1
|
Wang H, Li X, Xuan M, Yang R, Zhang J, Chang J. Marine biomaterials for sustainable bone regeneration. GIANT 2024; 19:100298. [DOI: 10.1016/j.giant.2024.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Wang X, Wei W, Guo Z, Liu X, Liu J, Bing T, Yu Y, Yang X, Cai Q. Organic-inorganic composite hydrogels: compositions, properties, and applications in regenerative medicine. Biomater Sci 2024; 12:1079-1114. [PMID: 38240177 DOI: 10.1039/d3bm01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Hydrogels, formed from crosslinked hydrophilic macromolecules, provide a three-dimensional microenvironment that mimics the extracellular matrix. They served as scaffold materials in regenerative medicine with an ever-growing demand. However, hydrogels composed of only organic components may not fully meet the performance and functionalization requirements for various tissue defects. Composite hydrogels, containing inorganic components, have attracted tremendous attention due to their unique compositions and properties. Rigid inorganic particles, rods, fibers, etc., can form organic-inorganic composite hydrogels through physical interaction and chemical bonding with polymer chains, which can not only adjust strength and modulus, but also act as carriers of bioactive components, enhancing the properties and biological functions of the composite hydrogels. Notably, incorporating environmental or stimulus-responsive inorganic particles imparts smartness to hydrogels, hence providing a flexible diagnostic platform for in vitro cell culture and in vivo tissue regeneration. In this review, we discuss and compare a set of materials currently used for developing organic-inorganic composite hydrogels, including the modification strategies for organic and inorganic components and their unique contributions to regenerative medicine. Specific emphasis is placed on the interactions between the organic or inorganic components and the biological functions introduced by the inorganic components. The advantages of these composite hydrogels indicate their potential to offer adaptable and intelligent therapeutic solutions for diverse tissue repair demands within the realm of regenerative medicine.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Wei Wei
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Guo
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinru Liu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ju Liu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tiejun Bing
- Immunology and Oncology center, ICE Bioscience, Beijing 100176, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Granat MM, Eifler-Zydel J, Kolmas J. Statins-Their Role in Bone Tissue Metabolism and Local Applications with Different Carriers. Int J Mol Sci 2024; 25:2378. [PMID: 38397055 PMCID: PMC10888549 DOI: 10.3390/ijms25042378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Statins, widely prescribed for lipid disorders, primarily target 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase competitively and reversibly, resulting in reduced low-density lipoprotein cholesterol (LDL-C). This mechanism proves effective in lowering the risk of lipid-related diseases such as ischemic cerebrovascular and coronary artery diseases. Beyond their established use, statins are under scrutiny for potential applications in treating bone diseases. The focus of research centers mainly on simvastatin, a lipophilic statin demonstrating efficacy in preventing osteoporosis and aiding in fracture and bone defect healing. Notably, these effects manifest at elevated doses (20 mg/kg/day) of statins, posing challenges for systematic administration due to their limited bone affinity. Current investigations explore intraosseous statin delivery facilitated by specialized carriers. This paper outlines various carrier types, characterizing their structures and underscoring various statins' potential as local treatments for bone diseases.
Collapse
Affiliation(s)
- Marcin Mateusz Granat
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| | - Joanna Eifler-Zydel
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| | - Joanna Kolmas
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| |
Collapse
|
4
|
Cianciosi A, Simon J, Bartolf-Kopp M, Grausgruber H, Dargaville TR, Forget A, Groll J, Jungst T, Beaumont M. Direct ink writing of multifunctional nanocellulose and allyl-modified gelatin biomaterial inks for the fabrication of mechanically and functionally graded constructs. Carbohydr Polym 2023; 319:121145. [PMID: 37567703 DOI: 10.1016/j.carbpol.2023.121145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 08/13/2023]
Abstract
Recreating the intricate mechanical and functional gradients found in natural tissues through additive manufacturing poses significant challenges, including the need for precise control over time and space and the availability of versatile biomaterial inks. In this proof-of-concept study, we developed a new biomaterial ink for direct ink writing, allowing the creation of 3D structures with tailorable functional and mechanical gradients. Our ink formulation combined multifunctional cellulose nanofibrils (CNFs), allyl-functionalized gelatin (0.8-2.0 wt%), and polyethylene glycol dithiol (3.0-7.5 wt%). The CNF served as a rheology modifier, whereas a concentration of 1.8 w/v % in the inks was chosen for optimal printability and shape fidelity. In addition, CNFs were functionalized with azido groups, enabling the spatial distribution of functional moieties within a 3D structure. These functional groups were further modified using a spontaneous click chemistry reaction. Through additive manufacturing and a readily available static mixer, we successfully demonstrated the fabrication of mechanical gradients - ranging from 3 to 6 kPa in indentation strength - and functional gradients. Additionally, we introduced dual gradients by combining gradient printing with an anisotropic photocrosslinking step. The developed biomaterial ink opens up possibilities for printing intricate multigradient structures, resembling the complex hierarchical organization seen in living tissues.
Collapse
Affiliation(s)
- Alessandro Cianciosi
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Jonas Simon
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Str. 24, A-3430 Tulln, Austria
| | - Michael Bartolf-Kopp
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Heinrich Grausgruber
- Department of Crop Sciences, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Str. 24, A-3430 Tulln, Austria
| | - Tim R Dargaville
- ARC Centre for Cell & Tissue Engineering Technologies, Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, QUT Centre for Materials Science, School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Australia
| | - Aurélien Forget
- Institute for Macromolecular Chemistry, University of Freiburg, Freiburg 79104, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, Pleicherwall 2, Würzburg 97070, Germany.
| | - Marco Beaumont
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Str. 24, A-3430 Tulln, Austria.
| |
Collapse
|
5
|
Sun H, Meng S, Chen J, Wan Q. Effects of Hyperlipidemia on Osseointegration of Dental Implants and Its Strategies. J Funct Biomater 2023; 14:jfb14040194. [PMID: 37103284 PMCID: PMC10145040 DOI: 10.3390/jfb14040194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Hyperlipidemia refers to the abnormal increase in plasma lipid level exceeding the normal range. At present, a large number of patients require dental implantation. However, hyperlipidemia affects bone metabolism, promotes bone loss, and inhibits the osseointegration of dental implants through the mutual regulation of adipocytes, osteoblasts, and osteoclasts. This review summarized the effects of hyperlipidemia on dental implants and addressed the potential strategies of dental implants to promote osseointegration in a hyperlipidemic environment and to improve the success rate of dental implants in patients with hyperlipidemia. We summarized topical drug delivery methods to solve the interference of hyperlipidemia in osseointegration, which were local drug injection, implant surface modification and bone-grafting material modification. Statins are the most effective drugs in the treatment of hyperlipidemia, and they also encourage bone formation. Statins have been used in these three methods and have been found to be positive in promoting osseointegration. Directly coating simvastatin on the rough surface of the implant can effectively promote osseointegration of the implant in a hyperlipidemic environment. However, the delivery method of this drug is not efficient. Recently, a variety of efficient methods of simvastatin delivery, such as hydrogels and nanoparticles, have been developed to boost bone formation, but few of them were applied to dental implants. Applicating these drug delivery systems using the three aforementioned ways, according to the mechanical and biological properties of materials, could be promising ways to promote osseointegration under hyperlipidemic conditions. However, more research is needed to confirm.
Collapse
|
6
|
Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies. Front Bioeng Biotechnol 2022; 10:824156. [PMID: 35480972 PMCID: PMC9035802 DOI: 10.3389/fbioe.2022.824156] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Treating large bone defects, known as critical-sized defects (CSDs), is challenging because they are not spontaneously healed by the patient’s body. Due to the limitations associated with conventional bone grafts, bone tissue engineering (BTE), based on three-dimensional (3D) bioprinted scaffolds, has emerged as a promising approach for bone reconstitution and treatment. Bioprinting technology allows for incorporation of living cells and/or growth factors into scaffolds aiming to mimic the structure and properties of the native bone. To date, a wide range of biomaterials (either natural or synthetic polymers), as well as various cells and growth factors, have been explored for use in scaffold bioprinting. However, a key challenge that remains is the fabrication of scaffolds that meet structure, mechanical, and osteoconductive requirements of native bone and support vascularization. In this review, we briefly present the latest developments and discoveries of CSD treatment by means of bioprinted scaffolds, with a focus on the biomaterials, cells, and growth factors for formulating bioinks and their bioprinting techniques. Promising state-of-the-art pathways or strategies recently developed for bioprinting bone scaffolds are highlighted, including the incorporation of bioactive ceramics to create composite scaffolds, the use of advanced bioprinting technologies (e.g., core/shell bioprinting) to form hybrid scaffolds or systems, as well as the rigorous design of scaffolds by taking into account of the influence of such parameters as scaffold pore geometry and porosity. We also review in-vitro assays and in-vivo models to track bone regeneration, followed by a discussion of current limitations associated with 3D bioprinting technologies for BTE. We conclude this review with emerging approaches in this field, including the development of gradient scaffolds, four-dimensional (4D) printing technology via smart materials, organoids, and cell aggregates/spheroids along with future avenues for related BTE.
Collapse
Affiliation(s)
- Zahra Yazdanpanah
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Zahra Yazdanpanah,
| | - James D. Johnston
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - David M. L. Cooper
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Gorabi AM, Kiaie N, Pirro M, Bianconi V, Jamialahmadi T, Sahebkar A. Effects of statins on the biological features of mesenchymal stem cells and therapeutic implications. Heart Fail Rev 2021; 26:1259-1272. [PMID: 32008148 DOI: 10.1007/s10741-020-09929-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Statins are well-known lipid-lowering drugs. The pleiotropic effects of statins have brought about some beneficial effects on improving the therapeutic outcomes of cell therapy and tissue engineering approaches. In this review, the impact of statins on mesenchymal stem cell behaviors including differentiation, apoptosis, proliferation, migration, and angiogenesis, as well as molecular pathways which are responsible for such phenomena, are discussed. A better understanding of pathways and mechanisms of statin-mediated effects on mesenchymal stem cells will pave the way for the expansion of statin applications. Furthermore, since designing a suitable carrier for statins is required to maintain a sufficient dose of active statins at the desired site of the body, different systems for local delivery of statins are also reviewed.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Jin H, Ji Y, Cui Y, Xu L, Liu H, Wang J. Simvastatin-Incorporated Drug Delivery Systems for Bone Regeneration. ACS Biomater Sci Eng 2021; 7:2177-2191. [PMID: 33877804 DOI: 10.1021/acsbiomaterials.1c00462] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Local drug delivery systems composed of biomaterials and osteogenic substances provide promising strategies for the reconstruction of large bone defects. In recent years, simvastatin has been studied extensively for its pleiotropic effects other than lowering of cholesterol, including its ability to induce osteogenesis and angiogenesis. Accordingly, several studies of simvastatin incorporated drug delivery systems have been performed to demonstrate the feasibility of such systems in enhancing bone regeneration. Therefore, this review explores the molecular mechanisms by which simvastatin affects bone metabolism and angiogenesis. The simvastatin concentrations that promote osteogenic differentiation are analyzed. Furthermore, we summarize and discuss a variety of simvastatin-loaded drug delivery systems that use different loading methods and materials. Finally, current shortcomings of and future development directions for simvastatin-loaded drug delivery systems are summarized. This review provides various advanced design strategies for simvastatin-incorporated drug delivery systems that can enhance bone regeneration.
Collapse
Affiliation(s)
- Hui Jin
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China.,Department of Pain, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Youbo Ji
- Department of Pain, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yutao Cui
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Li Xu
- Department of Orthopedics, Weihai Guanghua Hospital, Weihai 264200, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
9
|
Liu Y, Bi Y, Chai L, Song L, Huang J, Wang Q, Li Y, Zhou K. Development of epimedin A complex drugs for treating the osteoporosis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:17. [PMID: 33506368 PMCID: PMC7840628 DOI: 10.1007/s10856-020-06472-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Osteoporosis is the most common disease involving bone degeneration. As the age of the population increases, the prevalence of the disease is expected to rise. However, current treatment methods do not provide a desirable solution for the restoration of the function of degenerated bones in patients with osteoporosis. This led to emergence of controlled delivery systems to increase drug bioavailability and efficacy specifically at the bone regeneration. In this study, an epimedin A (EA) complex drug system was prepared by solution blending method. In vitro cell-based experiments showed that the EA complex drug could significantly promote the differentiation and proliferation of osteoblasts and increase the alkaline phosphatase activity, calcium nodule formation, and the expression of osteogenesis-related genes and proteins. In vivo experiments further demonstrated that this novel drugs remarkably enhanced bone regeneration. These results suggest that EA may be used for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yanan Bi
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lijuan Chai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, 301617, China
| | - Lei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Juyang Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qin Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yunzhang Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
10
|
Faruq O, Sayed S, Kim B, Im S, Lee B. A biphasic calcium phosphate ceramic scaffold loaded with oxidized cellulose nanofiber–gelatin hydrogel with immobilized simvastatin drug for osteogenic differentiation. J Biomed Mater Res B Appl Biomater 2020; 108:1229-1238. [DOI: 10.1002/jbm.b.34471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Omar Faruq
- Department of Regenerative Medicine, College of MedicineSoonchunhyang University Cheonan South Korea
| | - Shithima Sayed
- Department of Regenerative Medicine, College of MedicineSoonchunhyang University Cheonan South Korea
| | - Boram Kim
- Institute of Tissue Regeneration, College of MedicineSoonchunhyang University Cheonan South Korea
| | - Soo‐Bin Im
- Department of Neurosurgery, College of MedicineSoonchunhyang University, Bucheon Hospital Bucheon South Korea
| | - Byong‐Taek Lee
- Department of Regenerative Medicine, College of MedicineSoonchunhyang University Cheonan South Korea
- Institute of Tissue Regeneration, College of MedicineSoonchunhyang University Cheonan South Korea
| |
Collapse
|
11
|
Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers (Basel) 2020; 12:E905. [PMID: 32295115 PMCID: PMC7240703 DOI: 10.3390/polym12040905] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
Bone tissue is the structural component of the body, which allows locomotion, protects vital internal organs, and provides the maintenance of mineral homeostasis. Several bone-related pathologies generate critical-size bone defects that our organism is not able to heal spontaneously and require a therapeutic action. Conventional therapies span from pharmacological to interventional methodologies, all of them characterized by several drawbacks. To circumvent these effects, tissue engineering and regenerative medicine are innovative and promising approaches that exploit the capability of bone progenitors, especially mesenchymal stem cells, to differentiate into functional bone cells. So far, several materials have been tested in order to guarantee the specific requirements for bone tissue regeneration, ranging from the material biocompatibility to the ideal 3D bone-like architectural structure. In this review, we analyse the state-of-the-art of the most widespread polymeric scaffold materials and their application in in vitro and in vivo models, in order to evaluate their usability in the field of bone tissue engineering. Here, we will present several adopted strategies in scaffold production, from the different combination of materials, to chemical factor inclusion, embedding of cells, and manufacturing technology improvement.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Manuela T. Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| |
Collapse
|
12
|
Li X, Yin HM, Luo E, Zhu S, Wang P, Zhang Z, Liao GQ, Xu JZ, Li ZM, Li JH. Accelerating Bone Healing by Decorating BMP-2 on Porous Composite Scaffolds. ACS APPLIED BIO MATERIALS 2019; 2:5717-5726. [PMID: 35021565 DOI: 10.1021/acsabm.9b00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hua-Mo Yin
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ji-Hua Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med 2019; 4:96-115. [PMID: 30680322 PMCID: PMC6336672 DOI: 10.1002/btm2.10124] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Gelatin is a promising material as scaffold with therapeutic and regenerative characteristics due to its chemical similarities to the extracellular matrix (ECM) in the native tissues, biocompatibility, biodegradability, low antigenicity, cost-effectiveness, abundance, and accessible functional groups that allow facile chemical modifications with other biomaterials or biomolecules. Despite the advantages of gelatin, poor mechanical properties, sensitivity to enzymatic degradation, high viscosity, and reduced solubility in concentrated aqueous media have limited its applications and encouraged the development of gelatin-based composite hydrogels. The drawbacks of gelatin may be surmounted by synergistically combining it with a wide range of polysaccharides. The addition of polysaccharides to gelatin is advantageous in mimicking the ECM, which largely contains proteoglycans or glycoproteins. Moreover, gelatin-polysaccharide biomaterials benefit from mechanical resilience, high stability, low thermal expansion, improved hydrophilicity, biocompatibility, antimicrobial and anti-inflammatory properties, and wound healing potential. Here, we discuss how combining gelatin and polysaccharides provides a promising approach for developing superior therapeutic biomaterials. We review gelatin-polysaccharides scaffolds and their applications in cell culture and tissue engineering, providing an outlook for the future of this family of biomaterials as advanced natural therapeutics.
Collapse
Affiliation(s)
- Samson Afewerki
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
| | - Amir Sheikhi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Soundarapandian Kannan
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Nanomedicine Division, Dept. of ZoologyPeriyar UniversitySalemTamil NaduIndia
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Radiological Sciences, David Geffen School of MedicineUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Chemical and Biomolecular EngineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Bioindustrial Technologies, College of Animal Bioscience and TechnologyKonkuk UniversitySeoulRepublic of Korea
| |
Collapse
|
14
|
Nanocellulose Composite Biomaterials in Industry and Medicine. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Enhancement of hemostatic property of plant derived oxidized nanocellulose-silk fibroin based scaffolds by thrombin loading. Carbohydr Polym 2018; 208:168-179. [PMID: 30658788 DOI: 10.1016/j.carbpol.2018.12.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 11/15/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023]
Abstract
To combat post-surgical and traumatic bleeding conditions effective hemostasis is of great importance. The study was designed to investigate the effect of thrombin (Th) loading on hemostatic performance of TEMPO-oxidized cellulose nanofiber (TOCN)-silk fibroin (SF) scaffolds. Addition of SF with TOCN significantly (***P < 0.001) increased blood absorption capacity and improved biocompatibility of TOCN. Thrombin loading potentiated platelet activation and hemostatic property of scaffolds (TOCN-SF-Th) compared to samples without thrombin (TOCN-SF). The hemostatic time of TOCN-SF5-Th in rabbit ear artery bleeding model was reduced (*** P < 0.001) to 114 s from 220 s of TOCN-SF5. Reduction in bleeding time and blood loss of TOCN-SF5-Th in rat tail amputation and liver avulsion model was comparable to commercial hemostat (Floseal). Surface morphology (SEM) of samples applied on bleeding site showed that RBCs and fibrin fiber could strongly interact with TOCN-SF and TOCN-SF-Th scaffolds. The result suggests that TOCN-SF-Th can be a promising candidate for designing hemostatic agents.
Collapse
|
16
|
Zhuang C, Shi C, Tao F, Cui Y. Honeycomb structural composite polymer network of gelatin and functional cellulose ester for controlled release of omeprazole. Int J Biol Macromol 2017; 105:1644-1653. [DOI: 10.1016/j.ijbiomac.2017.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/04/2017] [Indexed: 01/21/2023]
|
17
|
Mondal S. Preparation, properties and applications of nanocellulosic materials. Carbohydr Polym 2017; 163:301-316. [DOI: 10.1016/j.carbpol.2016.12.050] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
|
18
|
Study of mesenchymal stem cells cultured on a poly(lactic-co-glycolic acid) scaffold containing simvastatin for bone healing. J Appl Biomater Funct Mater 2017; 15:e133-e141. [PMID: 28291900 PMCID: PMC6379770 DOI: 10.5301/jabfm.5000338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Tissue engineering is a promising alternative for the development of bone substitutes; for this purpose, three things are necessary: stem cells, a scaffold to allow tissue growth and factors that induce tissue regeneration. METHODS To congregate such efforts, we used the bioresorbable and biocompatible polymer poly(lactic-co-glycolic acid) (PLGA) as scaffold. For the osteoinductive factor, we used simvastatin (SIM), a drug with a pleiotropic effect on bone growth. Mesenchymal stem cells (MSCs) were cultured in PLGA containing SIM, and the bone substitute of PLGA/SIM/MSC was grafted into critical defects of rat calvaria. RESULTS The in vitro results showed that SIM directly interfered with the proliferation of MSC promoting cell death, while in the pure PLGA scaffold the MSC grew continuously. Scaffolds were implanted in the calvaria of rats and separated into groups: control (empty defect), PLGA pure, PLGA/SIM, PLGA/MSC and PLGA/SIM/MSC. The increase in bone growth was higher in the PLGA/SIM group. CONCLUSIONS We observed no improvement in the growth of bone tissue after implantation of the PLGA/SIM/MSC scaffold. As compared with in vitro results, our main hypothesis is that the microarchitecture of PLGA associated with low SIM release would have created an in vivo microenvironment of concentrated SIM that might have induced MSC death. However, our findings indicate that once implanted, both PLGA/SIM and PLGA/MSC contributed to bone formation. We suggest that strategies to maintain the viability of MSCs after cultivation in PLGA/SIM will contribute to improvement of bone regeneration.
Collapse
|
19
|
Shumilova AA, Myltygashev MP, Kirichenko AK, Nikolaeva ED, Volova TG, Shishatskaya EI. Porous 3D implants of degradable poly-3-hydroxybutyrate used to enhance regeneration of rat cranial defect. J Biomed Mater Res A 2016; 105:566-577. [PMID: 27741556 DOI: 10.1002/jbm.a.35933] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/05/2016] [Accepted: 10/11/2016] [Indexed: 01/17/2023]
Abstract
The study describes preparation and testing of porous 3D implants of natural degradable polymer of 3-hydroxybutyric acid P(3HB) for regeneration of bone tissue defects. The ability of the P(3HB) implants to favor attachment and facilitate proliferation and directed differentiation of mesenchymal stem cells (MSCs) was studied in the culture of MSCs isolated from bone marrow and adipose tissue. Tissue-engineered hybrid systems (grafts) constructed using P(3HB) and P(3HB) in combination with osteoblasts were used in experiments on laboratory animals (n = 48) with bone defect model. The defect model (5 mm in diameter) was created in the rat parietal bone, and filling of the defect by the new bone tissue was monitored in the groups of animals with P(3HB) implants, with commercial material, and without implants (negative control). Computed tomography (CT) and histologic examination showed that after 120 days, in the group with the osteoblast-seeded P(3HB) implants, the defect was completely closed; in the group with the cell-free P(3HB) implants, the remaining defect was no more than 10% of the initial one (0.5 mm); in both the negative and positive controls, the size of the defect was about 1.0-1.2 mm. These results suggest that P(3HB) has good potential as osteoplastic material for reconstructive osteogenesis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 566-577, 2017.
Collapse
Affiliation(s)
- A A Shumilova
- Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, 660041.,Institute of Biophysics of Siberian Branch of Russian Academy of Sciences. Akademgorodok, Krasnoyarsk, 660036
| | - M P Myltygashev
- V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak Street, Krasnoyarsk, 660022
| | - A K Kirichenko
- V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak Street, Krasnoyarsk, 660022
| | - E D Nikolaeva
- Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, 660041
| | - T G Volova
- Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, 660041.,Institute of Biophysics of Siberian Branch of Russian Academy of Sciences. Akademgorodok, Krasnoyarsk, 660036
| | - E I Shishatskaya
- Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, 660041.,Institute of Biophysics of Siberian Branch of Russian Academy of Sciences. Akademgorodok, Krasnoyarsk, 660036
| |
Collapse
|
20
|
Tozzi G, De Mori A, Oliveira A, Roldo M. Composite Hydrogels for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E267. [PMID: 28773392 PMCID: PMC5502931 DOI: 10.3390/ma9040267] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
Abstract
Over the past few decades, bone related disorders have constantly increased. Among all pathological conditions, osteoporosis is one of the most common and often leads to bone fractures. This is a massive burden and it affects an estimated 3 million people only in the UK. Furthermore, as the population ages, numbers are due to increase. In this context, novel biomaterials for bone fracture regeneration are constantly under development. Typically, these materials aim at favoring optimal bone integration in the scaffold, up to complete bone regeneration; this approach to regenerative medicine is also known as tissue engineering (TE). Hydrogels are among the most promising biomaterials in TE applications: they are very flexible materials that allow a number of different properties to be targeted for different applications, through appropriate chemical modifications. The present review will focus on the strategies that have been developed for formulating hydrogels with ideal properties for bone regeneration applications. In particular, aspects related to the improvement of hydrogels' mechanical competence, controlled delivery of drugs and growth factors are treated in detail. It is hoped that this review can provide an exhaustive compendium of the main aspects in hydrogel related research and, therefore, stimulate future biomaterial development and applications.
Collapse
Affiliation(s)
- Gianluca Tozzi
- School of Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ, UK.
| | - Arianna De Mori
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| | - Antero Oliveira
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| |
Collapse
|
21
|
Zhang J, Wang H, Shi J, Wang Y, Lai K, Yang X, Chen X, Yang G. Combination of simvastatin, calcium silicate/gypsum, and gelatin and bone regeneration in rabbit calvarial defects. Sci Rep 2016; 6:23422. [PMID: 26996657 PMCID: PMC4800449 DOI: 10.1038/srep23422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/07/2016] [Indexed: 11/29/2022] Open
Abstract
The present study was performed to determine whether simvastatin improves bone regeneration when combined with calcium silicate/gypsum and gelatin (CS-GEL). The surface morphology was determined using field-emission scanning electron microscopy (FSEM). Degradation in vitro was evaluated by monitoring the weight change of the composites soaked in phosphate buffered saline (PBS). Drug release was evaluated using high-performance liquid chromatography (HPLC). Cytotoxicity testing was performed to assess the biocompatibility of composites. Four 5 mm-diameter bone defects were created in rabbit calvaria. Three sites were filled with CS-GEL, 0.5 mg simvastatin-loaded CS-GEL (SIM-0.5) and 1.0 mg simvastatin-loaded CS-GEL (SIM-1.0), respectively, and the fourth was left empty as the control group. Micro-computed tomography (micro-CT) and histological analysis were carried out at 4 and 12 weeks postoperatively. The composites all exhibited three-dimensional structures and showed the residue with nearly 80% after 4 weeks of immersion. Drug release was explosive on the first day and then the release rate remained stable. The composites did not induce any cytotoxicity. The results in vivo demonstrated that the new bone formation and the expressions of BMP-2, OC and type I collagen were improved in the simvastatin-loaded CS-GEL group. It was concluded that the simvastatin-loaded CS-GEL may improve bone regeneration.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan’an Road, Hangzhou, P. R. China
| | - Huiming Wang
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan’an Road, Hangzhou, P. R. China
| | - Jue Shi
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan’an Road, Hangzhou, P. R. China
| | - Ying Wang
- Department of Endodontics, Stomatology Hospital, School of Medical, Zhejiang University, Yan’an Road, Hangzhou, P. R. China
| | - Kaichen Lai
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan’an Road, Hangzhou, P. R. China
| | - Xianyan Yang
- Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyi Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang Province, China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan’an Road, Hangzhou, P. R. China
| |
Collapse
|
22
|
Gwon JG, Cho HJ, Chun SJ, Lee S, Wu Q, Li MC, Lee SY. Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly(lactic acid) as a base matrix. RSC Adv 2016. [DOI: 10.1039/c6ra10993d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although chemical modifications of CNCs have been successfully adopted to enhance their dispersibility in apolar matrices and solvents, the problem of the dispersion level of mCNCs in apolar matrices above a certain loading of nanoparticles remains an issue.
Collapse
Affiliation(s)
- Jae-Gyoung Gwon
- National Institute of Forest Science
- Department of Forest Products
- Seoul
- Korea
| | - Hye-Jung Cho
- National Institute of Forest Science
- Department of Forest Products
- Seoul
- Korea
| | - Sang-Jin Chun
- National Institute of Forest Science
- Department of Forest Products
- Seoul
- Korea
| | - Soo Lee
- Changwon National University
- Department of Chemical Engineering
- Changwon
- Korea
| | - Qinglin Wu
- Louisiana State University Agricultural Center
- School of Renewable Natural Resources
- Baton Rouge
- USA
| | - Mei-Chun Li
- Louisiana State University Agricultural Center
- School of Renewable Natural Resources
- Baton Rouge
- USA
| | - Sun-Young Lee
- National Institute of Forest Science
- Department of Forest Products
- Seoul
- Korea
| |
Collapse
|