1
|
Aquino ME, Drago SR, Schierloh LP, Cian RE. Identification of bioaccessible glycosylated neuroprotective peptides from brewer's spent yeast mannoproteins by in vitro and in silico studies. Food Res Int 2025; 209:116188. [PMID: 40253166 DOI: 10.1016/j.foodres.2025.116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/07/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
The aims of this work were to purify mannoproteins from brewer's spent yeast, to evaluate the neuroprotective and antioxidant properties of peptides generated by a simulated gastrointestinal digestion (SGID), and to identify the peptides responsible of acetylcholinesterase (AChE), tyrosinase (TYR), prolyl oligopeptidase (POP) and ABTS+ inhibitory activity using tandem mass spectrometry and in silico analysis. Mannoproteins from brewer's spent yeast were purified using the simultaneous effect of ethanol and pH on protein solubility followed by ultrafiltration process (10 kDa). The retained fraction (> 10 kDa) showed 80.5 ± 5.8 g protein 100 g-1 solids, of which 71.2 ± 1.0 g 100 g-1 were mannoprotein. The SGID of isolated mannoproteins released peptides with AChE, TYR, POP and ABTS+ inhibitory activity. Peptides released from mannoproteins showed strong inhibitory activity against TYR by diphenolase mechanism. These bioactivities were related to low MW mannose-linked peptides. After identification, the NEPGCYF peptide showed the highest in silico blood-brain barrier penetrating property (B3Pred score: 0.70) and in silico free radical scavenger activity (FRS score: 0.54) among mannose-linked peptides. Molecular docking indicated that this peptide acted as competitive inhibitor for AChE and POP enzymes, and as non-competitive inhibitor for TYR enzyme. These mechanisms were confirmed by in vitro kinetic analysis using the inhibitory mannose-linked peptides and the synthetic peptide NEPGCYF. Purified mannoproteins from brewer's spent yeast are a promising source of bioaccessible glycosylated peptides with good neuroprotective and antioxidant properties.
Collapse
Affiliation(s)
- Marilin E Aquino
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, (3000) Santa Fe, Argentina
| | - Silvina R Drago
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, (3000) Santa Fe, Argentina.
| | - Luis P Schierloh
- Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (CONICET - Universidad Nacional de Entre Ríos, Ruta prov. 11 km 10, (3100) Oro Verde, Argentina
| | - Raúl E Cian
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, (3000) Santa Fe, Argentina
| |
Collapse
|
2
|
Xiao Y, Gu L, Zhang W, Jiang Y, Chen C, Tao W, Chen F. Identification of Prolyl endopeptidase as a novel anti-depression target of Genipin-1-b-D-gentiobioside in brain tissues. Behav Brain Res 2025; 484:115511. [PMID: 40024486 DOI: 10.1016/j.bbr.2025.115511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Depression is a serious mood disease that causes global impairment and mortality. In traditional Chinese medicine, herb compounds decoction with Gardenia jasminoides (GJ) as the main ingredient to treat depression has a history of hundreds of years in East Asian countries. Although the antidepressant effect of GJ has been well established, the antidepressant effect and target of its main component Genipin-1-b-D-gentiobioside (GG) remain unknown. In the present study, using a mouse chronic unpredictable mild stress (CUMS) model, we first examined the antidepressant effectiveness of GG. Next, we identified potential target proteins of GG in brain tissue using liquid chromatography-mass spectrometry (LC-MS)-based drug affinity responsive target stability (DARTS), and we intersected these targets with databases of depression targets to obtain GG's antidepressant protein targets. Finally, Prolyl endopeptidase (PREP) was initially confirmed as a potential antidepressant target of GG in brain tissue by molecular docking and biolayer interferometry (BLI). The results showed that GG administration reduced depression-like behavior in CUMS mice and increased the mRNA and protein expression levels of BDNF in the hippocampus of CUMS mice. Subsequently, there was an overlapping protein target between LC-MS-based DARTS and the databases of depression targets. Finally, molecular docking and BLI kinetic analysis indicated that GG specifically bound to PREP. According to the aforementioned research, PREP is a potential antidepressant protein target of GG in the brain. This conclusion could offer a chemical and biological foundation for future research on treating depression by focusing on PREP.
Collapse
Affiliation(s)
- Yang Xiao
- School of Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Gu
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjing Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yucui Jiang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuihua Chen
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- School of Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Feiyan Chen
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Zhang JB, Li MT, Lin SZ, Cheng YQ, Fan JG, Chen YW. Therapeutic Effect of Prolyl Endopeptidase Inhibitor in High-fat Diet-induced Metabolic Dysfunction-associated Fatty Liver Disease. J Clin Transl Hepatol 2023; 11:1035-1049. [PMID: 37577240 PMCID: PMC10412699 DOI: 10.14218/jcth.2022.00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims Prolyl endopeptidase (PREP) is a serine endopeptidase that participates in many pathological processes including inflammation, oxidative stress, and autophagy. Our previous studies found that PREP knockout exhibited multiple benefits in high-fat diet (HFD) or methionine choline-deficient diet-induced metabolic dysfunction-associated fatty liver disease (MAFLD). However, cumulative studies have suggested that PREP performs complex functions during disease development. Therefore, further understanding the role of PREP in MAFLD development is the foundation of PREP intervention. Methods In this study, an HFD-induced MAFLD model at different time points (4, 8, 12, and 16 weeks) was used to explore dynamic changes in the PREP proline-glycine-proline (PGP)/N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) system. To explore its potential value in MAFLD treatment, saline, or the PREP inhibitor, KYP-2047, was administered to HFD-induced MAFLD mice from the 10th to 16th weeks. Results PREP activity and expression were increased in HFD-mice compared with control mice from the 12th week onwards, and increased PREP mainly resulted in the activation of the matrix metalloproteinase 8/9 (MMP8/9)-PREP-PGP axis rather than the thymosin β4-meprin α/PREP-AcSDKP axis. In addition, KYP-2047 reduced HFD-induced liver injury and oxidative stress, improved lipid metabolism through the suppression of lipogenic genes and the induction of β-oxidation-related genes, and attenuated hepatic inflammation by decreasing MMP8/9 and PGP. Moreover, KYP2047 restored HFD-induced impaired autophagy and this was verified in HepG2 cells. Conclusions These findings suggest that increased PREP activity/expression during MAFLD development might be a key factor in the transition from simple steatosis to steatohepatitis, and KYP-2047 might possess therapeutic potential for MAFLD treatment.
Collapse
Affiliation(s)
- Jian-Bin Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Meng-Ting Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Gastroenterology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuang-Zhe Lin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Qing Cheng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
- Department of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
The Potential of Flavonoids and Flavonoid Metabolites in the Treatment of Neurodegenerative Pathology in Disorders of Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12030663. [PMID: 36978911 PMCID: PMC10045397 DOI: 10.3390/antiox12030663] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Flavonoids are a biodiverse family of dietary compounds that have antioxidant, anti-inflammatory, antiviral, and antibacterial cell protective profiles. They have received considerable attention as potential therapeutic agents in biomedicine and have been widely used in traditional complimentary medicine for generations. Such complimentary medical herbal formulations are extremely complex mixtures of many pharmacologically active compounds that provide a therapeutic outcome through a network pharmacological effects of considerable complexity. Methods are emerging to determine the active components used in complimentary medicine and their therapeutic targets and to decipher the complexities of how network pharmacology provides such therapeutic effects. The gut microbiome has important roles to play in the generation of bioactive flavonoid metabolites retaining or exceeding the antioxidative and anti-inflammatory properties of the intact flavonoid and, in some cases, new antitumor and antineurodegenerative bioactivities. Certain food items have been identified with high prebiotic profiles suggesting that neutraceutical supplementation may be beneficially employed to preserve a healthy population of bacterial symbiont species and minimize the establishment of harmful pathogenic organisms. Gut health is an important consideration effecting the overall health and wellbeing of linked organ systems. Bioconversion of dietary flavonoid components in the gut generates therapeutic metabolites that can also be transported by the vagus nerve and systemic circulation to brain cell populations to exert a beneficial effect. This is particularly important in a number of neurological disorders (autism, bipolar disorder, AD, PD) characterized by effects on moods, resulting in depression and anxiety, impaired motor function, and long-term cognitive decline. Native flavonoids have many beneficial properties in the alleviation of inflammation in tissues, however, concerns have been raised that therapeutic levels of flavonoids may not be achieved, thus allowing them to display optimal therapeutic effects. Dietary manipulation and vagal stimulation have both yielded beneficial responses in the treatment of autism spectrum disorders, depression, and anxiety, establishing the vagal nerve as a route of communication in the gut-brain axis with established roles in disease intervention. While a number of native flavonoids are beneficial in the treatment of neurological disorders and are known to penetrate the blood–brain barrier, microbiome-generated flavonoid metabolites (e.g., protocatechuic acid, urolithins, γ-valerolactones), which retain the antioxidant and anti-inflammatory potency of the native flavonoid in addition to bioactive properties that promote mitochondrial health and cerebrovascular microcapillary function, should also be considered as potential biotherapeutic agents. Studies are warranted to experimentally examine the efficacy of flavonoid metabolites directly, as they emerge as novel therapeutic options.
Collapse
|
5
|
Taraszkiewicz A, Sinkiewicz I, Sommer A, Staroszczyk H. The biological role of prolyl oligopeptidase and the procognitive potential of its peptidic inhibitors from food proteins. Crit Rev Food Sci Nutr 2023; 64:6567-6580. [PMID: 36798052 DOI: 10.1080/10408398.2023.2170973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Prolyl oligopeptidase (POP) is a conserved serine protease belonging to proline-specific peptidases. It has both enzymatic and non-enzymatic activity and is involved in numerous biological processes in the human body, playing a role in e.g., cellular growth and differentiation, inflammation, as well as the development of some neurodegenerative and neuropsychiatric disorders. This article describes the physiological and pathological aspects of POP activity and the state-of-art of its peptidic inhibitors originating from food proteins, with a particular focus on their potential as cognition-enhancing agents. Although some milk, meat, fish, and plant protein-derived peptides have the potential to be applied as natural, procognitive nutraceuticals, their effectiveness requires further evaluation, especially in clinical trials. We demonstrated that the important features of the most promising POP-inhibiting peptides are very short sequence, high content of hydrophobic amino acids, and usually the presence of proline residue.
Collapse
Affiliation(s)
- Antoni Taraszkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Izabela Sinkiewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Agata Sommer
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Hanna Staroszczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
6
|
Myöhänen TT, Mertens F, Norrbacka S, Cui H. Deletion or inhibition of prolyl oligopeptidase blocks lithium-induced phosphorylation of GSK3b and Akt by activation of protein phosphatase 2A. Basic Clin Pharmacol Toxicol 2021; 129:287-296. [PMID: 34196102 DOI: 10.1111/bcpt.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 11/27/2022]
Abstract
Alterations in prolyl oligopeptidase (PREP) activity have been connected, for example, with bipolar and major depressive disorder, and several studies have reported that lack or inhibition of PREP blocks the effects of lithium on inositol 1,4,5-triphosphate (IP3 ) levels. However, the impact of PREP modulation on other intracellular targets of lithium, such as glycogen synthase kinase 3 beta (GSK3b) or protein kinase B (Akt), has not been studied. We recently found that PREP regulates protein phosphatase 2A (PP2A), and because GSK3b and Akt are PP2A substrates, we studied if PREP-related lithium insensitivity is dependent on PP2A. To assess this, HEK-293 and SH-SY5Y cells with PREP deletion or PREP inhibition (KYP-2047) were exposed to lithium, and thereafter, the phosphorylation levels of GSK3b and Akt were measured by Western blot. As expected, PREP deletion and inhibition blocked the lithium-induced phosphorylation on GSK3b and Akt in both cell lines. When lithium exposure was combined with okadaic acid, a PP2A inhibitor, KYP-2047 did not have effect on lithium-induced GSK3b and Akt phosphorylation. Therefore, we conclude that PREP deletion or inhibition blocks the intracellular effects of lithium on GSK3b and Akt via PP2A activation.
Collapse
Affiliation(s)
- Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland.,Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Freke Mertens
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Hengjing Cui
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland.,Department of Pharmacy, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Jiang D, Zhang J, Lin S, Wang Y, Chen Y, Fan J. Prolyl Endopeptidase Gene Disruption Improves Gut Dysbiosis and Non-alcoholic Fatty Liver Disease in Mice Induced by a High-Fat Diet. Front Cell Dev Biol 2021; 9:628143. [PMID: 34095107 PMCID: PMC8172602 DOI: 10.3389/fcell.2021.628143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022] Open
Abstract
The gut-liver axis is increasingly recognized as being involved in the pathogenesis and progression of non-alcoholic fatty liver disease (NAFLD). Prolyl endopeptidase (PREP) plays a role in gut metabolic homeostasis and neurodegenerative diseases. We investigated the role of PREP disruption in the crosstalk between gut flora and hepatic steatosis or inflammation in mice with NAFLD. Wild-type mice (WT) and PREP gene knocked mice (PREPgt) were fed a low-fat diet (LFD) or high-fat diet (HFD) for 16 or 24 weeks. Murine gut microbiota profiles were generated at 16 or 24 weeks. Liver lipogenesis-associated molecules and their upstream mediators, AMP-activated protein kinase (AMPK) and sirtuin1 (SIRT1), were detected using RT-PCR or western blot in all mice. Inflammatory triggers and mediators from the gut or infiltrated inflammatory cells and signal mediators, such as p-ERK and p-p65, were determined. We found that PREP disruption modulated microbiota composition and altered the abundance of several beneficial bacteria such as the butyrate-producing bacteria in mice fed a HFD for 16 or 24 weeks. The level of butyrate in HFD-PREPgt mice significantly increased compared with that of the HFD-WT mice at 16 weeks. Interestingly, PREP disruption inhibited p-ERK and p-p65 and reduced the levels of proinflammatory cytokines in response to endotoxin and proline-glycine-proline, which guided macrophage/neutrophil infiltration in mice fed a HFD for 24 weeks. However, at 16 weeks, PREP disruption, other than regulating hepatic inflammation, displayed improved liver lipogenesis and AMPK/SIRT1 signaling. PREP disruption may target multiple hepatic mechanisms related to the liver, gut, and microbiota, displaying a dynamic role in hepatic steatosis and inflammation during NAFLD. PREP might serve as a therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Daixi Jiang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbin Zhang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangzhe Lin
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqin Wang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanwen Chen
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Prolyl endopeptidase disruption reduces hepatic inflammation and oxidative stress in methionine-choline-deficient diet-induced steatohepatitis. Life Sci 2021; 270:119131. [PMID: 33516698 DOI: 10.1016/j.lfs.2021.119131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/08/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022]
Abstract
AIMS Prolyl endopeptidase (PREP) is a serine endopeptidase widely distributed in the body, and accumulated evidence suggests that PREP participates in inflammation and oxidative stress. Here, we explored the effect of PREP gene disruption on hepatic inflammation and oxidative stress status in a methionine-choline-deficient (MCD)-induced nonalcoholic steatohepatitis (NASH) model. MAIN METHODS PREP gene disruption (PREPgt) mice and wild-type (WT) littermates were placed on a control or an MCD diet for 4 weeks, respectively. The liver histopathological analysis and the number of inflammatory cells were determined by hematoxylin-eosin (HE) and immunohistochemical staining. Inflammation-associated genes and cytokine levels in liver tissue were evaluated by quantitative PCR and ELISA. The levels of P53, Sesn2, Nrf2, HO-1, and oxidative stress indicators in mice and the palmitic acid (PA)-treated human hepatocellular carcinoma cells (HepG2) were examined by immunoblotting and commercially available kits, respectively. KEY FINDINGS We found that PREP expression was upregulated in the MCD-induced NASH model. In addition, PREP disruption alleviated MCD-induced hepatic inflammation accompanied by diminished infiltration of inflammatory cells and secretion of inflammatory mediators. More importantly, the results of this study indicate that targeting PREP can improve oxidative stress status in the liver of MCD-diet mice and PA-exposed HepG2 cells. The effect is most likely mediated by the activation of P53 and its downstream signaling pathways (Sesn2/Nrf2/HO-1). SIGNIFICANCE Our results showed that PREP disruption (or inhibition) could decrease oxidative stress and inflammation and improve liver function, indicating that targeting PREP might be a new potential therapeutic option for NAFLD/NASH.
Collapse
|
9
|
Dunaevsky YE, Tereshchenkova VF, Oppert B, Belozersky MA, Filippova IY, Elpidina EN. Human proline specific peptidases: A comprehensive analysis. Biochim Biophys Acta Gen Subj 2020; 1864:129636. [DOI: 10.1016/j.bbagen.2020.129636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
|
10
|
García-Horsman JA. The role of prolyl oligopeptidase, understanding the puzzle. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:983. [PMID: 32953783 PMCID: PMC7475498 DOI: 10.21037/atm-20-3412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Jiang DX, Zhang JB, Li MT, Lin SZ, Wang YQ, Chen YW, Fan JG. Prolyl endopeptidase gene disruption attenuates high fat diet-induced nonalcoholic fatty liver disease in mice by improving hepatic steatosis and inflammation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:218. [PMID: 32309365 PMCID: PMC7154388 DOI: 10.21037/atm.2020.01.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Prolyl endopeptidase (PREP) is a serine endopeptidase that regulates inflammatory responses. PREP inhibitors can reduce hepatocyte lipid accumulation and may participate in the progression of nonalcoholic fatty liver disease (NAFLD). We investigated whether disruption of PREP regulates hepatic steatosis and inflammation in mice with NAFLD. Methods Wild-type and PREP gene disrupted mice were randomly divided into low-fat diet wild-type (LFD-WT), high-fat diet wild-type (HFD-WT), low-fat diet PREP disruption (LFD-PREPgt), and high-fat diet PREP disruption (HFD-PREPgt) groups. Animals were euthanized at the endpoint of 32 weeks. The NAFLD activity score and number of inflammatory cells were determined by hematoxylin-eosin staining and immunohistochemical staining of liver tissue. The expression levels of inflammation- and lipid metabolism-associated genes in the liver and serum were detected by quantitative reverse transcription PCR, mass spectrometry, or enzyme-linked immunosorbent assay. Results The body weight and epididymal fat tissue index of the HFD-PREPgt mice were significantly decreased compared with that of the HFD-WT mice. Moreover, the NAFLD activity score and liver function were attenuated in the HFD-PREPgt mice. Fat accumulation and the level of expression of mRNAs associated with lipid metabolism and proinflammatory responses were improved in the HFD-PREPgt mice. The number of CD68-positive cells in liver tissue and the serum levels of inflammation-associated factors were significantly decreased in the HFD-PREPgt mice compared with those in the HFD-WT mice. Further mechanistic investigations indicated that the protective effect of PREP disruption on liver inflammation was associated with the suppressed production of matrix metalloproteinases (MMPs) and proline-glycine-proline (PGP) and the inhibition of neutrophil infiltration. Conclusions Loss of PREP lowers the severity of hepatic steatosis and inflammatory responses in a high-fat diet-induced nonalcoholic steatohepatitis model. PREP inhibition may protect against NAFLD.
Collapse
Affiliation(s)
- Dai-Xi Jiang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Bin Zhang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Meng-Ting Li
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shuang-Zhe Lin
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yu-Qin Wang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
12
|
Svarcbahs R, Jäntti M, Kilpeläinen T, Julku UH, Urvas L, Kivioja S, Norrbacka S, Myöhänen TT. Prolyl oligopeptidase inhibition activates autophagy via protein phosphatase 2A. Pharmacol Res 2019; 151:104558. [PMID: 31759088 DOI: 10.1016/j.phrs.2019.104558] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Prolyl oligopeptidase (PREP) is a serine protease that has been studied particularly in the context of neurodegenerative diseases for decades but its physiological function has remained unclear. We have previously found that PREP negatively regulates beclin1-mediated macroautophagy (autophagy), and that PREP inhibition by a small-molecule inhibitor induces clearance of protein aggregates in Parkinson's disease models. Since autophagy induction has been suggested as a potential therapy for several diseases, we wanted to further characterize how PREP regulates autophagy. We measured the levels of various kinases and proteins regulating beclin1-autophagy in HEK-293 and SH-SY5Y cell cultures after PREP inhibition, PREP deletion, and PREP overexpression and restoration, and verified the results in vivo by using PREP knock-out and wild-type mouse tissue where PREP was restored or overexpressed, respectively. We found that PREP regulates autophagy by interacting with protein phosphatase 2A (PP2A) and its endogenous inhibitor, protein phosphatase methylesterase 1 (PME1), and activator (protein phosphatase 2 phosphatase activator, PTPA), thus adjusting its activity and the levels of PP2A in the intracellular pool. PREP inhibition and deletion increased PP2A activity, leading to activation of death-associated protein kinase 1 (DAPK1), beclin1 phosphorylation and induced autophagy while PREP overexpression reduced this. Lowered activity of PP2A is connected to several neurodegenerative disorders and cancers, and PP2A activators would have enormous potential as drug therapy but development of such compounds has been a challenge. The concept of PREP inhibition has been proved safe, and therefore, our study supports the further development of PREP inhibitors as PP2A activators.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Lauri Urvas
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Saara Kivioja
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
13
|
Jürgenson M, Zharkovskaja T, Noortoots A, Morozova M, Beniashvili A, Zapolski M, Zharkovsky A. Effects of the drug combination memantine and melatonin on impaired memory and brain neuronal deficits in an amyloid-predominant mouse model of Alzheimer's disease. J Pharm Pharmacol 2019; 71:1695-1705. [DOI: 10.1111/jphp.13165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Alzheimer's disease (AD) is a neurodegenerative disorder with no cure. Limited treatment options available today do not offer solutions to slow or stop any of the suspected causes. The current medications used for the symptomatic treatment of AD include memantine and acetylcholine esterase inhibitors. Some studies suggest that melatonin could also be used in AD patients due to its sleep-improving properties.
Methods
In this study, we evaluated whether a combination of memantine with melatonin, administered for 32 days in drinking water, was more effective than either drug alone with respect to Aβ aggregates, neuroinflammation and cognition in the double transgenic APP/PS1 (5xFAD) mouse model of AD.
Key findings
In this study, chronic administration of memantine with melatonin improved episodic memory in the object recognition test and reduced the number of amyloid aggregates and reactive microgliosis in the brains of 5xFAD mice. Although administration of memantine or melatonin alone also reduced the number of amyloid aggregates and inflammation in brain, this study shows a clear benefit of the drug combination, which had a significantly stronger effect in this amyloid-dominant mouse model of AD.
Conclusion
Our data suggest considerable potential for the use of memantine with melatonin in patients with AD.
Collapse
Affiliation(s)
- Monika Jürgenson
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tamara Zharkovskaja
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aveli Noortoots
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Max Zapolski
- Valentech Ltd, Skolkovo Innovation Centre, Moscow, Russia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
Ali I, Van Eetveldt A, Van Elzen R, Kalathil Raju T, Van Der Veken P, Lambeir A, Dedeurwaerdere S. Spatiotemporal expression and inhibition of prolyl oligopeptidase contradict its involvement in key pathologic mechanisms of kainic acid-induced temporal lobe epilepsy in rats. Epilepsia Open 2019; 4:92-101. [PMID: 30868119 PMCID: PMC6398098 DOI: 10.1002/epi4.12293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/04/2018] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Prolyl oligopeptidase (PREP) has been implicated in neuroinflammatory processes and neuroplasticity and has been suggested as a target for the treatment of neurodegenerative disease. The aim of this investigation was to explore the involvement of PREP in the neuropathologic mechanisms relevant to temporal lobe epilepsy (TLE) using a PREP inhibitor in a well-established rat model. METHODS PREP activity and expression was studied in Sprague-Dawley rats 2 and 12 weeks following kainic acid-induced status epilepticus (KASE). Continuous video-electroencephalography monitoring was performed for 2 weeks in the 12-week cohort to identify a relationship of PREP expression/activity with epileptic seizures. In addition, the animals included in the 2-week time point were treated with a specific inhibitor of PREP, KYP-2047, or saline continuously, starting immediately after SE. PREP activity and its expression were analyzed in rat brain by using enzyme kinetics and western blot. In addition, markers for microglial activation, astrogliosis, cell loss, and cell proliferation were evaluated. RESULTS Enzymatic activity of PREP was unchanged following induction of SE after 2 and 12 weeks in rats. PREP activity in epileptic rats did not relate to the number of seizures/day at the 12-week time point. Moreover, continuous inhibition of PREP for 2 weeks after KASE did not alter the SE-mediated neuroinflammatory response, cell loss, or cell proliferation in the hippocampal subgranule zone measured at the 2-week time point. SIGNIFICANCE PREP inhibition does not affect key pathologic mechanisms, including activation of glial cells, cell loss, and neural progenitor cell proliferation, in this KASE model of TLE. The results do not support a direct role of PREP in seizure burden during the chronic epilepsy period in this model.
Collapse
Affiliation(s)
- Idrish Ali
- Department of Translational NeurosciencesUniversity of AntwerpWilrijkBelgium
- Present address:
Department of MedicineUniversity of MelbourneMelbourneAustralia
| | | | - Roos Van Elzen
- Laboratory of Medical BiochemistryUniversity of AntwerpWilrijkBelgium
| | - Tom Kalathil Raju
- Laboratory of Medical BiochemistryUniversity of AntwerpWilrijkBelgium
| | | | | | - Stefanie Dedeurwaerdere
- Laboratory of Experimental Hematology, VaxinfectioUniversity of AntwerpAntwerpBelgium
- Present address:
UCB PharmaBraine‐l'AlleudBelgium
| |
Collapse
|
15
|
New tricks of prolyl oligopeptidase inhibitors - A common drug therapy for several neurodegenerative diseases. Biochem Pharmacol 2019; 161:113-120. [PMID: 30660495 DOI: 10.1016/j.bcp.2019.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
Abstract
Changes in prolyl oligopeptidase (PREP) expression levels, protein distribution, and activity correlate with aging and are reported in many neurodegenerative conditions. Together with decreased neuropeptide levels observed in aging and neurodegeneration, and PREP's ability to cleave only small peptides, PREP was identified as a druggable target. Known PREP non-enzymatic functions were disregarded or attributed to PREP enzymatic activity, and several potent small molecule PREP inhibitors were developed during early stages of PREP research. These showed a lot of potential but with variable results in experimental memory models, however, the initial excitement was short-lived and all of the clinical trials were discontinued in either Phase I or II clinical trials for unknown reasons. Recently, PREP's ability to form protein-protein interactions, alter cell proliferation and autophagy has gained more attention than earlier recognized catalytical activity. Of new findings, particularly the aggregation of alpha-synuclein (aSyn) that is seen in the presence of PREP is especially interesting because PREP inhibitors are capable of altering aSyn-PREP interaction in a manner that reduces the aSyn dimerization process. Therefore, it is possible that PREP inhibitors that are altering interactions could have different characteristics than those aimed for strong inhibition of catalytic activity. Moreover, PREP co-localization with aSyn, tau, and amyloid-beta hints to PREP's possible role not only in the synucleinopathies but in other neurodegenerative diseases as well. This commentary will focus on less well-acknowledged non-enzymatic functions of PREP that may provide a better approach for the development of PREP inhibitors for the treatment of neurodegenerative disorders.
Collapse
|
16
|
Zubkov EA, Zorkina YA, Orshanskaya EV, Khlebnikova NN, Krupina NA, Chekhonin VP. Changes in Gene Expression Profiles in Adult Rat Brain Structures after Neonatal Action of Dipeptidyl Peptidase-IV Inhibitors. Neuropsychobiology 2018; 76:89-99. [PMID: 29860255 DOI: 10.1159/000488367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous studies have shown the development of emotional and motivational disorders, such as anxiety-depression-like disorders with increased aggression in adolescent and adult Wistar rats, occurs after neonatal exposure to the dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) inhibitors diprotin A and sitagliptin (postnatal days 5-18). METHODS In this study, using real-time PCR, we evaluated changes in the gene expression of serine protease DPP-IV and prolyl endopeptidase (PREP, EC 3.4.21.26; dpp4 and prep genes), monoamine oxidase А (maoA) and B (maoB), and serotonin transporter (SERT; sert) in the brain structures from 3-month-old rats after postnatal action of DPP-IV inhibitors diprotin A and sitagliptin. RESULTS Dpp4, sert, and maoB gene expression increased and maoA gene expression changed with a tendency to increase in the striatum of rats with neonatal sitagliptin action. The increase of maoA gene expression was also shown in the amygdala. An increase in prep gene expression was found in the striatum of rats with the neonatal action of diprotin A, and a decrease in maoB gene expression was observed in the amygdala. We detected a significant downward trend in sert gene expression in the frontal cortex and amygdala, as well as a tendency to increase in maoA gene expression in the hypothalamus. DISCUSSION These findings suggest that changes in the expression of the abovementioned genes are associated with the development of anxiety and depression, with increased aggression caused by the neonatal action of diprotin A and sitagliptin.
Collapse
Affiliation(s)
- Eugene A Zubkov
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psyсhiatry and Narcology, Moscow, Russian Federation
| | - Yana A Zorkina
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psyсhiatry and Narcology, Moscow, Russian Federation
| | - Elena V Orshanskaya
- The Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | | | - Natalia A Krupina
- The Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psyсhiatry and Narcology, Moscow, Russian Federation
| |
Collapse
|
17
|
Becker B, Nazir FH, Brinkmalm G, Camporesi E, Kvartsberg H, Portelius E, Boström M, Kalm M, Höglund K, Olsson M, Zetterberg H, Blennow K. Alzheimer-associated cerebrospinal fluid fragments of neurogranin are generated by Calpain-1 and prolyl endopeptidase. Mol Neurodegener 2018; 13:47. [PMID: 30157938 PMCID: PMC6116393 DOI: 10.1186/s13024-018-0279-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022] Open
Abstract
Background Neurogranin (Ng) is a small 7.6 kDa postsynaptic protein that has been detected at elevated concentrations in cerebrospinal fluid (CSF) of patients with Alzheimer’s disease (AD), both as a full-length molecule and as fragments from its C-terminal half. Ng is involved in postsynaptic calcium (Ca) signal transduction and memory formation via binding to calmodulin in a Ca-dependent manner. The mechanism of Ng secretion from neurons to CSF is currently unknown, but enzymatic cleavage of Ng may be of relevance. Therefore, the aim of the study was to identify the enzymes responsible for the cleavage of Ng, yielding the Ng fragment pattern of C-terminal fragments detectable and increased in CSF of AD patients. Methods Fluorigenic quenched FRET probes containing sequences of Ng were utilized to identify Ng cleaving activities among enzymes known to have increased activity in AD and in chromatographically fractionated mouse brain extracts. Results Human Calpain-1 and prolyl endopeptidase were identified as the candidate enzymes involved in the formation of endogenous Ng peptides present in CSF, cleaving mainly in the central region of Ng, and between amino acids 75_76 in the Ng sequence, respectively. The cleavage by Calpain-1 affects the IQ domain of Ng, which may deactivate or change the function of Ng in Ca2+/calmodulin -dependent signaling for synaptic plasticity. While shorter Ng fragments were readily cleaved in vitro by prolyl endopeptidase, the efficiency of cleavage on larger Ng fragments was much lower. Conclusions Calpain-1 and prolyl endopeptidase cleave Ng in the IQ domain and near the C-terminus, respectively, yielding specific fragments of Ng in CSF. These fragments may give clues to the roles of increased activities of these enzymes in the pathophysiology of AD, and provide possible targets for pharmacologic intervention. Electronic supplementary material The online version of this article (10.1186/s13024-018-0279-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden. .,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Faisal Hayat Nazir
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Martina Boström
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marie Kalm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Maria Olsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
18
|
Natunen TA, Gynther M, Rostalski H, Jaako K, Jalkanen AJ. Extracellular prolyl oligopeptidase derived from activated microglia is a potential neuroprotection target. Basic Clin Pharmacol Toxicol 2018; 124:40-49. [DOI: 10.1111/bcpt.13094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Teemu A. Natunen
- Institute of Biomedicine; University of Eastern Finland; Kuopio Finland
| | - Mikko Gynther
- School of Pharmacy; University of Eastern Finland; Kuopio Finland
| | - Hannah Rostalski
- A.I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio Finland
| | - Külli Jaako
- Department of Pharmacology; Institute of Biomedicine and Translational Medicine; University of Tartu; Tartu Estonia
| | - Aaro J. Jalkanen
- School of Pharmacy; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
19
|
Guardiola S, Prades R, Mendieta L, Brouwer AJ, Streefkerk J, Nevola L, Tarragó T, Liskamp RM, Giralt E. Targeted Covalent Inhibition of Prolyl Oligopeptidase (POP): Discovery of Sulfonylfluoride Peptidomimetics. Cell Chem Biol 2018; 25:1031-1037.e4. [DOI: 10.1016/j.chembiol.2018.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/14/2018] [Accepted: 04/12/2018] [Indexed: 01/30/2023]
|
20
|
Svarcbahs R, Julku UH, Norrbacka S, Myöhänen TT. Removal of prolyl oligopeptidase reduces alpha-synuclein toxicity in cells and in vivo. Sci Rep 2018; 8:1552. [PMID: 29367610 PMCID: PMC5784134 DOI: 10.1038/s41598-018-19823-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
Prolyl oligopeptidase (PREP) inhibition by small-molecule inhibitors can reduce alpha-synuclein (aSyn) aggregation, a key player in Parkinson's disease pathology. However, the significance of PREP protein for aSyn aggregation and toxicity is not known. We studied this in vivo by using PREP knock-out mice with viral vector injections of aSyn and PREP. Animal behavior was studied by locomotor activity and cylinder tests, microdialysis and HPLC were used to analyze dopamine levels, and different aSyn forms and loss of dopaminergic neurons were studied by immunostainings. Additionally, PREP knock-out cells were used to characterize the impact of PREP and aSyn on autophagy, proteasomal system and aSyn secretion. PREP knock-out animals were nonresponsive to aSyn-induced unilateral toxicity but combination of PREP and aSyn injections increased aSyn toxicity. Phosphorylated p129, proteinase K resistant aSyn levels and tyrosine hydroxylase positive cells were decreased in aSyn and PREP injected knock-out animals. These changes were accompanied by altered dopamine metabolite levels. PREP knock-out cells showed reduced response to aSyn, while cells were restored to wild-type cell levels after PREP overexpression. Taken together, our data suggests that PREP can enhance aSyn toxicity in vivo.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
21
|
Dynamics and ligand-induced conformational changes in human prolyl oligopeptidase analyzed by hydrogen/deuterium exchange mass spectrometry. Sci Rep 2017; 7:2456. [PMID: 28550305 PMCID: PMC5446394 DOI: 10.1038/s41598-017-02550-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/12/2017] [Indexed: 11/08/2022] Open
Abstract
Prolyl oligopeptidase (PREP) is conserved in many organisms across life. It is involved in numerous processes including brain function and neuropathology, that require more than its strict proteolytic role. It consists of a seven-bladed β-propeller juxtaposed to a catalytic α/β-hydrolase domain. The conformational dynamics of PREP involved in domain motions and the gating mechanism that allows substrate accessibility remain elusive. Here we used Hydrogen Deuterium eXchange Mass Spectrometry (HDX-MS) to derive the first near-residue resolution analysis of global PREP dynamics in the presence or absence of inhibitor bound in the active site. Clear roles are revealed for parts that would be critical for the activation mechanism. In the free state, the inter-domain interface is loose, providing access to the catalytic site. Inhibitor binding "locks" the two domains together exploiting prominent interactions between the loop of the first β-propeller blade and its proximal helix from the α/β-hydrolase domain. Loop A, thought to drive gating, is partially stabilized but remains flexible and dynamic. These findings provide a conformational guide for further dissection of the gating mechanism of PREP, that would impact drug development. Moreover, they offer a structural framework against which to study proteolysis-independent interactions with disordered proteins like α-synuclein involved in neurodegenerative disease.
Collapse
|
22
|
Maruyama Y, Matsubara S, Kimura AP. Mouse prolyl oligopeptidase plays a role in trophoblast stem cell differentiation into trophoblast giant cell and spongiotrophoblast. Placenta 2017; 53:8-15. [PMID: 28487025 DOI: 10.1016/j.placenta.2017.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Prolyl oligopeptidase (prolyl endopeptidase, Prep), a multifunctional protease hydrolyzing -Pro-X- peptide bonds, is highly expressed in the mouse placenta, but the function during development is not known. We explored the possibility of Prep's involvement in placental differentiation. METHODS We cultured trophoblast stem cells (TSCs) derived from the E6.5 mouse embryo and investigated the detailed expression pattern of Prep during their differentiation. Prep-specific inhibitors were added to the TSC culture, and the effect on the differentiation was assessed by microscopic observation and the expression of marker gene for each placental cell. RESULTS During TSC differentiation for 6 days, Prep was constantly detected at mRNA, protein, and activity levels, and the protein was found mainly in the cytoplasm. The addition of 30 μM and 10 μM SUAM-14746, a Prep-specific inhibitor, effectively inhibited the differentiation into spongiotrophoblasts (SpTs) and trophoblast giant cells (TGCs), while the TSC viability was not affected. 5 μM SUAM-14746 impaired the differentiation into SpTs, and 1 μM SUAM-14746 exhibited no effects. Another Prep-specific inhibitor, KYP-2047, did not affect the differentiation. We confirmed efficient inhibition of Prep enzymatic activity in TSCs by both inhibitors. CONCLUSION The dose-dependent effect of SUAM-14746 on TSCs suggests that Prep plays an important role in the differentiation into SpTs and TGCs in the mouse placenta.
Collapse
Affiliation(s)
- Yuki Maruyama
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin Matsubara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
23
|
Männistö PT, García-Horsman JA. Mechanism of Action of Prolyl Oligopeptidase (PREP) in Degenerative Brain Diseases: Has Peptidase Activity Only a Modulatory Role on the Interactions of PREP with Proteins? Front Aging Neurosci 2017; 9:27. [PMID: 28261087 PMCID: PMC5306367 DOI: 10.3389/fnagi.2017.00027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
In the aging brain, the correct balance of neural transmission and its regulation is of particular significance, and neuropeptides have a significant role. Prolyl oligopeptidase (PREP) is a protein highly expressed in brain, and evidence indicates that it is related to aging and in neurodegenration. Although PREP is regarded as a peptidase, the physiological substrates in the brain have not been defined, and after intense research, the molecular mechanisms where this protein is involved have not been defined. We propose that PREP functions as a regulator of other proteins though peptide gated direct interaction. We speculate that, at least in some processes where PREP has shown to be relevant, the peptidase activity is only a consequence of the interactions, and not the main physiological activity.
Collapse
Affiliation(s)
- Pekka T Männistö
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki Helsinki, Finland
| | - J Arturo García-Horsman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki Helsinki, Finland
| |
Collapse
|
24
|
Prades R, Munarriz-Cuezva E, Urigüen L, Gil-Pisa I, Gómez L, Mendieta L, Royo S, Giralt E, Tarragó T, Meana JJ. The prolyl oligopeptidase inhibitor IPR19 ameliorates cognitive deficits in mouse models of schizophrenia. Eur Neuropsychopharmacol 2017; 27:180-191. [PMID: 27986355 DOI: 10.1016/j.euroneuro.2016.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
Cognitive deficits are considered a key feature of schizophrenia, and they usually precede the onset of the illness and continue after psychotic symptoms appear. Current antipsychotic drugs have little or no effect on the cognitive deficits of this disorder. Prolyl oligopeptidase (POP) is an 81-kDa monomeric serine protease that is expressed in brain and other tissues. POP inhibitors have shown neuroprotective, anti-amnesic and cognition-enhancing properties. Here we studied the potential of IPR19, a new POP inhibitor, for the treatment of the cognitive symptoms related to schizophrenia. The efficacy of the inhibitor was evaluated in mouse models based on subchronic phencyclidine and acute dizocilpine administration, and in adult offspring from mothers with immune reaction induced by polyinosinic:polycytidylic acid administration during pregnancy. Acute IPR19 administration (5mg/kg, i.p.) reversed the cognitive performance deficits of the three mouse models in the novel object recognition test, T-maze, and eight-arm radial maze. The compound also ameliorates deficits of the prepulse inhibition response. The in vitro inhibitory efficacy and selectivity, brain penetration and exposure time after injection of IPR19 were also addressed. Our results indicate that the inhibition of POP using IPR19 may offer a promising strategy to develop drugs to ameliorate the cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
| | - Eva Munarriz-Cuezva
- Department of Pharmacology, University of the Basque Country UPV/EHU, BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU, BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Itziar Gil-Pisa
- Department of Pharmacology, University of the Basque Country UPV/EHU, BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | | | | | | | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Teresa Tarragó
- Iproteos SL, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.
| |
Collapse
|
25
|
Prolyl Oligopeptidase Regulates Dopamine Transporter Phosphorylation in the Nigrostriatal Pathway of Mouse. Mol Neurobiol 2016; 55:470-482. [PMID: 27966077 DOI: 10.1007/s12035-016-0339-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022]
Abstract
Alpha-synuclein is the main component of Lewy bodies, a histopathological finding of Parkinson's disease. Prolyl oligopeptidase (PREP) is a serine protease that binds to α-synuclein and accelerates its aggregation in vitro. PREP enzyme inhibitors have been shown to block the α-synuclein aggregation process in vitro and in cellular models, and also to enhance the clearance of α-synuclein aggregates in transgenic mouse models. Moreover, PREP inhibitors have induced alterations in dopamine and metabolite levels, and dopamine transporter immunoreactivity in the nigrostriatal tissue. In this study, we characterized the role of PREP in the nigrostriatal dopaminergic and GABAergic systems of wild-type C57Bl/6 and PREP knockout mice, and the effects of PREP overexpression on these systems. Extracellular concentrations of dopamine and protein levels of phosphorylated dopamine transporter were increased and dopamine reuptake was decreased in the striatum of PREP knockout mice, suggesting increased internalization of dopamine transporter from the presynaptic membrane. Furthermore, PREP overexpression increased the level of dopamine transporters in the nigrostriatal tissue but decreased phosphorylated dopamine transporters in the striatum in wild-type mice. Our results suggest that PREP regulates the function of dopamine transporter, possibly by controlling the phosphorylation and transport of dopamine transporter into the striatum or synaptic membrane.
Collapse
|
26
|
Jaako K, Waniek A, Parik K, Klimaviciusa L, Aonurm-Helm A, Noortoots A, Anier K, Van Elzen R, Gérard M, Lambeir AM, Roßner S, Morawski M, Zharkovsky A. Prolyl endopeptidase is involved in the degradation of neural cell adhesion molecules in vitro. J Cell Sci 2016; 129:3792-3802. [PMID: 27566163 DOI: 10.1242/jcs.181891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Membrane-associated glycoprotein neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) play an important role in brain plasticity by regulating cell-cell interactions. Here, we demonstrate that the cytosolic serine protease prolyl endopeptidase (PREP) is able to regulate NCAM and PSA-NCAM. Using a SH-SY5Y neuroblastoma cell line with stable overexpression of PREP, we found a remarkable loss of PSA-NCAM, reduced levels of NCAM180 and NCAM140 protein species, and a significant increase in the NCAM immunoreactive band migrating at an apparent molecular weight of 120 kDa in PREP-overexpressing cells. Moreover, increased levels of NCAM fragments were found in the concentrated medium derived from PREP-overexpressing cells. PREP overexpression selectively induced an activation of matrix metalloproteinase-9 (MMP-9), which could be involved in the observed degradation of NCAM, as MMP-9 neutralization reduced the levels of NCAM fragments in cell culture medium. We propose that increased PREP levels promote epidermal growth factor receptor (EGFR) signaling, which in turn activates MMP-9. In conclusion, our findings provide evidence for newly-discovered roles for PREP in mechanisms regulating cellular plasticity through NCAM and PSA-NCAM.
Collapse
Affiliation(s)
- Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Keiti Parik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Linda Klimaviciusa
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Anu Aonurm-Helm
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Aveli Noortoots
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Kaili Anier
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Roos Van Elzen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp B-2610, Belgium
| | - Melanie Gérard
- Interdisciplinary Research Centre KU Leuven-Kortrijk, Kortrijk B-8500, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp B-2610, Belgium
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|