aspects of cerebromicrovascular function and can be potentially repurposed for treating age-associated cognitive decline.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shoba Ekambaram
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Raghavendra Y. Nagaraja
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andria F. Hedrick
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 73104, USA
| | - Anna Csiszar
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Natarajan D, Ekambaram S, Tarantini S, Yelahanka Nagaraja R, Yabluchanskiy A, Hedrick AF, Awasthi V, Subramanian M, Csiszar A, Balasubramanian P. Chronic β3 adrenergic agonist treatment improves brain microvascular endothelial function and cognition in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602747. [PMID: 39026792 PMCID: PMC11257558 DOI: 10.1101/2024.07.09.602747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and altered adipokine profile, which together contribute to microvascular endothelial dysfunction. Hence, in the present study, we aimed to test whether thermogenic stimulation, an intervention known to improve adipose and systemic metabolism by increasing cellular energy expenditure, could mitigate brain endothelial dysfunction and improve cognition in the aging population. Eighteen-month-old old C57BL/6J mice were treated with saline or CL (β3-adrenergic agonist) for 6 weeks followed by functional analysis to assess endothelial function and cognition. CL treatment improved neurovascular coupling responses and rescued brain glucose uptake in aged animals. In addition, CL treatment also attenuated blood-brain barrier leakage and associated neuroinflammation in the cortex of aged animals. More importantly, these beneficial changes in microvascular function translated to improved cognitive performance in radial arm water maze and Y-maze tests. Our results suggest that β3-adrenergic agonist treatment improves multiple aspects of brain microvascular endothelial function and can be potentially repurposed for treating age-associated cognitive decline.
Collapse
|
4
|
Bouras NN, Mack NR, Gao WJ. Prefrontal modulation of anxiety through a lens of noradrenergic signaling. Front Syst Neurosci 2023; 17:1173326. [PMID: 37139472 PMCID: PMC10149815 DOI: 10.3389/fnsys.2023.1173326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Anxiety disorders are the most common class of mental illness in the U.S., affecting 40 million individuals annually. Anxiety is an adaptive response to a stressful or unpredictable life event. Though evolutionarily thought to aid in survival, excess intensity or duration of anxiogenic response can lead to a plethora of adverse symptoms and cognitive dysfunction. A wealth of data has implicated the medial prefrontal cortex (mPFC) in the regulation of anxiety. Norepinephrine (NE) is a crucial neuromodulator of arousal and vigilance believed to be responsible for many of the symptoms of anxiety disorders. NE is synthesized in the locus coeruleus (LC), which sends major noradrenergic inputs to the mPFC. Given the unique properties of LC-mPFC connections and the heterogeneous subpopulation of prefrontal neurons known to be involved in regulating anxiety-like behaviors, NE likely modulates PFC function in a cell-type and circuit-specific manner. In working memory and stress response, NE follows an inverted-U model, where an overly high or low release of NE is associated with sub-optimal neural functioning. In contrast, based on current literature review of the individual contributions of NE and the PFC in anxiety disorders, we propose a model of NE level- and adrenergic receptor-dependent, circuit-specific NE-PFC modulation of anxiety disorders. Further, the advent of new techniques to measure NE in the PFC with unprecedented spatial and temporal resolution will significantly help us understand how NE modulates PFC function in anxiety disorders.
Collapse
|
5
|
Tanyeri MH, Buyukokuroglu ME, Tanyeri P, Mutlu O, Ozturk A, Yavuz K, Kaya RK. Effects of mirabegron on depression, anxiety, learning and memory in mice. AN ACAD BRAS CIENC 2021; 93:e20210638. [PMID: 34878051 DOI: 10.1590/0001-3765202120210638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Mirabegron is the first b3-adrenoceptor agonist to enter clinical practice and has been approved for the treatment of symptoms of OAB. The aim of this study is to investigate whether the mirabegron has an effect on depression, anxiety, learning, and memory. We investigated the effects of mirabegron on depression, anxiety, learning and memory by using forced swimming test, elevated plus maze test, passive avoidance and Morris water maze in mice. Imipramine and mirabegron (3, 6 and 9 mg/kg) significantly reduced immobility time in forced swimming test. Diazepam and mirabegron (3, 6 and 9 mg/kg) significantly increased the time spent in open arms and the number of entries to the open arms in elevated plus maze test. Furthermore, cognitive performance impaired with scopolamine has been significantly improved with 9 mg/kg mirabegron. Mirabegron (6 and 9 mg/kg) significantly increased the time spent in the target quadrant in naive mice. While scopolamine significantly increased the swimming speed, mirabegron (9 mg/kg) significantly decreased the swimming speed in scopolamine-treated mice. Mirabegron might be clinically useful for the treatment of OAB in elderly patients that should use drugs against depression and anxiety, without disrupt learning and memory.
Collapse
Affiliation(s)
- Mehmet H Tanyeri
- Yenikent Government Hospital, Department of Urology, Cahit Kirac Street, 54290, Adapazarı, 54100, Sakarya, Turkey
| | - Mehmet E Buyukokuroglu
- Sakarya University, Department of Pharmacology, Faculty of Medicine, Konuralp Street, Number 81, 54290, Adapazarı, 54100, Sakarya, Turkey
| | - Pelin Tanyeri
- Sakarya University, Department of Pharmacology, Faculty of Medicine, Konuralp Street, Number 81, 54290, Adapazarı, 54100, Sakarya, Turkey
| | - Oguz Mutlu
- Kocaeli University, Department of Pharmacology, Faculty of Medicine, Umuttepe street, Number 515, 41001, İzmit, 41380, Kocaeli, Turkey
| | - Aykut Ozturk
- Sakarya University, Department of Pharmacology, Faculty of Medicine, Konuralp Street, Number 81, 54290, Adapazarı, 54100, Sakarya, Turkey
| | - Kubra Yavuz
- Sakarya University, Department of Pharmacology, Faculty of Medicine, Konuralp Street, Number 81, 54290, Adapazarı, 54100, Sakarya, Turkey
| | - Rumeysa K Kaya
- Sakarya University, Department of Pharmacology, Faculty of Medicine, Konuralp Street, Number 81, 54290, Adapazarı, 54100, Sakarya, Turkey
| |
Collapse
|
6
|
Fitzgerald PJ. Are Noradrenergic Transmission Reducing Drugs Antidepressants? Front Behav Neurosci 2021; 15:673634. [PMID: 34658805 PMCID: PMC8514666 DOI: 10.3389/fnbeh.2021.673634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023] Open
Abstract
Major depressive disorder (MDD) remains a significant public health problem worldwide, and revised treatment strategies are therefore urgently needed, including the creation of novel antidepressant compounds or using existing molecular entities in new ways. Etiologic theories of MDD from decades ago have suggested that synaptic deficiencies of monoaminergic neurotransmitters play a causative role in this neuropsychiatric disorder, and that boosting monoamines with drugs such as SSRIs, SNRIs, TCAs, and MAOIs has antidepressant effects and in some individuals can even induce hypomania or mania. While other factors, such as various intracellular molecular pathways and hippocampal neurogenesis, undoubtedly also play a role in MDD, monoaminergic boosting drugs nonetheless have clearly demonstrated antidepressant properties. There is also, however, a body of studies in the preclinical literature suggesting that monoaminergic transmission reducing drugs, including noradrenergic ones, also have antidepressant-like behavioral properties in rodents. Given that there is increasing evidence that the monoamines have u-shaped or Janus-faced dose-response properties, in which a mid-range value is "optimal" in a variety of behavioral and physiological processes, it is plausible that either too much or too little synaptic norepinephrine in key circuits may exacerbate MDD in some individuals. Here we briefly review rodent depression-related behavioral data, focusing on the forced swim test, from three major classes of noradrenergic transmission reducing drugs (alpha2 agonists, beta blockers, alpha1 antagonists), and find much support for the hypothesis that they have antidepressant-like properties. Whether these drugs are antidepressants in human subjects remains to be determined.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Morioka N, Kondo S, Harada N, Takimoto T, Tokunaga N, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. Downregulation of connexin43 potentiates noradrenaline-induced expression of brain-derived neurotrophic factor in primary cultured cortical astrocytes. J Cell Physiol 2021; 236:6777-6792. [PMID: 33665818 DOI: 10.1002/jcp.30353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Decreased expression of brain-derived neurotrophic factor (BDNF) is involved in the pathology of depressive disorders. Astrocytes produce BDNF following antidepressant treatment or stimulation of adrenergic receptors. Connexin43 (Cx43) is mainly expressed in central nervous system astrocytes and its expression is downregulated in patients with major depression. How changes in Cx43 expression affect astrocyte function, including BDNF production, is poorly understood. The current study examined the effect of Cx43 knockdown on BDNF expression in cultured cortical astrocytes after stimulation of adrenergic receptors. The expression of Cx43 in rat primary cultured cortical astrocytes was downregulated with RNA interference. Levels of messenger RNAs (mRNAs) or proteins were measured by real-time PCR and western blotting, respectively. Knockdown of Cx43 potentiated noradrenaline (NA)-induced expression of BDNF mRNA in cultured astrocytes. NA treatment induced proBDNF protein expression in astrocytes transfected with small interfering RNA (siRNA) targeting Cx43, but not with control siRNA. This potentiation was mediated by the Src tyrosine kinase-extracellular signal-regulated kinase (ERK) pathway through stimulation of adrenergic α1 and β receptors. Furthermore, the Gq/11 protein-Src-ERK pathway and the G-protein coupled receptor kinase 2-Src-ERK pathway were involved in α1 and β adrenergic receptor-mediated potentiation of BDNF mRNA expression, respectively. The current studies demonstrate a novel mechanism of BDNF expression in cortical astrocytes mediated by Cx43, in which downregulation of Cx43 increases, through adrenergic receptors, the expression of BDNF. The current findings indicate a potentially novel mechanism of action of antidepressants, via regulation of astrocytic Cx43 expression and subsequent BDNF expression.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Astrocytes/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Connexin 43/genetics
- Connexin 43/metabolism
- Down-Regulation
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Knockdown Techniques
- Male
- Norepinephrine/pharmacology
- Primary Cell Culture
- RNA Interference
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Signal Transduction
- src-Family Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Syun Kondo
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Nanase Harada
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Tomoyo Takimoto
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Nozomi Tokunaga
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| |
Collapse
|
8
|
Wang X, Sun X, Zhou HC, Luo F. Activation of β3-adrenoceptor increases the number of readily releasable glutamatergic vesicle via activating Ca 2+/calmodulin/MLCK/myosin II pathway in the prefrontal cortex of juvenile rats. Sci Rep 2021; 11:18300. [PMID: 34526598 PMCID: PMC8443757 DOI: 10.1038/s41598-021-97769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
It is well known that β3-adrenoceptor (β3-AR) in many brain structures including prefrontal cortex (PFC) is involved in stress-related behavioral changes. SR58611A, a brain-penetrant β3-AR subtypes agonist, is revealed to exhibit anxiolytic- and antidepressant-like effects. Whereas activation of β3-AR exerts beneficial effects on cognitive function, the underlying cellular and molecular mechanisms have not been fully determined. In this study, whole cell patch-clamp recordings were employed to investigate the glutamatergic transmission of layer V/VI pyramidal cells in slices of the rat PFC. Our result demonstrated that SR58611A increased AMPA receptor-mediated excitatory postsynaptic currents (AMPAR-EPSCs) through activating pre-synaptic β3-AR. SR58611A enhanced the miniature EPSCs (mEPSCs) and reduced paired-pulse ratio (PPR) of AMPAR-EPSCs suggesting that SR58611A augments pre-synaptic glutamate release. SR58611A increased the number of readily releasable vesicle (N) and release probability (Pr) with no effects on the rate of recovery from vesicle depletion. Influx of Ca2+ through L-type Ca2+ channel contributed to SR58611A-mediated enhancement of glutamatergic transmission. We also found that calmodulin, myosin light chain kinase (MLCK) and myosin II were involved in SR58611A-mediated augmentation of glutamate release. Our current data suggest that SR58611A enhances glutamate release by the Ca2+/calmodulin/MLCK/myosin II pathway.
Collapse
Affiliation(s)
- Xing Wang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xuan Sun
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hou-Cheng Zhou
- Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Fei Luo
- School of Life Science, Nanchang University, Nanchang, 330031, China. .,Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
9
|
Sun X, Wang X, Zhou HC, Zheng J, Su YX, Luo F. β3-adrenoceptor activation exhibits a dual effect on behaviors and glutamate receptor function in the prefrontal cortex. Behav Brain Res 2021; 412:113417. [PMID: 34157371 DOI: 10.1016/j.bbr.2021.113417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022]
Abstract
β-adrenoceptor (β-AR), especially the β1- and β2-AR subtypes, is known to participate in stress-related behavioral changes. Recently, SR58611A, a brain-penetrant β3-AR agonist, exhibits anxiolytic- and antidepressant-like effects. In this study, we sought to study the role of SR58611A in behavioral changes and its potential cellular and molecular mechanism in the prefrontal cortex (PFC). We found that rats with SR58611A (1 mg/kg) enhanced PFC-mediated recognition memory, whereas administration of higher dosage of SR58611A (20 mg/kg) caused hyperlocomotion, and exhibited an impairment effect on recognition memory. Electrophysiological data also indicated that SR58611A (1 mg/kg) selectively enhanced NMDA receptor-mediated excitatory postsynaptic currents (EPSC) through interacting with norepinephrine (NE) system and activating β3-AR, whereas higher dosage of SR58611A (20 mg/kg) reduced both AMPA receptor- and NMDA receptor-mediated EPSC. SR58611A-induced different effects on EPSC linked with the change of the surface expression quantity of NMDA receptor and/or AMPA receptor subunits. Synaptosomal-associated protein 25 (SNAP-25), which is a key soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein involved in incorporation of NMDA receptor to postsynaptic membrane, contributed to SR58611A (1 mg/kg)-induced enhancement of recognition memory and NMDA receptor function. Moreover, SR58611A (1 mg/kg) could rescue repeated stress-induced defect of both recognition memory and NMDA receptor function through a SNAP-25-dependent mechanism. These results provide a potential mechanism underlying the cognitive-enhancing effects of SR58611A (1 mg/kg).
Collapse
Affiliation(s)
- Xuan Sun
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xing Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Hou-Cheng Zhou
- Institute of Neurobiology & State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jian Zheng
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yun-Xiao Su
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Fei Luo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
10
|
Tournissac M, Vu TM, Vrabic N, Hozer C, Tremblay C, Mélançon K, Planel E, Pifferi F, Calon F. Repurposing beta-3 adrenergic receptor agonists for Alzheimer's disease: beneficial effects in a mouse model. ALZHEIMERS RESEARCH & THERAPY 2021; 13:103. [PMID: 34020681 PMCID: PMC8140479 DOI: 10.1186/s13195-021-00842-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Background Old age, the most important risk factor for Alzheimer’s disease (AD), is associated with thermoregulatory deficits. Brown adipose tissue (BAT) is the main thermogenic driver in mammals and its stimulation, through β3 adrenergic receptor (β3AR) agonists or cold acclimation, counteracts metabolic deficits in rodents and humans. Studies in animal models show that AD neuropathology leads to thermoregulatory deficits, and cold-induced tau hyperphosphorylation is prevented by BAT stimulation through cold acclimation. Since metabolic disorders and AD share strong pathogenic links, we hypothesized that BAT stimulation through a β3AR agonist could exert benefits in AD as well. Methods CL-316,243, a specific β3AR agonist, was administered to the triple transgenic mouse model of AD (3xTg-AD) and non-transgenic controls from 15 to 16 months of age at a dose of 1 mg/kg/day i.p. Results Here, we show that β3AR agonist administration decreased body weight and improved peripheral glucose metabolism and BAT thermogenesis in both non-transgenic and 3xTg-AD mice. One-month treatment with a β3AR agonist increased recognition index by 19% in 16-month-old 3xTg-AD mice compared to pre-treatment (14-month-old). Locomotion, anxiety, and tau pathology were not modified. Finally, insoluble Aβ42/Aβ40 ratio was decreased by 27% in the hippocampus of CL-316,243-injected 3xTg-AD mice. Conclusions Overall, our results indicate that β3AR stimulation reverses memory deficits and shifts downward the insoluble Aβ42/Aβ40 ratio in 16-month-old 3xTg-AD mice. As β3AR agonists are being clinically developed for metabolic disorders, repurposing them in AD could be a valuable therapeutic strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00842-3.
Collapse
Affiliation(s)
- Marine Tournissac
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Tra-My Vu
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Nika Vrabic
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Clara Hozer
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Évolution, 1 Avenue du Petit Château, 91800, Brunoy, France
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Koralie Mélançon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Évolution, 1 Avenue du Petit Château, 91800, Brunoy, France
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada. .,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
11
|
Wang Z, Liu X, Jiang K, Kim H, Kajimura S, Feeley BT. Intramuscular Brown Fat Activation Decreases Muscle Atrophy and Fatty Infiltration and Improves Gait After Delayed Rotator Cuff Repair in Mice. Am J Sports Med 2020; 48:1590-1600. [PMID: 32282238 DOI: 10.1177/0363546520910421] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Successful repair of large and massive rotator cuff (RC) tears remains a challenge at least partially because of secondary muscle atrophy and fatty infiltration. β3 Adrenergic agonists are a group of drugs that promote fat resorption through "white fat browning" of intramuscular stem cells. PURPOSE To test the role of a β3 adrenergic receptor agonist, amibegron, in improving muscle quality and forelimb function in a delayed RC repair model via promoting brown/beige adipose tissue activation. STUDY DESIGN Controlled laboratory study. METHODS Three-month-old PDGFRα-GFP reporter mice, wild type C57BL/6J mice, and uncoupling protein 1 (UCP-1) knockout mice underwent unilateral supraspinatus tendon transection with a 6-week delayed tendon repair. Animals with sham surgery served as controls. Amibegron was given either immediately after tendon transection or after repair. Gait analysis was conducted to measure forelimb function at 6 weeks after tendon repair. Animals were sacrificed at 6 weeks after repair. Supraspinatus muscles were harvested and analyzed histologically. Reverse transcription polymerase chain reaction was performed to quantify gene expression related to atrophy, fibrosis, and fatty infiltration. RESULTS Histology of PDGFRα reporter mice showed significantly increased UCP-1 expression, suggesting white fat browning in muscle after RC repair. As administered either immediately after tendon transection or after tendon repair, amibegron significantly reduced muscle atrophy and fatty infiltration and resumed normal upper extremity gait in wild type mice. However, the effect of amibegron was not present in UCP-1 knockout mice, suggesting that the effect of amibegron in treating RC muscle atrophy and fatty infiltration is through a UCP 1-dependent mechanism. CONCLUSION Amibegron reduced muscle atrophy and fatty infiltration and improved forelimb function after delayed RC repair through a UCP 1-dependent mechanism. This may be an effective clinical treatment strategy for patients to improve muscle quality after RC repair. CLINICAL RELEVANCE β3 Adrenergic agonists may serve as a new pharmacologic modality to treat RC muscle atrophy and fatty infiltration to improve clinical outcome of RC repair.
Collapse
Affiliation(s)
- Zili Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China.,San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Xuhui Liu
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Kunqi Jiang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hubert Kim
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Shingo Kajimura
- Diabetes Center, Department of Cell and Tissue Biology, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Brian T Feeley
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs, San Francisco, California, USA.,Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Everything You Always Wanted to Know about β 3-AR * (* But Were Afraid to Ask). Cells 2019; 8:cells8040357. [PMID: 30995798 PMCID: PMC6523418 DOI: 10.3390/cells8040357] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
The beta-3 adrenergic receptor (β3-AR) is by far the least studied isotype of the beta-adrenergic sub-family. Despite its study being long hampered by the lack of suitable animal and cellular models and inter-species differences, a substantial body of literature on the subject has built up in the last three decades and the physiology of β3-AR is unraveling quickly. As will become evident in this work, β3-AR is emerging as an appealing target for novel pharmacological approaches in several clinical areas involving metabolic, cardiovascular, urinary, and ocular disease. In this review, we will discuss the most recent advances regarding β3-AR signaling and function and summarize how these findings translate, or may do so, into current clinical practice highlighting β3-AR’s great potential as a novel therapeutic target in a wide range of human conditions.
Collapse
|
13
|
Effects of β3-adrenergic receptor stimulation on the resting holding current of medial prefrontal cortex pyramidal neurons in young rats. Neurosci Lett 2019; 698:192-197. [DOI: 10.1016/j.neulet.2019.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/25/2018] [Accepted: 01/10/2019] [Indexed: 11/19/2022]
|
14
|
Church TW, Brown JT, Marrion NV. β 3-Adrenergic receptor-dependent modulation of the medium afterhyperpolarization in rat hippocampal CA1 pyramidal neurons. J Neurophysiol 2019; 121:773-784. [PMID: 30625002 DOI: 10.1152/jn.00334.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Action potential firing in hippocampal pyramidal neurons is regulated by generation of an afterhyperpolarization (AHP). Three phases of AHP are recognized, with the fast AHP regulating action potential firing at the onset of a burst and the medium and slow AHPs supressing action potential firing over hundreds of milliseconds and seconds, respectively. Activation of β-adrenergic receptors suppresses the slow AHP by a protein kinase A-dependent pathway. However, little is known regarding modulation of the medium AHP. Application of the selective β-adrenergic receptor agonist isoproterenol suppressed both the medium and slow AHPs evoked in rat CA1 hippocampal pyramidal neurons recorded from slices maintained in organotypic culture. Suppression of the slow AHP was mimicked by intracellular application of cAMP, with the suppression of the medium AHP by isoproterenol still being evident in cAMP-dialyzed cells. Suppression of both the medium and slow AHPs was antagonized by the β-adrenergic receptor antagonist propranolol. The effect of isoproterenol to suppress the medium AHP was mimicked by two β3-adrenergic receptor agonists, BRL37344 and SR58611A. The medium AHP was mediated by activation of small-conductance calcium-activated K+ channels and deactivation of H channels at the resting membrane potential. Suppression of the medium AHP by isoproterenol was reduced by pretreating cells with the H-channel blocker ZD7288. These data suggest that activation of β3-adrenergic receptors inhibits H channels, which suppresses the medium AHP in CA1 hippocampal neurons by utilizing a pathway that is independent of a rise in intracellular cAMP. This finding highlights a potential new target in modulating H-channel activity and thereby neuronal excitability. NEW & NOTEWORTHY The noradrenergic input into the hippocampus is involved in modulating long-term synaptic plasticity and is implicated in learning and memory. We demonstrate that activation of functional β3-adrenergic receptors suppresses the medium afterhyperpolarization in hippocampal pyramidal neurons. This finding provides an additional mechanism to increase action potential firing frequency, where neuronal excitability is likely to be crucial in cognition and memory.
Collapse
Affiliation(s)
- Timothy W Church
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Jon T Brown
- University of Exeter Medical School , Exeter , United Kingdom
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
15
|
Jastrzębska-Więsek M, Gdula-Argasińska J, Siwek A, Partyka A, Szewczyk B, Kołaczkowski M, Wesołowska A. Chronic antidepressant-like effect of EMD386088, a partial 5-HT 6 receptor agonist, in olfactory bulbectomy model may be connected with BDNF and/or CREB signalling pathway. Pharmacol Rep 2018; 70:1047-1056. [PMID: 30292720 DOI: 10.1016/j.pharep.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND The removal of the olfactory bulbs has been attributed to behavioral changes and neuroplasticity manifesting themselves among others like increases in brain neurotrophin expression and neurogenesis. Earlier data presented that EMD386088, a 5-HT6 receptor partial agonist, exerts antidepressant-like properties after chronic administration in olfactory bulbectomy (OB) model as was it compared with amitriptyline (AMI). The aim of this study was to compare acute and chronic biochemical effects of EMD386088, administered in its antidepressant active (2.5mg/kg) and non-active (1.25mg/kg) doses, found in the open field test in OB rats, with those of AMI (10mg/kg). The levels of 5-HT6 receptor protein and selected neurotrophins in prefrontal cortex (PFC) and hippocampus (Hp) of rats have been examined. METHODS 5-HT6 receptor protein and selected neurotrophins: brain-derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB), the product of the immediate early gene c-fos (cFos) protein levels were assessed using a Western blot analysis in PFC and Hp of bulbectomized rats after acute or chronic (14-day) EMD386088 or AMI intraperitoneal (ip) treatment. RESULTS The acute treatment with EMD386088 caused significant increases in CREB and BDNF protein levels in PFC, and an increase in BDNF in Hp of OB rats, while AMI injection decreased CREB and did not change BDNF levels. After the chronic administration of EMD386088, the increasing levels of BDNF and CREB were still observed in PFC and Hp. CONCLUSIONS The antidepressant-like effect of EMD386088 may be associated with the neuroplasticity activation in PFC and Hp in rats.
Collapse
Affiliation(s)
| | | | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Marcin Kołaczkowski
- Department of Pharmaceutical Chemistry, Jagiellonian University Medical College, Kraków, Poland; Adamed Ltd. Pienków 149, Czosnów, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
16
|
Endocannabinoid system, stress and HPA axis. Eur J Pharmacol 2018; 834:230-239. [DOI: 10.1016/j.ejphar.2018.07.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022]
|
17
|
Seki K, Yoshida S, Jaiswal MK. Molecular mechanism of noradrenaline during the stress-induced major depressive disorder. Neural Regen Res 2018; 13:1159-1169. [PMID: 30028316 PMCID: PMC6065220 DOI: 10.4103/1673-5374.235019] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic stress-induced depression is a common hallmark of many psychiatric disorders with high morbidity rate. Stress-induced dysregulation of noradrenergic system has been implicated in the pathogenesis of depression. Lack of monoamine in the brain has been believed to be the main causative factor behind pathophysiology of major depressive disorder (MDD) and several antidepressants functions by increasing the monoamine level at the synapses in the brain. However, it is undetermined whether the noradrenergic receptor stimulation is critical for the therapeutic effect of antidepressant. Contrary to noradrenergic receptor stimulation, it has been suggested that the desensitization of β-adrenoceptor is involved in the therapeutic effect of antidepressant. In addition, enhanced noradrenaline (NA) release is central response to stress and thought to be a risk factor for the development of MDD. Moreover, fast acting antidepressant suppresses the hyperactivation of noradrenergic neurons in locus coeruleus (LC). However, it is unclear how they alter the firing activity of LC neurons. These inconsistent reports about antidepressant effect of NA-reuptake inhibitors (NRIs) and enhanced release of NA as a stress response complicate our understanding about the pathophysiology of MDD. In this review, we will discuss the role of NA in pathophysiology of stress and the mechanism of therapeutic effect of NA in MDD. We will also discuss the possible contributions of each subtype of noradrenergic receptors on LC neurons, hypothalamic-pituitary-adrenal axis (HPA-axis) and brain derived neurotrophic factor-induced hippocampal neurogenesis during stress and therapeutic effect of NRIs in MDD.
Collapse
Affiliation(s)
- Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Fukushima, Japan
| | - Satomi Yoshida
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Fukushima, Japan
| | - Manoj Kumar Jaiswal
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Csanova A, Hlavacova N, Hasiec M, Pokusa M, Prokopova B, Jezova D. β 3-Adrenergic receptors, adipokines and neuroendocrine activation during stress induced by repeated immune challenge in male and female rats. Stress 2017; 20:294-302. [PMID: 28412873 DOI: 10.1080/10253890.2017.1320387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The main hypothesis of the study is that stress associated with repeated immune challenge has an impact on β3-adrenergic receptor gene expression in the brain. Sprague-Dawley rats were intraperitoneally injected with increasing doses of lipopolysaccharide (LPS) for five consecutive days. LPS treatment was associated with body weight loss and increased anxiety-like behavior. In LPS-treated animals of both sexes, β3-receptor gene expression was increased in the prefrontal cortex but not the hippocampus. LPS treatment decreased β3-receptor gene expression in white adipose tissue with higher values in males compared to females. In the adipose tissue, LPS reduced peroxisome proliferator-activated receptor-gamma, leptin and adiponectin gene expression, but increased interleukin-6 expression, irrespective of sex. Repeated immune challenge resulted in increased concentrations of plasma aldosterone and corticosterone with higher values of corticosterone in females compared to males. Concentrations of dehydroepiandrosterone (DHEA) in plasma were unaffected by LPS, while DHEA levels in the frontal cortex were lower in the LPS-treated animals compared to the controls. Thus, changes of DHEA levels in the brain take place irrespective of the changes of this neurosteroid in plasma. We have provided the first evidence on stress-induced increase in β3-adrenergic receptor gene expression in the brain. Greater reduction of β3-adrenergic receptor expression in the adipose tissue and of the body weight gain by repeated immune challenge in male than in female rats suggests sex differences in the role of β3-adrenergic receptors in the metabolic functions. LPS-induced changes in adipose tissue regulatory factors and hormone concentrations might be important for coping with chronic infections.
Collapse
Affiliation(s)
- Agnesa Csanova
- a Laboratory of Pharmacological Neuroendocrinology , Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovak Republic
| | - Natasa Hlavacova
- a Laboratory of Pharmacological Neuroendocrinology , Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovak Republic
| | - Malgorzata Hasiec
- b The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences , Jablonna , Poland
| | - Michal Pokusa
- a Laboratory of Pharmacological Neuroendocrinology , Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovak Republic
| | - Barbora Prokopova
- a Laboratory of Pharmacological Neuroendocrinology , Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovak Republic
- c Faculty of Pharmacy , Comenius University in Bratislava , Slovak Republic
| | - Daniela Jezova
- a Laboratory of Pharmacological Neuroendocrinology , Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovak Republic
| |
Collapse
|
19
|
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC, Salgado H. Locus Ceruleus Norepinephrine Release: A Central Regulator of CNS Spatio-Temporal Activation? Front Synaptic Neurosci 2016; 8:25. [PMID: 27616990 PMCID: PMC4999448 DOI: 10.3389/fnsyn.2016.00025] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
Norepinephrine (NE) is synthesized in the Locus Coeruleus (LC) of the brainstem, from where it is released by axonal varicosities throughout the brain via volume transmission. A wealth of data from clinics and from animal models indicates that this catecholamine coordinates the activity of the central nervous system (CNS) and of the whole organism by modulating cell function in a vast number of brain areas in a coordinated manner. The ubiquity of NE receptors, the daunting number of cerebral areas regulated by the catecholamine, as well as the variety of cellular effects and of their timescales have contributed so far to defeat the attempts to integrate central adrenergic function into a unitary and coherent framework. Since three main families of NE receptors are represented-in order of decreasing affinity for the catecholamine-by: α2 adrenoceptors (α2Rs, high affinity), α1 adrenoceptors (α1Rs, intermediate affinity), and β adrenoceptors (βRs, low affinity), on a pharmacological basis, and on the ground of recent studies on cellular and systemic central noradrenergic effects, we propose that an increase in LC tonic activity promotes the emergence of four global states covering the whole spectrum of brain activation: (1) sleep: virtual absence of NE, (2) quiet wake: activation of α2Rs, (3) active wake/physiological stress: activation of α2- and α1-Rs, (4) distress: activation of α2-, α1-, and β-Rs. We postulate that excess intensity and/or duration of states (3) and (4) may lead to maladaptive plasticity, causing-in turn-a variety of neuropsychiatric illnesses including depression, schizophrenic psychoses, anxiety disorders, and attention deficit. The interplay between tonic and phasic LC activity identified in the LC in relationship with behavioral response is of critical importance in defining the short- and long-term biological mechanisms associated with the basic states postulated for the CNS. While the model has the potential to explain a large number of experimental and clinical findings, a major challenge will be to adapt this hypothesis to integrate the role of other neurotransmitters released during stress in a centralized fashion, like serotonin, acetylcholine, and histamine, as well as those released in a non-centralized fashion, like purines and cytokines.
Collapse
Affiliation(s)
- Marco Atzori
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico; School for Behavior and Brain Sciences, University of Texas at DallasRichardson, TX, USA
| | - Roberto Cuevas-Olguin
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Eric Esquivel-Rendon
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | | | - Roberto C Salgado-Delgado
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Nadia Saderi
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Marcela Miranda-Morales
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Mario Treviño
- Laboratory of Cortical Plasticity and Learning, Universidad de Guadalajara Guadalajara, Mexico
| | - Juan C Pineda
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| | - Humberto Salgado
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| |
Collapse
|
20
|
β3-adrenoceptor impacts apoptosis in cultured cardiomyocytes via activation of PI3K/Akt and p38MAPK. ACTA ACUST UNITED AC 2016; 36:1-7. [DOI: 10.1007/s11596-016-1533-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 11/29/2015] [Indexed: 12/25/2022]
|
21
|
van Zyl PJ, Dimatelis JJ, Russell VA. Behavioural and biochemical changes in maternally separated Sprague-Dawley rats exposed to restraint stress. Metab Brain Dis 2016; 31:121-33. [PMID: 26555398 DOI: 10.1007/s11011-015-9757-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/27/2015] [Indexed: 01/26/2023]
Abstract
Early life adversity has been associated with the development of various neuropsychiatric disorders in adulthood such as depression and anxiety. The aim of this study was to determine if stress during adulthood can exaggerate the depression-/anxiety-like behaviour observed in the widely accepted maternally separated (MS) Sprague-Dawley (SD) rat model of depression. A further aim was to determine whether the behavioural changes were accompanied by changes in hippocampal brain-derived neurotrophic factor (BDNF) and the protein profile of the prefrontal cortex (PFC). Depression-/anxiety-like behaviour was measured in the elevated plus maze, open field and forced swim test (FST) in the MS SD rats exposed to chronic restraint stress in adulthood. As expected, MS increased immobility of SD rats in the FST but restraint stress did not enhance this effect of MS on SD rats. A proteomic analysis of the PFC revealed a decrease in actin-related proteins in MS and non-separated rats subjected to restraint stress as well as a decrease in mitochondrial energy-related proteins in the stressed rat groups. Since MS during early development causes a disruption in the hypothalamic-pituitary-adrenal axis and long-term changes in the response to subsequent stress, it may have prevented restraint stress from exerting its effects on behaviour. Moreover, the decrease in proteins related to mitochondrial energy metabolism in MS rats with or without subsequent restraint stress may be related to stress per se and not depression-like behaviour, because rats subjected to restraint stress displayed similar decreases in energy-related proteins and spent less time immobile in the FST than control rats.
Collapse
Affiliation(s)
- P J van Zyl
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa.
| | - J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| | - V A Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
22
|
Ghanemi A, Hu X. Elements toward novel therapeutic targeting of the adrenergic system. Neuropeptides 2015; 49:25-35. [PMID: 25481798 DOI: 10.1016/j.npep.2014.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/30/2014] [Accepted: 11/19/2014] [Indexed: 01/14/2023]
Abstract
Adrenergic receptors belong to the family of the G protein coupled receptors that represent important targets in the modern pharmacotherapies. Studies on different physiological and pathophysiological properties of the adrenergic system have led to novel evidences and theories that suggest novel possible targeting of such system in a variety of pathologies and disorders, even beyond the classical known therapeutic possibilities. Herein, those advances have been illustrated with selected concepts and different examples. Furthermore, we illustrated the applications and the therapeutic implications that such findings and advances might have in the contexts of experimental pharmacology, therapeutics and clinic. We hope that the content of this work will guide researches devoted to the adrenergic aspects that combine neurosciences with pharmacology.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; University of Chinese Academy of Science, Beijing, China.
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Key State Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
23
|
The dual blocker of FAAH/TRPV1 N-arachidonoylserotonin reverses the behavioral despair induced by stress in rats and modulates the HPA-axis. Pharmacol Res 2014; 87:151-9. [DOI: 10.1016/j.phrs.2014.04.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 02/06/2023]
|
24
|
Butler TR, Chappell AM, Weiner JL. Effect of β3 adrenoceptor activation in the basolateral amygdala on ethanol seeking behaviors. Psychopharmacology (Berl) 2014; 231:293-303. [PMID: 23955701 PMCID: PMC3877711 DOI: 10.1007/s00213-013-3238-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/31/2013] [Indexed: 01/15/2023]
Abstract
RATIONALE The interaction between ethanol (EtOH) and anxiety plays an integral role in the development and maintenance of alcoholism. Many medications in pre-clinical or clinical trials for the treatment of alcoholism share anxiolytic properties. However, these drugs typically have untoward side effects, such as sedation or impairment of motor function that may limit their clinical use. We have recently demonstrated that BRL 37344 (BRL), a selective β3-adrenoceptor (AR) agonist, enhances a discrete population of GABAergic synapses in the basolateral amygdala (BLA) that mediates feed-forward inhibition from lateral paracapsular (LPC) GABAergic interneurons onto BLA pyramidal cells. Behavioral studies revealed that intra-BLA infusion of BRL significantly reduced measures of unconditioned anxiety-like behavior without locomotor depressant effects. OBJECTIVES The present studies tested the effect of BRL (0.1, 0.5, or 1.0 μg/side) on EtOH self-administration using an intermittent access home cage two-bottle choice procedure and limited access operant responding for EtOH or sucrose. RESULTS Intra-BLA infusion of BRL did not reduce home cage, intermittent EtOH self-administration. However, using an operant procedure that permits the discrete assessment of appetitive (seeking) and consummatory measures of EtOH self-administration, BRL reduced measures of EtOH and sucrose seeking, but selectively reduced operant responding for EtOH during extinction probe trials. BRL had no effect on consummatory behaviors for EtOH or sucrose. CONCLUSIONS Together, these data suggest that intra-BLA infusion of BRL significantly reduces motivation to seek EtOH and provide initial evidence that β3-ARs and LPC GABAergic synapses may represent promising targets for the development of novel pharmacotherapies for the treatment of alcoholism.
Collapse
Affiliation(s)
- T R Butler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | | | | |
Collapse
|
25
|
Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res 2013; 354:309-30. [DOI: 10.1007/s00441-013-1692-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022]
|
26
|
Evidence that the anxiolytic-like effects of the beta3 receptor agonist amibegron involve serotoninergic receptor activity. Pharmacol Biochem Behav 2013; 110:27-32. [PMID: 23756183 DOI: 10.1016/j.pbb.2013.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 11/20/2022]
Abstract
Anxiety disorders are the most common behavioral disorders, and they exhibit high comorbidity rates. The aim of the present study was to confirm the effects of Amibegron, the first selective beta 3 adrenergic agent, on anxiety and to demonstrate that different serotoninergic receptor subtypes are involved in this effect. We administered the serotonin 5-HT1A receptor antagonist WAY-100635, the serotonin 5-HT2A receptor antagonist Ketanserin and the serotonin 5-HT3 receptor antagonist Ondansetron in mice and evaluated their performance in the elevated plus-maze test. Mice administered with Amibegron (5 and 10 mg/kg) showed a dose-dependent prolonged time spent in the open arms and an increase in the number of entries into the open arms during the elevated plus-maze (EPM) test. However, in the control mice, administration of WAY, Ketanserin and Ondansetron demonstrated no effect on the time spent in the open arms and the number of entries into the open arms. In addition, these treatments all significantly reversed the effect of the Amibegron-induced (10 mg/kg) increase in the time spent in the open arms. However, only WAY and Ketanserin treatments reversed the Amibegron-induced increase in the number of entries into the open arms. In conclusion, Amibegron exerted a significant anxiolytic effect, which was as effective as Diazepam, in mice during the EPM test. This effect of Amibegron may be mediated by interactions with the serotonin 5-HT1A, 5-HT2A and 5-HT3 receptors.
Collapse
|
27
|
Behavioural and neurochemical changes induced by stress-related conditions are counteracted by the neurokinin-2 receptor antagonist saredutant. Int J Neuropsychopharmacol 2013; 16:813-23. [PMID: 22695046 DOI: 10.1017/s1461145712000612] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
These experiments were undertaken to assess the mechanisms underlying the antidepressant-like effects of the neurokinin-2 (NK(2)) receptor antagonist saredutant (SR48968) in rats tested in the forced swim test (FST), by analysing hippocampal brain-derived neurotrophic factor (BDNF) and plasma corticosterone [as index of hypothalamic-pituitary-adrenal (HPA) axis activity]. Male Wistar rats received three intraperitoneal injections over 24 h of vehicle, saredutant (5 mg/kg), citalopram (15 mg/kg), clomipramine (50 mg/kg). Rats were subjected to restraint stress (4 h) 24 h prior to the FST procedure. This stress procedure increased immobility and decreased swimming behaviour in the FST; furthermore, it lowered hippocampal BDNF protein expression and increased plasma corticosterone levels. Saredutant and clomipramine or citalopram, used here as positive controls, reduced the immobility time in the FST both under basal conditions and after stress exposure. This effect was not attributable to changes in locomotion, because locomotor activity was unchanged when assessed in the open field test. Pretreatment with para-cholorophenylalanine (150 mg/kg, 72 h and 48 h prior to FST) abolished the effect of citalopram and saredutant on immobility time. At neurochemical level, saredutant attenuated activation of HPA axis in stressed animals more than clomipramine or citalopram. The behavioural effects of saredutant support the hypothesis that NK(2) receptor activity is involved in stress-related disorders. These effects of saredutant may be related to normalization of the HPA axis. Moreover, saredutant increases BDNF expression in the hippocampus, confirming the role of NK(2) receptor blockade in BDNF activation following stressor application.
Collapse
|
28
|
Birerdinc A, Jarrar M, Stotish T, Randhawa M, Baranova A. Manipulating molecular switches in brown adipocytes and their precursors: a therapeutic potential. Prog Lipid Res 2012; 52:51-61. [PMID: 22960032 DOI: 10.1016/j.plipres.2012.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 03/28/2012] [Accepted: 08/11/2012] [Indexed: 01/07/2023]
Abstract
Brown adipocytes constitute a metabolically active tissue responsible for non-shivering thermogenesis and the depletion of excess calories. Differentiation of brown fat adipocytes de novo or stimulation of pre-existing brown adipocytes within white adipose depots could provide a novel method for reducing the obesity and alleviating the consequences of type II diabetes worldwide. In this review, we addressed several molecular mechanisms involved in the control of brown fat activity, namely, the β₃-adrenergic stimulation of thermogenesis during exposure to cold or by catecholamines; the augmentation of thyroid function; the modulation of peroxisome proliferator-activated receptor gamma (PPARγ), transcription factors of the C/EBP family, and the PPARγ co-activator PRDM16; the COX-2-driven expression of UCP1; the stimulation of the vanilloid subfamily receptor TRPV1 by capsaicin and monoacylglycerols; the effects of BMP7 or its analogs; the cannabinoid receptor antagonists and melanogenesis modulating agents. Manipulating one or more of these pathways may provide a solution to the problem of harnessing brown fat's thermogenic potential. However, a better understanding of their interplay and other homeostatic mechanisms is required for the development of novel therapies for millions of obese and/or diabetic individuals.
Collapse
Affiliation(s)
- Aybike Birerdinc
- Center for the Study of Chronic Metabolic Diseases, School of Systems Biology, College of Science, George Mason University, Fairfax, VA, USA
| | | | | | | | | |
Collapse
|
29
|
|