1
|
Ersek G, Mehrabi Koushki R, Scheerder J, van Casteren I, Chen Q, Hermida-Merino D, Portale G. Influence of the airflow and humidity on the chain aggregation during the film-formation in a flexible waterborne polyurethane formulation. J Colloid Interface Sci 2025; 678:446-455. [PMID: 39255601 DOI: 10.1016/j.jcis.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
STATEMENT OF OBJECTIVES Soft, waterborne polyurethane dispersions are indispensable components in many state-of-the-art materials, with applications ranging from binders for coatings and adhesives to matrixes for flexible devices. While the static bulk nanostructure of such systems is widely studied, the influence that environmental conditions such as relative humidity and airflow have on their film formation and phase segregation behavior in supported films is unknown. EXPERIMENTS Here, we elucidate the nanostructure evolution occurring during drying of an industrially relevant, soft polyurethane, utilizing real-time, non-destructive grazing incidence X-ray scattering analysis. Using an environmental-controlled casting cell, we highlight the differences between the drying mechanism under different conditions generated by tuning the airflow and the relative humidity. FINDINGS Our results show how the environment's relative humidity strongly influences chain aggregation and chain interdiffusion due to extended plasticization of the hard segment at high humidities, while accelerated air flows are responsible for the occurrence of (partial) skinning. Interestingly, despite changes in the chain aggregation behavior and occurrence of skinning and skin breakup during drying resulting in higher roughness at the film surface, minor influence is registered on the bulk tensile properties of the films, revealing the resilient nature towards environmental conditions of these soft weakly phase segregating polyurethane systems.
Collapse
Affiliation(s)
- G Ersek
- Physical Chemistry of Polymeric and Nanostructured Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - R Mehrabi Koushki
- Physical Chemistry of Polymeric and Nanostructured Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - J Scheerder
- Covestro (Netherlands) B.V., 5145 PE Waalwijk, The Netherlands
| | - I van Casteren
- Covestro (Netherlands) B.V., 5145 PE Waalwijk, The Netherlands
| | - Q Chen
- Covestro (Netherlands) B.V., 5145 PE Waalwijk, The Netherlands
| | - D Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, E36310 Vigo, Galicia, Spain; DUBBLE@ESRF, Netherlands Organization for Scientific Research (NWO), BP 220, F38043 Grenoble, France
| | - G Portale
- Physical Chemistry of Polymeric and Nanostructured Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
2
|
Zhang J, Bai X, Chen R, Zheng J, Song D, Li R, Zhang H, Wang J. Transparent, Flexible, Responsive Switching "Delayed" Amphiphilic Coatings Designed on the Basis of the Full-Cycle Antifouling Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61249-61261. [PMID: 39441046 DOI: 10.1021/acsami.4c11341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Marine fouling on the surface of ships and equipment not only creates problems of enhanced resistance to navigation and increased energy consumption but also leads to unclear vision and inaccurate data collection. Antifouling coatings to resist fouling are effective, but it is difficult to achieve long-lasting fouling protection with a single interface state. Switching the status of the interface by intelligent response is a reasonable way to achieve full-cycle efficient antifouling. In this study, the hydrophobic and active antifouling interface in the initial state was achieved by adopting the fluorine-containing group and the natural extract (citronellol) as the antifouling active site. The switching of the interface relies on silanes, which respond to the generation of zwitterions in a seawater environment. Eventually, the interface switched from the hydrophobic state to the amphiphilic state with delayed formation, which achieved continued antifouling. Based on the full-cycle antifouling concept, the combination of low surface energy and antifouling active ingredients in the initial state sustainably switched surfaces in the midterm (free radicals generated during the hydrolysis process), and amphiphilic interfaces formed by "delays" produced an antifouling effect from the initial stage to the subsequent stage. The excellent antifouling activity (bacterial and diatom attachment inhibition by over 90% and significantly reduced mussel adhesion force), optical transparency, and flexibility of these coatings indicate the potential for the application of antifouling coatings prepared from hyperbranched silicone-based resins; they can also be used for data extraction sensors, underwater probes, marine photovoltaics, and other areas where transparency is required.
Collapse
Affiliation(s)
- Jianwei Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xuefeng Bai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jiyong Zheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
| | - Dalei Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hongsen Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
3
|
Wei Y, Wen G, Balafouti A, Pispas S, Li H. Ultrafine Network-Like Monolayer Structures of Amphiphilic Hyperbranched Copolymers Revealed by the Relative Aggregation Number Method. J Phys Chem B 2024; 128:8605-8612. [PMID: 39169655 DOI: 10.1021/acs.jpcb.4c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The aggregation behavior of two amphiphilic hyperbranched copolymers of poly[oligo(ethylene glycol) methacrylate-co-lauryl methacrylate] (H-[P(OEGMA-co-LMA)]) at the air/water interface was investigated by using the Langmuir film balance technique and atomic force microscopy (AFM). At the air/water interface, H-[P(OEGMA-co-LMA)] copolymers spontaneously form the ultrafine network-like monolayer structures of micelles; each micelle consists of a tiny hydrophobic core of one or two carbon backbones and lauryl side groups and a short hydrophilic shell of oligo(ethylene glycol) (OEG) side groups, and the micellar cores are connected by the branching agent ethylene glycol dimethacrylate (EGDMA). These ultrafine micellar structures are successfully revealed by our relative aggregation number method presented in this work, which is based on our previous relative mass method and methylene number method. The surface pressure-molecular area isotherms of POEGMA29%-PLMA71% (weight percent) and POEGMA69%-PLMA31% are condensed and expanded, respectively, because the density/number of OEG side groups in the former shells is smaller than that in the latter case. Upon monolayer compression, the isotherms of the former are classified into regions I-IV, whereas those of the latter are classified into regions II and III based on their different variation trends of surface pressure. Subphase pH has little influence on the isotherms of the two copolymers because the stretching degrees of hydrophilic OEG side groups in the shells are probably limited by the connected cores, which is different from the large effects in our previous block copolymers containing POEGMA or poly[oligo(ethylene glycol) acrylate] blocks. Under neutral and alkaline conditions, in region III, the mean molecular area (mmA) values of the isotherms of the two copolymers at 20 °C are smaller than those at 10 °C due to the collapse of the OEG side groups above 15 °C. Furthermore, the isotherms of POEGMA69%-PLMA31% move to larger mmA values at 30 °C due to the increased thermal mobility and stretching degrees of more OEG side groups.
Collapse
Affiliation(s)
- Yuqing Wei
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 11635, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 11635, Greece
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
4
|
Murataj I, Angelini A, Cara E, Porro S, Beckhoff B, Kayser Y, Hönicke P, Ciesielski R, Gollwitzer C, Soltwisch V, Perez-Murano F, Fernandez-Regulez M, Carignano S, Boarino L, Castellino M, Ferrarese Lupi F. Hybrid Metrology for Nanostructured Optical Metasurfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:57992-58002. [PMID: 37991460 PMCID: PMC10739581 DOI: 10.1021/acsami.3c13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Metasurfaces have garnered increasing research interest in recent years due to their remarkable advantages, such as efficient miniaturization and novel functionalities compared to traditional optical elements such as lenses and filters. These advantages have facilitated their rapid commercial deployment. Recent advancements in nanofabrication have enabled the reduction of optical metasurface dimensions to the nanometer scale, expanding their capabilities to cover visible wavelengths. However, the pursuit of large-scale manufacturing of metasurfaces with customizable functions presents challenges in controlling the dimensions and composition of the constituent dielectric materials. To address these challenges, the combination of block copolymer (BCP) self-assembly and sequential infiltration synthesis (SIS), offers an alternative for fabrication of high-resolution dielectric nanostructures with tailored composition and optical functionalities. However, the absence of metrological techniques capable of providing precise and reliable characterization of the refractive index of dielectric nanostructures persists. This study introduces a hybrid metrology strategy that integrates complementary synchrotron-based traceable X-ray techniques to achieve comprehensive material characterization for the determination of the refractive index on the nanoscale. To establish correlations between material functionality and their underlying chemical, compositional and dimensional properties, TiO2 nanostructures model systems were fabricated by SIS of BCPs. The results from synchrotron-based analyses were integrated into physical models, serving as a validation scheme for laboratory-scale measurements to determine effective refractive indices of the nanoscale dielectric materials.
Collapse
Affiliation(s)
- Irdi Murataj
- Advanced
Materials and Life Science Division, Istituto
Nazionale Ricerca Metrologica (INRiM), Strada delle Cacce 91, 10135, Torino, Italy
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Angelo Angelini
- Advanced
Materials and Life Science Division, Istituto
Nazionale Ricerca Metrologica (INRiM), Strada delle Cacce 91, 10135, Torino, Italy
| | - Eleonora Cara
- Advanced
Materials and Life Science Division, Istituto
Nazionale Ricerca Metrologica (INRiM), Strada delle Cacce 91, 10135, Torino, Italy
| | - Samuele Porro
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Burkhard Beckhoff
- Physikalisch-Technische
Bundesanstalt (PTB), Abbestraße 2-12, 10587, Berlin, Germany
| | - Yves Kayser
- Physikalisch-Technische
Bundesanstalt (PTB), Abbestraße 2-12, 10587, Berlin, Germany
| | - Philipp Hönicke
- Physikalisch-Technische
Bundesanstalt (PTB), Abbestraße 2-12, 10587, Berlin, Germany
| | - Richard Ciesielski
- Physikalisch-Technische
Bundesanstalt (PTB), Abbestraße 2-12, 10587, Berlin, Germany
| | - Christian Gollwitzer
- Physikalisch-Technische
Bundesanstalt (PTB), Abbestraße 2-12, 10587, Berlin, Germany
| | - Victor Soltwisch
- Physikalisch-Technische
Bundesanstalt (PTB), Abbestraße 2-12, 10587, Berlin, Germany
| | | | | | - Stefano Carignano
- ICCUB, Universitat de Barcelona, Carrer Martí i Franquès,
1, 08028, Barcelona, Spain
| | - Luca Boarino
- Advanced
Materials and Life Science Division, Istituto
Nazionale Ricerca Metrologica (INRiM), Strada delle Cacce 91, 10135, Torino, Italy
| | - Micaela Castellino
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Federico Ferrarese Lupi
- Advanced
Materials and Life Science Division, Istituto
Nazionale Ricerca Metrologica (INRiM), Strada delle Cacce 91, 10135, Torino, Italy
| |
Collapse
|
5
|
Jung FA, Papadakis CM. Strategy to simulate and fit 2D grazing-incidence small-angle X-ray scattering patterns of nanostructured thin films. J Appl Crystallogr 2023; 56:1330-1347. [PMID: 37791363 PMCID: PMC10543672 DOI: 10.1107/s1600576723006520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 10/05/2023] Open
Abstract
Grazing-incidence small-angle X-ray scattering (GISAXS) is a widely used method for the characterization of the nanostructure of supported thin films and enables time-resolved in situ measurements. The 2D scattering patterns contain detailed information about the nanostructures within the film and at its surface. However, this information is distorted not only by the reflection of the X-ray beam at the substrate-film interface and its refraction at the film surface but also by scattering of the substrate, the sample holder and other types of parasitic background scattering. In this work, a new, efficient strategy to simulate and fit 2D GISAXS patterns that explicitly includes these effects is introduced and demonstrated for (i) a model case nanostructured thin film on a substrate and (ii) experimental data from a microphase-separated block copolymer thin film. To make the protocol efficient, characteristic linecuts through the 2D GISAXS patterns, where the different contributions dominate, are analysed. The contributions of the substrate and the parasitic background scattering - which ideally are measured separately - are determined first and are used in the analysis of the 2D GISAXS patterns of the nanostructured, supported film. The nanostructures at the film surface and within the film are added step by step to the real-space model of the simulation, and their structural parameters are determined by minimizing the difference between simulated and experimental scattering patterns in the selected linecuts. Although in the present work the strategy is adapted for and tested with BornAgain, it can be easily used with other types of simulation software. The strategy is also applicable to grazing-incidence small-angle neutron scattering.
Collapse
Affiliation(s)
- Florian A. Jung
- TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, Technical University of Munich, James-Franck-Straße 1, Garching 85748, Germany
| | - Christine M. Papadakis
- TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, Technical University of Munich, James-Franck-Straße 1, Garching 85748, Germany
| |
Collapse
|
6
|
Gu S, Zhang L, de Campo L, O'Dell LA, Wang D, Wang G, Kong L. Lyotropic Liquid Crystal (LLC)-Templated Nanofiltration Membranes by Precisely Administering LLC/Substrate Interfacial Structure. MEMBRANES 2023; 13:549. [PMID: 37367753 DOI: 10.3390/membranes13060549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Mesoporous materials based on lyotropic liquid crystal templates with precisely defined and flexible nanostructures offer an alluring solution to the age-old challenge of water scarcity. In contrast, polyamide (PA)-based thin-film composite (TFC) membranes have long been hailed as the state of the art in desalination. They grapple with a common trade-off between permeability and selectivity. However, the tides are turning as these novel materials, with pore sizes ranging from 0.2 to 5 nm, take center stage as highly coveted active layers in TFC membranes. With the ability to regulate water transport and influence the formation of the active layer, the middle porous substrate of TFC membranes becomes an essential player in unlocking their true potential. This review delves deep into the recent advancements in fabricating active layers using lyotropic liquid crystal templates on porous substrates. It meticulously analyzes the retention of the liquid crystal phase structure, explores the membrane fabrication processes, and evaluates the water filtration performance. Additionally, it presents an exhaustive comparison between the effects of substrates on both polyamide and lyotropic liquid crystal template top layer-based TFC membranes, covering crucial aspects such as surface pore structures, hydrophilicity, and heterogeneity. To push the boundaries even further, the review explores a diverse array of promising strategies for surface modification and interlayer introduction, all aimed at achieving an ideal substrate surface design. Moreover, it delves into the realm of cutting-edge techniques for detecting and unraveling the intricate interfacial structures between the lyotropic liquid crystal and the substrate. This review is a passport to unravel the enigmatic world of lyotropic liquid crystal-templated TFC membranes and their transformative role in global water challenges.
Collapse
Affiliation(s)
- Senlin Gu
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liangliang Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organization (ANSTO), Sydney, NSW 2234, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Guang Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Centre, Dongguan 523803, China
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
7
|
Scacchi A, Hasheminejad K, Javan Nikkhah S, Sammalkorpi M. Controlling self-assembling co-polymer coatings of hydrophilic polysaccharide substrates via co-polymer block length ratio. J Colloid Interface Sci 2023; 640:809-819. [PMID: 36905890 DOI: 10.1016/j.jcis.2023.02.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
HYPOTHESIS The degree of polymerization of amphiphilic di-block co-polymers, which can be varied with ease in computer simulations, provides a means to control self-assembling di-block co-polymer coatings on hydrophilic substrates. SIMULATIONS We examine self-assembly of linear amphiphilic di-block co-polymers on hydrophilic surface via dissipative particle dynamics simulations. The system models a glucose based polysaccharide surface on which random co-polymers of styrene and n-butyl acrylate, as the hydrophobic block, and starch, as the hydrophilic block, forms a film. Such setups are common in e.g. hygiene, pharmaceutical, and paper product applications. FINDINGS Variation of the block length ratio (35 monomers in total) reveals that all examined compositions readily coat the substrate. However, strongly asymmetric block co-polymers with short hydrophobic segments are best in wetting the surface, whereas approximately symmetric composition leads to most stable films with highest internal order and well-defined internal stratification. At intermediate asymmetries, isolated hydrophobic domains form. We map the sensitivity and stability of the assembly response for a large variety of interaction parameters. The reported response persists for a wide polymer mixing interactions range, providing general means to tune surface coating films and their internal structure, including compartmentalization.
Collapse
Affiliation(s)
- Alberto Scacchi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland; Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Kourosh Hasheminejad
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Sousa Javan Nikkhah
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
8
|
Brixi S, Radford CL, Tousignant MN, Peltekoff AJ, Manion JG, Kelly TL, Lessard BH. Poly(ionic liquid) Gating Materials for High-Performance Organic Thin-Film Transistors: The Role of Block Copolymer Self-Assembly at the Semiconductor Interface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40361-40370. [PMID: 35998386 DOI: 10.1021/acsami.2c07912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The widespread realization of wearable electronics requires printable active materials capable of operating at low voltages. Polymerized ionic liquid (PIL) block copolymers exhibit a thickness-independent double-layer capacitance that makes them a promising gating medium for the development of organic thin-film transistors (OTFTs) with low operating voltages and high switching speed. PIL block copolymer structure and self-assembly can influence ion conductivity and the resulting OTFT performance. In an OTFT, self-assembly of the PIL gate on the semiconducting polymer may differ from bulk self-assembly, which would directly influence electrical double-layer formation. To this end, we used poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)) as a model semiconductor for our OTFTs, on which our PILs exhibited self-assembly. In this study, we explore this critical interface by grazing-incidence small-angle X-ray scattering (GISAXS) and atomic force microscopy (AFM) of P(NDI2OD-T2) and a series of poly(styrene)-b-poly(1-(4-vinylbenzyl)-3-butylimidazolium-random-poly(ethylene glycol) methyl ether methacrylate) (poly(S)-b-poly(VBBI+[X]-r-PEGMA)) block copolymers with varying PEGMA/VBBI+ ratios and three different mobile anions (where X = TFSI-, PF6-, or BF4-). We investigate the thin-film self-assembly of block copolymers as a function of device performance. Overall, a mixed orientation at the interface leads to improved device performance, while predominantly hexagonal packing leads to nonfunctional devices, regardless of the anion present. These PIL gated OTFTs were characterized with a threshold voltage below 1 V, making understanding of their structure-property relationships crucial to enabling the further development of high-performance gating materials.
Collapse
Affiliation(s)
- Samantha Brixi
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Chase L Radford
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Mathieu N Tousignant
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Alexander J Peltekoff
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Joseph G Manion
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Timothy L Kelly
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave. Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
9
|
Smilgies D. GISAXS
: A versatile tool to assess structure and self‐assembly kinetics in block copolymer thin films. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Detlef‐M. Smilgies
- Center for Advanced Microelectronics Manufacturing (CAMM) Binghamton University Binghamton New York USA
- School of Pharmacy and Pharmaceutical Sciences Binghamton University Binghamton New York USA
- Materials Science and Engineering Program Binghamton University Binghamton New York USA
- R.F. Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York USA
| |
Collapse
|
10
|
Sun X, Liu K, Zhao N, Bian F, Yang C, Huang Y. In Situ Grazing-Incidence SAXS Investigation of Thermal-Induced Self-Assembly Process of PS- b-PMMA Films Deposited on Surface-Modified Substrate. J Phys Chem B 2022; 126:1625-1632. [PMID: 35143207 DOI: 10.1021/acs.jpcb.1c09443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Directed self-assembly of block copolymers (BCPs) is widely investigated for its potential application in surface patterning. The self-assembly kinetics of BCP based on modified layers is the key to realizing structural control for obtaining highly ordered lamellar grains. In this study, morphological evolution of PS-b-PMMA films during the thermal-induced self-assembly process was investigated via the in situ grazing-incidence small-angle X-ray scattering (GISAXS) technique. In the first heating stage, reorientation of lamellar grains occurred as the temperature increased above the glass transition temperature. Then, a fast increase in the lamellar repeat period L0 was observed, which is considered as a phase separation process. Whereas the size of the lamellar grain ξ was observed to have rapidly increased in the stage wherein the temperature was held at 230 °C, the L0 was almost constant. This result indicates that the formation of ordered structure in PS-b-PMMA films was mainly determined by two periods: phase separation of block molecules followed by growth of grains in the nanodomain. In addition, it was interesting that the better-order nanodomains were obtained with thermal annealing at a faster heating rate. These findings suggest that accomplishing ordered structure control in a large area could be realized via the design of a proper heating profile.
Collapse
Affiliation(s)
- Xiaokang Sun
- College of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan Province China.,Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhang Heng Road, Pudong New District, Shanghai 201204, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Kai Liu
- College of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan Province China.,Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhang Heng Road, Pudong New District, Shanghai 201204, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Nie Zhao
- College of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan Province China
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhang Heng Road, Pudong New District, Shanghai 201204, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhang Heng Road, Pudong New District, Shanghai 201204, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhang Heng Road, Pudong New District, Shanghai 201204, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Löfstrand A, Vorobiev A, Mumtaz M, Borsali R, Maximov I. Sequential Infiltration Synthesis into Maltoheptaose and Poly(styrene): Implications for Sub-10 nm Pattern Transfer. Polymers (Basel) 2022; 14:654. [PMID: 35215576 PMCID: PMC8878060 DOI: 10.3390/polym14040654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Vapor phase infiltration into a self-assembled block copolymer (BCP) to create a hybrid material in one of the constituent blocks can enhance the etch selectivity for pattern transfer. Multiple pulse infiltration into carbohydrate-based high-χ BCP has previously been shown to enable sub-10 nm feature pattern transfer. By optimizing the amount of infiltrated material, the etch selectivity should be further improved. Here, an investigation of semi-static sequential infiltration synthesis of trimethyl aluminum (TMA) and water into maltoheptaose (MH) films, and into hydroxyl-terminated poly(styrene) (PS-OH) films, was performed, by varying the process parameters temperature, precursor pulse duration, and precursor exposure length. It was found that, by decreasing the exposure time from 100 to 20 s, the volumetric percentage on included pure Al2O3 in MH could be increased from 2 to 40 vol% at the expense of a decreased infiltration depth. Furthermore, the degree of infiltration was minimally affected by temperature between 64 and 100 °C. Shorter precursor pulse durations of 10 ms TMA and 5 ms water, as well as longer precursor pulses of 75 ms TMA and 45 ms water, were both shown to promote a higher degree, 40 vol%, of infiltrated alumina in MH. As proof of concept, 12 nm pitch pattern transfer into silicon was demonstrated using the method and can be concluded to be one of few studies showing pattern transfer at such small pitch. These results are expected to be of use for further understanding of the mechanisms involved in sequential infiltration synthesis of TMA/water into MH, and for further optimization of carbohydrate-based etch masks for sub-10 nm pattern transfer. Enabling techniques for high aspect ratio pattern transfer at the single nanometer scale could be of high interest, e.g., in the high-end transistor industry.
Collapse
Affiliation(s)
- Anette Löfstrand
- NanoLund and Solid State Physics, Lund University, SE-221 00 Lund, Sweden
| | - Alexei Vorobiev
- Division for Materials Physics, Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden;
| | - Muhammad Mumtaz
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France; (M.M.); (R.B.)
| | - Redouane Borsali
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France; (M.M.); (R.B.)
| | - Ivan Maximov
- NanoLund and Solid State Physics, Lund University, SE-221 00 Lund, Sweden
| |
Collapse
|
12
|
Yin S, Tian T, Weindl CL, Wienhold KS, Ji Q, Cheng Y, Li Y, Papadakis CM, Schwartzkopf M, Roth SV, Müller-Buschbaum P. In Situ GISAXS Observation and Large Area Homogeneity Study of Slot-Die Printed PS- b-P4VP and PS- b-P4VP/FeCl 3 Thin Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3143-3155. [PMID: 34982535 DOI: 10.1021/acsami.1c19797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mesoporous hematite (α-Fe2O3) thin films with high surface-to-volume ratios show great potential as photoelectrodes or electrochemical electrodes in energy conversion and storage. In the present work, with the assistance of an up-scalable slot-die coating technique, locally highly ordered α-Fe2O3 thin films are successfully printed based on the amphiphilic diblock copolymer poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) as a structure-directing agent. Pure PS-b-P4VP films are printed under the same conditions for comparison. The micellization of the diblock copolymer in solution, the film formation process of the printed thin films, the homogeneity of the dry films in the lateral and vertical direction as well as the morphological and compositional information on the calcined hybrid PS-b-P4VP/FeCl3 thin film are investigated. Because of convection during the solvent evaporation process, a similar dimple-type structure of vertically aligned cylindrical PS domains in a P4VP matrix developed for both printed PS-b-P4VP and hybrid PS-b-P4VP/FeCl3 thin films. The coordination effect between the Fe3+ ions and the vinylpyridine groups significantly affects the attachment ability of the P4VP chains to the silicon substrate. Accordingly, distinct feature sizes and homogeneity in the lateral direction, as well as the thicknesses in the perpendicular direction, are demonstrated in the two printed films. By removing the polymer template from the hybrid PS-b-P4VP/FeCl3 film at high temperature, a locally highly ordered mesoporous α-Fe2O3 film is obtained. Thus, a facile and up-scalable printing technique is presented for producing homogeneous mesoporous α-Fe2O3 thin films.
Collapse
Affiliation(s)
- Shanshan Yin
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Strasse 1, Garching 85748, Germany
| | - Ting Tian
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Strasse 1, Garching 85748, Germany
| | - Christian L Weindl
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Strasse 1, Garching 85748, Germany
| | - Kerstin S Wienhold
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Strasse 1, Garching 85748, Germany
| | - Qing Ji
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, P. R. China
| | - Yajun Cheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, P. R. China
| | - Yanan Li
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Strasse 1, Garching 85748, Germany
| | - Christine M Papadakis
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Strasse 1, Garching 85748, Germany
| | | | - Stephan V Roth
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22603, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44, Sweden
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Strasse 1, Garching 85748, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, Garching 85748, Germany
| |
Collapse
|
13
|
Majoinen J, Bouilhac C, Rannou P, Borsali R. Unidirectional Perpendicularly Aligned Lamella-Structured Oligosaccharide (A) ABA Triblock Elastomer (B) Thin Films Utilizing Triazolium +/TFSI - Ionic Nanochannels. ACS Macro Lett 2022; 11:140-148. [PMID: 35574795 PMCID: PMC8772381 DOI: 10.1021/acsmacrolett.1c00712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
We designed and synthesized high χ-low N-maltoheptaose-(triazolium+/N(SO2CF3)2-)-polyisoprene-(triazolium+/N(SO2CF3)2-)-maltoheptaose ABA triblock elastomers featuring triazolium+/N(SO2CF3)2- (TFSI-) counteranion ionic interfaces separating their constituting polymeric sub-blocks. Spin-coated and solvent-vapor-annealed (SVA) MH1.2k-(T+/TFSI-)-PI4.3k-(T+/TFSI-)-MH1.2k thin films demonstrate interface-induced charge cohesion through ca. 1 nm "thick" ionic nanochannels which facilitate the self-assembly of a perpendicularly aligned lamellar structure. Atomic force microscopy (AFM) and (grazing-incidence) small-angle X-ray scattering ((GI)SAXS) characterizations of MH1.2k-(T+/TFSI-)-PI4.3k-(T+/TFSI-)-MH1.2k and pristine triBCP analogous thin films revealed sub-10 nm block copolymer (BCP) self-assembly and unidirectionally aligned nanostructures developed over several μm2 areas. Solvated TFSI- counterions enhance the oligosaccharide sub-block packing during SVA. The overall BCP phase behavior was mapped through SAXS characterizations comparing di- vs triblock polymeric architectures, a middle PI sub-block with two different molecular masses, and TFSI- or I- counteranion effects. This work highlights the benefits of inducing single-point electrostatic interactions within chemical structures of block copolymers to master the long-range self-assembly of prescribed morphologies.
Collapse
Affiliation(s)
- Johanna Majoinen
- Université
Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
- Université
Grenoble Alpes, CNRS, CEA, INAC-SyMMES, 38000 Grenoble, France
| | - Cécile Bouilhac
- ICGM,
Université Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Patrice Rannou
- Université
Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
- Université
Grenoble Alpes, CNRS, CEA, INAC-SyMMES, 38000 Grenoble, France
| | | |
Collapse
|
14
|
Jin HM, Park K, Kwon K, Yang GG, Han YS, Kim HS, Kim SO, Jung HT. Wafer-Scale Unidirectional Alignment of Supramolecular Columns on Faceted Surfaces. ACS NANO 2021; 15:11762-11769. [PMID: 34251179 DOI: 10.1021/acsnano.1c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The long-range alignment of supramolecular structures must be engineered as a first step toward advanced nanopatterning processes aimed at miniaturizing features to dimensions below 5 nm. This study introduces a facile method of directing the orientation of supramolecular columns over wafer-scale areas using faceted surfaces. Supramolecular columns with features on the sub-5 nm scale were highly aligned in a direction orthogonal to that of the facet patterning on unidirectional and nanoscopic faceted surface patterns. This unidirectional alignment of supramolecular columns is also observed by varying the thickness of the supramolecular film or by altering the dimensions of the facet pattern. The ordering behavior of the supramolecular columns can be attributed to the triangular depth profile of the bottom facet pattern. Furthermore, this directed self-assembly principle allows for the continuous alignment of supramolecular structures across ultralarge distances on flexible patterned substrates.
Collapse
Affiliation(s)
- Hyeong Min Jin
- Neutron Science Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Kangho Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kiok Kwon
- Green Chemistry and Materials Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea
| | - Geon Gug Yang
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young-Soo Han
- Neutron Science Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Hwa Soo Kim
- Neutron Science Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Kyrey T, Ganeva M, Witte J, von Klitzing R, Wellert S, Holderer O. Understanding near-surface polymer dynamics by a combination of grazing-incidence neutron scattering and virtual experiments. J Appl Crystallogr 2021; 54:72-79. [PMID: 33833641 PMCID: PMC7941298 DOI: 10.1107/s1600576720014739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
Neutron spin-echo spectroscopy is a unique experimental method for the investigation of polymer dynamics. The combination of neutron spin-echo spectroscopy with grazing-incidence geometry (GINSES) opens the possibility to probe the dynamics of soft-matter materials in the vicinity of the solid substrate in the time range up to 100 ns. However, the usage of the GINSES technique has some peculiarities and, due to the novelty of the method and complexity of the scattering geometry, difficulties in further data analysis occur. The current work discusses how virtual experiments within the distorted-wave Born approximation using the BornAgain software can improve GINSES data treatment and aid the understanding of polymer dynamics in the vicinity of the solid surface. With two examples, poly(N-isopropyl acrylamide) brushes and poly(ethylene glycol) microgels on Si surfaces, the simulation as well as the application of the simulation to the GINSES data analysis are presented. The approach allowed a deeper insight to be gained of the background effect and scattering contribution of different layers.
Collapse
Affiliation(s)
- Tetyana Kyrey
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Garching, Germany
| | - Marina Ganeva
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Garching, Germany
| | - Judith Witte
- Institute of Chemistry, Technical University Berlin, Berlin, Germany
| | | | - Stefan Wellert
- Institute of Chemistry, Technical University Berlin, Berlin, Germany
| | - Olaf Holderer
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Garching, Germany
| |
Collapse
|
16
|
Ogawa H, Takenaka M, Miyazaki T. Molecular Weight Effect on the Transition Processes of a Symmetric PS- b-P2VP during Spin-Coating. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroki Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Riken SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Riken SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Tsukasa Miyazaki
- Comprehensive Research Organization for Science and Society, Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
17
|
Widmann T, Kreuzer LP, Mangiapia G, Haese M, Frielinghaus H, Müller-Buschbaum P. 3D printed spherical environmental chamber for neutron reflectometry and grazing-incidence small-angle neutron scattering experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:113903. [PMID: 33261451 DOI: 10.1063/5.0012652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
In neutron scattering on soft matter, an important concern is the control and stability of environmental conditions surrounding the sample. Complex sample environment setups are often expensive to fabricate or simply not achievable by conventional workshop manufacturing. We make use of state-of-the-art 3D metal-printing technology to realize a sample environment for large sample sizes, optimized for investigations on thin film samples with neutron reflectometry (NR) and grazing-incidence small-angle neutron scattering (GISANS). With the flexibility and freedom of design given by 3D metal-printing, a spherical chamber with fluidic channels inside its walls is printed from an AlSi10Mg powder via selective laser melting (SLM). The thin channels ensure a homogeneous heating of the sample environment from all directions and allow for quick temperature switches in well-equilibrated atmospheres. In order to optimize the channel layout, flow simulations were carried out and verified in temperature switching tests. The spherical, edgeless design aids the prevention of condensation inside the chamber in case of high humidity conditions. The large volume of the sample chamber allows for high flexibility in sample size and geometry. While a small-angle neutron scattering (SANS) measurement through the chamber walls reveals a strong isotropic scattering signal resulting from the evenly orientated granular structure introduced by SLM, a second SANS measurement through the windows shows no additional background originating from the chamber. Exemplary GISANS and NR measurements in time-of-flight mode are shown to prove that the chamber provides a stable, background free sample environment for the investigation of thin films.
Collapse
Affiliation(s)
- Tobias Widmann
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Lucas P Kreuzer
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Gaetano Mangiapia
- German Engineering Materials Science Center (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Geesthacht GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Martin Haese
- German Engineering Materials Science Center (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Geesthacht GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
18
|
Nakagawa S, Yoshie N. Periodic Surface Pattern Induced by Crystallization of Polymer Brushes in Solvents. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505 Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505 Japan
| |
Collapse
|
19
|
Fernández-Regúlez M, Solano E, Evangelio L, Gottlieb S, Pinto-Gómez C, Rius G, Fraxedas J, Gutiérrez-Fernández E, Nogales A, García-Gutiérrez MC, Ezquerra TA, Pérez-Murano F. Self-assembly of block copolymers under non-isothermal annealing conditions as revealed by grazing-incidence small-angle X-ray scattering. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1278-1288. [PMID: 32876603 DOI: 10.1107/s1600577520009820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
An accurate knowledge of the parameters governing the kinetics of block copolymer self-assembly is crucial to model the time- and temperature-dependent evolution of pattern formation during annealing as well as to predict the most efficient conditions for the formation of defect-free patterns. Here, the self-assembly kinetics of a lamellar PS-b-PMMA block copolymer under both isothermal and non-isothermal annealing conditions are investigated by combining grazing-incidence small-angle X-ray scattering (GISAXS) experiments with a novel modelling methodology that accounts for the annealing history of the block copolymer film before it reaches the isothermal regime. Such a model allows conventional studies in isothermal annealing conditions to be extended to the more realistic case of non-isothermal annealing and prediction of the accuracy in the determination of the relevant parameters, namely the correlation length and the growth exponent, which define the kinetics of the self-assembly.
Collapse
Affiliation(s)
- Marta Fernández-Regúlez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Eduardo Solano
- NCD-SWEET Beamline, ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Laura Evangelio
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Steven Gottlieb
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Christian Pinto-Gómez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Gemma Rius
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Jordi Fraxedas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Bellaterra 08193, Spain
| | | | - Aurora Nogales
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, Madrid 28006, Spain
| | | | - Tiberio A Ezquerra
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, Madrid 28006, Spain
| | - Francesc Pérez-Murano
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
20
|
Freychet G, Maret M, Fernandez‐Regulez M, Tiron R, Gharbi A, Nicolet C, Gergaud P. Morphology of poly(lactide)‐
block
‐poly(dimethylsiloxane)‐
block
‐polylactide high‐
χ
triblock copolymer film studied by grazing incidence small‐angle X‐ray scattering. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Raluca Tiron
- CEA, LETI, MINATEC CampusUniversity of Grenoble Alpes Grenoble France
| | - Ahmed Gharbi
- CEA, LETI, MINATEC CampusUniversity of Grenoble Alpes Grenoble France
| | | | - Patrice Gergaud
- CEA, LETI, MINATEC CampusUniversity of Grenoble Alpes Grenoble France
| |
Collapse
|
21
|
Takahara A, Higaki Y, Hirai T, Ishige R. Application of Synchrotron Radiation X-ray Scattering and Spectroscopy to Soft Matter. Polymers (Basel) 2020; 12:polym12071624. [PMID: 32708350 PMCID: PMC7407237 DOI: 10.3390/polym12071624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/04/2020] [Accepted: 07/20/2020] [Indexed: 12/04/2022] Open
Abstract
Light produced by synchrotron radiation (SR) is much brighter than that produced by conventional laboratory X-ray sources. The photon energy of SR X-ray ranges from soft and tender X-rays to hard X-rays. Moreover, X-rays become element sensitive with decreasing photon energy. By using a wide energy range and high-quality light of SR, different scattering and spectroscopic methods were applied to various soft matters. We present five of our recent studies performed using specific light properties of a synchrotron facility, which are as follows: (1) In situ USAXS study to understand the deformation behavior of colloidal crystals during uniaxial stretching; (2) structure characterization of semiconducting polymer thin films along the film thickness direction by grazing-incidence wide-angle X-ray scattering using tender X-rays; (3) X-ray absorption fine structure (XAFS) analysis of the formation mechanism of poly(3-hexylthiophene) (P3HT); (4) soft X-ray absorption and emission spectroscopic analysis of water structure in polyelectrolyte brushes; and (5) X-ray photon correlation spectroscopic analysis of the diffusion behavior of polystyrene-grafted nanoparticles dispersed in a polystyrene matrix.
Collapse
Affiliation(s)
- Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.H.); (T.H.); (R.I.)
- Correspondence:
| | - Yuji Higaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.H.); (T.H.); (R.I.)
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Tomoyasu Hirai
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.H.); (T.H.); (R.I.)
- Department of Applied Chemistry, Faculty of Engineering, and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Asahi-ku, Osaka 535-8585, Japan
| | - Ryohei Ishige
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.H.); (T.H.); (R.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, E4-5, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
22
|
Zhang J, Wu J, Jiang R, Wang Z, Yin Y, Li B, Wang Q. Lattice self-consistent field calculations of confined symmetric block copolymers of various chain architectures. SOFT MATTER 2020; 16:4311-4323. [PMID: 32315012 DOI: 10.1039/d0sm00293c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effects of chain architecture and confinement on the structure and orientation of lamellae formed by incompressible and symmetric AB-type block copolymer melts confined between two parallel and identical surfaces are investigated using self-consistent field calculations on a simple cubic lattice. Five systems of various chain architectures (linear, ring, and star) and lengths are studied, with their bulk lamellar period L0 chosen such that they have comparable L0/Rg, where Rg denotes the ideal-chain radius of gyration. For thin films of thickness D = L0 confined between two neutral surfaces, we define the rescaled volume fraction profiles of A, B, chain end, and joint segments in the parallel and perpendicular lamellae such that these profiles can be directly compared among the five systems to quantitatively reveal the interplay between the chain-end enrichment near confining surfaces and the surface-induced A-B compatibilization, and how such interplay is affected by the chain architectures (for example, the chain-crowding effects in the star block copolymers). The effects of D and surface preference for one of the blocks are also investigated.
Collapse
Affiliation(s)
- Jingxue Zhang
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Sparnacci K, Chiarcos R, Gianotti V, Laus M, Giammaria TJ, Perego M, Munaò G, Milano G, De Nicola A, Haese M, Kreuzer LP, Widmann T, Müller-Buschbaum P. Effect of Trapped Solvent on the Interface between PS- b-PMMA Thin Films and P(S- r-MMA) Brush Layers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7777-7787. [PMID: 31967449 DOI: 10.1021/acsami.9b20801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The orientation of block copolymer (BCP) features in thin films can be obtained by spin-coating a BCP solution on a substrate surface functionalized by a polymer brush layer of the appropriate random copolymer (RCP). Although this approach is well established, little work reporting the amount and distribution of residual solvent in the polymer film after the spin-coating process is available. Moreover, no information can be found on the effect of trapped solvent on the interface between the BCP film and RCP brush. In this work, systems consisting of poly(styrene)-b-poly(methyl methacrylate) thin films deposited on poly(styrene-r-methyl methacrylate) brush layers are investigated by combining neutron reflectivity (NR) experiments with simulation techniques. An increase in the amount of trapped solvent is observed by NR as the BCP film thickness increases accompanied by a significant decrease of the interpenetration length between the BCP and RCP, thus suggesting that the interpenetration between grafted chains and block copolymer chains is hampered by the solvent. Hybrid particle-field molecular dynamics simulations of the analyzed system confirm the experimental observations and demonstrate a clear correlation between the interpenetration length and the amount of trapped solvent.
Collapse
Affiliation(s)
- Katia Sparnacci
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) , Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) , Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) , Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) , Universitá del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Tommaso J Giammaria
- University Grenoble-Alpes, CEA, LETI , 17 avenue de Martyrs , Grenoble FR 38054 , France
| | - Michele Perego
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2 , 20864 Agrate Brianza , Italy
| | - Gianmarco Munaò
- Dipartimento di Chimica e Biologia , Università di Salerno , Via Giovanni Paolo II, 132 , I-84084 Fisciano , SA , Italy
| | - Giuseppe Milano
- Department of Organic Materials Science , Yamagata University , 4-3-16 Jonan Yonezawa , Yamagata , Yamagata-ken 992-8510 , Japan
| | - Antonio De Nicola
- Department of Organic Materials Science , Yamagata University , 4-3-16 Jonan Yonezawa , Yamagata , Yamagata-ken 992-8510 , Japan
| | - Martin Haese
- Helmholtz-Zentrum Geesthacht at Heinz Maier-Leibnitz Zentrum , Lichtenbergstr. 1 , 85747 Garching , Germany
| | - Lucas P Kreuzer
- Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Tobias Widmann
- Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
- Heinz Maier-Leibnitz Zentrum (MLZ) , Technische Universität München , Lichtenbergstr. 1 , 85748 Garching , Germany
| |
Collapse
|
24
|
Cao W, Xia S, Appold M, Saxena N, Bießmann L, Grott S, Li N, Gallei M, Bernstorff S, Müller-Buschbaum P. Self-Assembly in ultrahigh molecular weight sphere-forming diblock copolymer thin films under strong confinement. Sci Rep 2019; 9:18269. [PMID: 31797983 PMCID: PMC6892843 DOI: 10.1038/s41598-019-54648-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Ultrahigh molecular weight (UHMW) diblock copolymers (DBCs) have emerged as a promising template for fabricating large-sized nanostructures. Therefore, it is of high significance to systematically study the influence of film thickness and solvent vapor annealing (SVA) on the structure evolution of UHMW DBC thin films. In this work, spin coating of an asymmetric linear UHMW polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) DBC is used to fabricate thin films, which are spherically structured with an inter-domain distance larger than 150 nm. To enhance the polymer chain mobility and facilitate approaching equilibrium nanostructures, SVA is utilized as a post-treatment of the spin coated films. With increasing film thickness, a local hexagonal packing of PMMA half-spheres on the surface can be obtained, and the order is improved at larger thickness, as determined by grazing incidence small angle X-ray scattering (GISAXS). Additionally, the films with locally hexagonal packed half-spherical morphology show a poor order-order-poor order transition upon SVA, indicating the realization of ordered structure using suitable SVA parameters.
Collapse
Affiliation(s)
- Wei Cao
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany
| | - Senlin Xia
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany
| | - Michael Appold
- Technische Universität Darmstadt, Ernst-Berl-Institute for Technical and Macromolecular Chemistry, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Nitin Saxena
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany
| | - Lorenz Bießmann
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany
| | - Sebastian Grott
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany
| | - Nian Li
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany
| | - Markus Gallei
- Saarland University, Chair in Polymer Chemistry, Campus C4 2, 66123, Saarbrücken, Germany
| | - Sigrid Bernstorff
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, in AREA Science Park, 34149, Trieste, Italy
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Straße 1, 85748, Garching, Germany.
- Technische Universität München, Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748, Garching, Germany.
| |
Collapse
|
25
|
Lakey JH. Recent advances in neutron reflectivity studies of biological membranes. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Jaksch S, Gutberlet T, Müller-Buschbaum P. Grazing-incidence scattering—status and perspectives in soft matter and biophysics. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Zang R, Hu H, Li X, Gao J, Liang L, Zhang H, Zhuge F, Luo J, Cao H. Broadband hyperbolic metamaterial covering the whole visible-light region. OPTICS LETTERS 2019; 44:2970-2973. [PMID: 31199358 DOI: 10.1364/ol.44.002970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Nanowire-based hyperbolic metamaterials (HMMs) with rich optical dispersion engineering capabilities are promising for use in miniaturization devices, such as nanophotonic chips and circuits. Herein, based on a one-step and template-free sputtering method, we are capable of precisely tuning the microstructural parameters of Ag nanowires (with a diameter <10 nm) in silica matrix, offering plenty of opportunities to perform hyperbolic dispersion engineering. Thus, the effective plasma frequency of the designed HMMs was shifted into the near-ultraviolet region (∼350 nm), leading to a broadband hyperbolic dispersion feature covering the whole visible-light region. This demonstration could pave the way for the development of metamaterial-based flat lenses, deep-subwavelength waveguiding, and broadband perfect absorbers and sensing, etc.
Collapse
|
28
|
Brett CJ, Mittal N, Ohm W, Gensch M, Kreuzer LP, Körstgens V, Månsson M, Frielinghaus H, Müller-Buschbaum P, Söderberg LD, Roth SV. Water-Induced Structural Rearrangements on the Nanoscale in Ultrathin Nanocellulose Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00531] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Calvin J. Brett
- Department of Mechanics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| | - Nitesh Mittal
- Department of Mechanics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Wiebke Ohm
- Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| | - Marc Gensch
- Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| | | | | | - Martin Månsson
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm 164 40, Sweden
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Garching 52428, Germany
| | | | - L. Daniel Söderberg
- Department of Mechanics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Stephan V. Roth
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| |
Collapse
|
29
|
Kyrey T, Witte J, Pipich V, Feoktystov A, Koutsioubas A, Vezhlev E, Frielinghaus H, von Klitzing R, Wellert S, Holderer O. Influence of the cross-linker content on adsorbed functionalised microgel coatings. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Pflüger M, Soltwisch V, Xavier J, Probst J, Scholze F, Becker C, Krumrey M. Distortion analysis of crystalline and locally quasicrystalline 2D photonic structures with grazing-incidence small-angle X-ray scattering. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719001080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In this study, grazing-incidence small-angle X-ray scattering (GISAXS) is used to collect statistical information on dimensional parameters in an area of 20 × 15 mm on photonic structures produced by nanoimprint lithography. The photonic structures are composed of crystalline and locally quasicrystalline two-dimensional patterns with structure sizes between about 100 nm and 10 µm to enable broadband visible light absorption for use in solar-energy harvesting. These first GISAXS measurements on locally quasicrystalline samples demonstrate that GISAXS is capable of showing the locally quasicrystalline nature of the samples while at the same time revealing the long-range periodicity introduced by the lattice design. The scattering is described qualitatively in the framework of the distorted-wave Born approximation using a hierarchical model mirroring the sample design, which consists of a rectangular and locally quasicrystalline supercell that is repeated periodically to fill the whole surface. The nanoimprinted samples are compared with a sample manufactured using electron-beam lithography and the distortions of the periodic and locally quasiperiodic samples are quantified statistically. Owing to the high sensitivity of GISAXS to deviations from the perfect lattice, the misalignment of the crystallographic axes was measured with a resolution of 0.015°, showing distortions of up to ±0.15° in the investigated samples.
Collapse
|
31
|
Chen W, Liu D, Li L. Multiscale characterization of semicrystalline polymeric materials by synchrotron radiation X‐ray and neutron scattering. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Chen
- National Synchrotron Radiation Lab, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film University of Science and Technology of China Hefei China
| | - Dong Liu
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry (INPC) China Academy of Engineering Physics (CAEP) Mianyang China
| | - Liangbin Li
- National Synchrotron Radiation Lab, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film University of Science and Technology of China Hefei China
| |
Collapse
|
32
|
Abstract
Grazing-incidence small-angle X-ray scattering (GISAXS) is a powerful technique for measuring the nanostructure of coatings and thin films. However, GISAXS data are plagued by distortions that complicate data analysis. The detector image is a warped representation of reciprocal space because of refraction, and overlapping scattering patterns appear because of reflection. A method is presented to unwarp GISAXS data, recovering an estimate of the true undistorted scattering pattern. The method consists of first generating a guess for the structure of the reciprocal-space scattering by solving for a mutually consistent prediction from the transmission and reflection sub-components. This initial guess is then iteratively refined by fitting experimental GISAXS images at multiple incident angles, using the distorted-wave Born approximation (DWBA) to convert between reciprocal space and detector space. This method converges to a high-quality reconstruction for the undistorted scattering, as validated by comparing with grazing-transmission scattering data. This new method for unwarping GISAXS images will broaden the applicability of grazing-incidence techniques, allowing experimenters to inspect undistorted visualizations of their data and allowing a broader range of analysis methods to be applied to GI data.
Collapse
Affiliation(s)
- Jiliang Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
33
|
Abstract
Reflectometry experiments probe the scattering length density along the normal of interfaces by analysing the specularly scattered intensity. Lateral fluctuations result in intensity scattered away from the specular condition. In this paper the principles and peculiarities of grazing incidence scattering experiments are explained. One specific example, the self assembly of polymer micelles close to interfaces, is taken as a show case in order to introduce the scattering geometry and accessible length scales. The basic idea of the distorted wave Born approximation is lined out and some scientific examples are summarized.
Collapse
|
34
|
Nübling F, Yang D, Müller-Buschbaum P, Brinkmann M, Sommer M. In Situ Synthesis of Ternary Block Copolymer/Homopolymer Blends for Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18149-18160. [PMID: 29742897 DOI: 10.1021/acsami.8b04753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A detailed investigation of in situ-synthesized all-conjugated block copolymer (BCP) compatibilized ternary blends containing poly(3-hexylthiophene) (P3HT) and poly{[ N, N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dibcarboximide)-2,6-diyl]- alt-5,5'-(2,2'-bithiophene)} (PNDIT2) as donor and acceptor polymers, respectively, is presented. Both polymers are incompatible and show strong segregation in blends, which renders compatibilization with their corresponding BCPs promising to enable nanometer-phase-separated structures suitable for excitonic devices. Here, we synthesize a ternary block copolymer/homopolymer blend system and investigate the phase behavior as a function of block copolymer molecular weight and different annealing conditions. The device performance decreases on increasing annealing temperatures. To understand this effect, morphological investigations including atomic force microscopy, high-resolution transmission electron microscopy (HR-TEM), and grazing incidence wide- and small-angle X-ray scattering (GIWAXS/GISAXS) are carried out. On comparing domain sizes of pristine and compatibilized blends obtained from GISAXS, a weak compatibilization effect appears to take place for the in situ-synthesized ternary systems. The effect of thermal annealing is most prevalent for all samples, which, for the highest annealing temperature above the melting point of PNDIT2 (310 °C), ultimately leads to a change from the face-on to edge-on orientation of PNDIT2, as seen in GIWAXS. This effect dominates and decreases all photovoltaic parameters, irrespective of whether a pristine or compatibilized blend is used.
Collapse
Affiliation(s)
- Fritz Nübling
- Institut für Makromolekulare Chemie , Albert-Ludwigs-Universität Freiburg , Stefan-Meier-Straße 31 , 79104 Freiburg , Germany
- Freiburger Materialforschungszentrum , Albert-Ludwigs-Universität Freiburg , Stefan-Meier-Straße 21 , 79104 Freiburg , Germany
| | - Dan Yang
- Lehrstuhl für Funktionelle Materialien, Physik Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany
| | - Martin Brinkmann
- Institut Charles Sadron , CNRS-Univeristé de Strasbourg , 23 rue de Loess , 67034 Strasbourg , France
| | - Michael Sommer
- Institut für Chemie , Technische Universität Chemnitz , Straße der Nationen 62 , 09111 Chemnitz , Germany
| |
Collapse
|
35
|
Nelson G, Drapes CS, Grant MA, Gnabasik R, Wong J, Baruth A. High-Precision Solvent Vapor Annealing for Block Copolymer Thin Films. MICROMACHINES 2018; 9:E271. [PMID: 30424204 PMCID: PMC6187827 DOI: 10.3390/mi9060271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 01/24/2023]
Abstract
Despite its efficacy in producing well-ordered, periodic nanostructures, the intricate role multiple parameters play in solvent vapor annealing has not been fully established. In solvent vapor annealing a thin polymer film is exposed to a vapor of solvent(s) thus forming a swollen and mobile layer to direct the self-assembly process at the nanoscale. Recent developments in both theory and experiments have directly identified critical parameters that govern this process, but controlling them in any systematic way has proven non-trivial. These identified parameters include vapor pressure, solvent concentration in the film, and the solvent evaporation rate. To explore their role, a purpose-built solvent vapor annealing chamber was designed and constructed. The all-metal chamber is designed to be inert to solvent exposure. Computer-controlled, pneumatically actuated valves allow for precision timing in the introduction and withdrawal of solvent vapor from the film. The mass flow controller-regulated inlet, chamber pressure gauges, in situ spectral reflectance-based thickness monitoring, and low flow micrometer relief valve give real-time monitoring and control during the annealing and evaporation phases with unprecedented precision and accuracy. The reliable and repeatable alignment of polylactide cylinders formed from polystyrene-b-polylactide, where cylinders stand perpendicular to the substrate and span the thickness of the film, provides one illustrative example.
Collapse
Affiliation(s)
- Gunnar Nelson
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Chloe S Drapes
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Meagan A Grant
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Ryan Gnabasik
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Jeffrey Wong
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Andrew Baruth
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
36
|
Schlipf J, Bießmann L, Oesinghaus L, Berger E, Metwalli E, Lercher JA, Porcar L, Müller-Buschbaum P. In Situ Monitoring the Uptake of Moisture into Hybrid Perovskite Thin Films. J Phys Chem Lett 2018; 9:2015-2021. [PMID: 29613793 DOI: 10.1021/acs.jpclett.8b00687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solution-processed hybrid perovskites are of great interest for use in photovoltaics. However, polycrystalline perovskite thin films show strong degradation in humid atmospheres, which poses an important challenge for large-scale market introduction. With in situ grazing incidence neutron scattering (GISANS) we analyzed water content, degradation products, and morphological changes during prolonged exposure to several humidity levels. In high humidity, the formation of metastable hydrate phases is accompanied by domain swelling, which transforms the faceted crystals to a round-washed, pebble-like form. The films incorporate much more water than is integrated into the hydrates, with smaller crystals being more affected, making the degradation strongly dependent on film morphology. Even at low humidity, water is adsorbed on the crystal surfaces without the formation of crystalline degradation products. Thus, although production in an ambient atmosphere is of interest for industrial production it might lead to long-term degradation without appropriate countermeasures like postproduction drying below 30% RH.
Collapse
Affiliation(s)
- Johannes Schlipf
- Technische Universität München , Physik-Department, Lehrstuhl für Funktionelle Materialien , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Lorenz Bießmann
- Technische Universität München , Physik-Department, Lehrstuhl für Funktionelle Materialien , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Lukas Oesinghaus
- Technische Universität München , Physics-Department and ZNN, Physics of Synthetic Biological Systems , Am Coulombwall 4a , 85748 Garching , Germany
| | - Edith Berger
- Technische Universität München , Department of Chemistry and Catalysis Research Center , Lichtenbergstraße 4 , 85747 Garching , Germany
| | - Ezzeldin Metwalli
- Technische Universität München , Physik-Department, Lehrstuhl für Funktionelle Materialien , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Johannes A Lercher
- Technische Universität München , Department of Chemistry and Catalysis Research Center , Lichtenbergstraße 4 , 85747 Garching , Germany
| | - Lionel Porcar
- Institut Laue-Langevin (ILL) , 71 Avenue des Martyrs , 38042 Grenoble , France
| | - Peter Müller-Buschbaum
- Technische Universität München , Physik-Department, Lehrstuhl für Funktionelle Materialien , James-Franck-Str. 1 , 85748 Garching , Germany
| |
Collapse
|
37
|
Hannon AF, Sunday DF, Bowen A, Khaira G, Ren J, Nealey PF, de Pablo JJ, Kline RJ. Optimizing self-consistent field theory block copolymer models with X-ray metrology. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2018; 3:376-389. [PMID: 29892480 PMCID: PMC5992623 DOI: 10.1039/c7me00098g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A block copolymer self-consistent field theory (SCFT) model is used for direct analysis of experimental X-ray scattering data obtained from thin films of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) made from directed self-assembly. In a departure from traditional approaches, which reconstruct the real space structure using simple geometric shapes, we build on recent work that has relied on physics-based models to determine shape profiles and extract thermodynamic processing information from the scattering data. More specifically, an SCFT model, coupled to a covariance matrix adaptation evolutionary strategy (CMAES), is used to find the set of simulation parameters for the model that best reproduces the scattering data. The SCFT model is detailed enough to capture the essential physics of the copolymer self-assembly, but sufficiently simple to rapidly produce structure profiles needed for interpreting the scattering data. The ability of the model to produce a matching scattering profile is assessed, and several improvements are proposed in order to more accurately recreate the experimental observations. The predicted parameters are compared to those extracted from model fits via additional experimental methods and with predicted parameters from direct particle-based simulations of the same model, which incorporate the effects of fluctuations. The Flory-Huggins interaction parameter for PS-b-PMMA is found to be in agreement with reported ranges for this material. These results serve to strengthen the case for relying on physics-based models for direct analysis of scattering and light signal based experiments.
Collapse
Affiliation(s)
- Adam F Hannon
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Daniel F Sunday
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Alec Bowen
- Institute for Molecular Engineering, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA
| | - Gurdaman Khaira
- Mentor Graphics Corporation, 8005 Boeckman Rd, Wilsonville, OR 97070, USA
| | - Jiaxing Ren
- Institute for Molecular Engineering, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA
| | - Paul F Nealey
- Institute for Molecular Engineering, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA
- Argonne National Laboratory, 9700 Cass Ave, Lemont, IL 60439, USA
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA
- Argonne National Laboratory, 9700 Cass Ave, Lemont, IL 60439, USA
| | - R Joseph Kline
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
38
|
Lundy R, Flynn SP, Cummins C, Kelleher SM, Collins MN, Dalton E, Daniels S, Morris MA, Enright R. Controlled solvent vapor annealing of a high χ block copolymer thin film. Phys Chem Chem Phys 2018; 19:2805-2815. [PMID: 28067366 DOI: 10.1039/c6cp07633e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular self-assembling block copolymers (BCPs) have shown promise as a next generation bottom-up lithography technology. However, a critical step in advancing this approach is the elimination of polymer dewetting due to bulk solvent nucleation and thermodynamically driven film rupture that can occur during the solvent vapor annealing process. We report on the pattern formation via phase segregation of spin coated diblock copolymer films through the investigation of annealing parameters in the limit of high solvent vapor saturation conditions that results in wafer-scale patterning without observing polymer dewetting defects. Specifically, the work addresses polymer dewetting in diblock copolymer nanodot templates through the use of a "neutral" functionalization layer and the development of a custom-built solvent vapor annealing chamber to precisely control saturation conditions. Furthermore, the long anneal times (4 h) using a standard static solvent vapor annealing procedure were reduced to ∼15-30 minutes with our dynamic solvent vapor annealing system for the high χ, cylindrical forming poly(styrene)-block-poly(4-vinyl-pyridine) [PS-b-P4VP] diblock copolymer system. We discuss the kinetic mechanism governing the phase segregation process that highlights the small processing window bounded by long phase segregation timescales (≳1 min) on one side and the initiation of polymer film dewetting on the other. These results demonstrate a key step towards realizing a high fidelity, low cost BCP patterning technique for large-scale "bottom-up" feature definition at nanometer length scales.
Collapse
Affiliation(s)
- Ross Lundy
- Thermal Management Research Group, Efficient Energy Transfer (ηET) Dept., Bell Labs Ireland, Nokia, Blanchardstown Business & Technology Park, Snugborough Rd., Dublin 15, Ireland. and Stokes Laboratories, University of Limerick, Co., Limerick, Ireland
| | - Shauna P Flynn
- National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Cian Cummins
- AMBER@CRANN, Trinity College Dublin, Dublin, Ireland
| | - Susan M Kelleher
- National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | - Eric Dalton
- Stokes Laboratories, University of Limerick, Co., Limerick, Ireland
| | - Stephen Daniels
- National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | - Ryan Enright
- Thermal Management Research Group, Efficient Energy Transfer (ηET) Dept., Bell Labs Ireland, Nokia, Blanchardstown Business & Technology Park, Snugborough Rd., Dublin 15, Ireland.
| |
Collapse
|
39
|
Su B, Caller-Guzman HA, Körstgens V, Rui Y, Yao Y, Saxena N, Santoro G, Roth SV, Müller-Buschbaum P. Macroscale and Nanoscale Morphology Evolution during in Situ Spray Coating of Titania Films for Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43724-43732. [PMID: 29182302 DOI: 10.1021/acsami.7b14850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mesoporous titania is a cheap and widely used material for photovoltaic applications. To enable a large-scale fabrication and a controllable pore size, we combined a block copolymer-assisted sol-gel route with spray coating to fabricate titania films, in which the block copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) is used as a structure-directing template. Both the macroscale and nanoscale are studied. The kinetics and thermodynamics of the spray deposition processes are simulated on a macroscale, which shows a good agreement with the large-scale morphology of the spray-coated films obtained in practice. On the nanoscale, the structure evolution of the titania films is probed with in situ grazing incidence small-angle X-ray scattering (GISAXS) during the spray process. The changes of the PS domain size depend not only on micellization but also on solvent evaporation during the spray coating. Perovskite (CH3NH3PbI3) solar cells (PSCs) based on sprayed titania film are fabricated, which showcases the suitability of spray-deposited titania films for PSCs.
Collapse
Affiliation(s)
- Bo Su
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München , James-Franck-Str. 1, 85748 Garching, Germany
| | - Herbert A Caller-Guzman
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München , James-Franck-Str. 1, 85748 Garching, Germany
| | - Volker Körstgens
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München , James-Franck-Str. 1, 85748 Garching, Germany
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620, P. R. China
| | - Yuan Yao
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München , James-Franck-Str. 1, 85748 Garching, Germany
| | - Nitin Saxena
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München , James-Franck-Str. 1, 85748 Garching, Germany
| | - Gonzalo Santoro
- Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85, 22607 Hamburg, Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85, 22607 Hamburg, Germany
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology , Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München , James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
40
|
Dialameh M, Lupi FF, Imbraguglio D, Zanenga F, Lamperti A, Martella D, Seguini G, Perego M, Rossi AM, De Leo N, Boarino L. Influence of block copolymer feature size on reactive ion etching pattern transfer into silicon. NANOTECHNOLOGY 2017; 28:404001. [PMID: 28729521 DOI: 10.1088/1361-6528/aa8144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A successful realisation of sub-20 nm features on silicon (Si) is becoming the focus of many technological studies, strongly influencing the future performance of modern integrated circuits. Although reactive ion etching (RIE), at both micrometric and nanometric scale has already been the target of many studies, a better understanding of the different mechanisms involved at sub-20 nm size etching is still required. In this work, we investigated the influence of the feature size on the etch rate of Si, performed by a cryogenic RIE process through cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) diblock copolymer (DBC) masks with diameter ranging between 19-13 nm. A sensible decrease of the etch depth and etch rate was observed in the mask with the smallest feature size. For all the DBCs under investigation, we determined the process window useful for the correct transfer of the nanometric cylindrical pattern into a Si substrate. A structural and physicochemical investigation of the resulting nanostructured Si is reported in order to delineate the influence of various RIE pattern effects. Feature-size-dependent etch, or RIE-lag, is proved to significantly affect the obtained results.
Collapse
Affiliation(s)
- M Dialameh
- Istituto Nazionale di Ricerca Metrologia (INRIM), Strada delle Cacce 91, 10135 Turin, Italy. Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dehmel R, Dolan JA, Gu Y, Wiesner U, Wilkinson TD, Baumberg JJ, Steiner U, Wilts BD, Gunkel I. Optical Imaging of Large Gyroid Grains in Block Copolymer Templates by Confined Crystallization. Macromolecules 2017; 50:6255-6262. [PMID: 28919648 PMCID: PMC5594442 DOI: 10.1021/acs.macromol.7b01528] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 07/20/2017] [Indexed: 01/28/2023]
Abstract
Block copolymer (BCP) self-assembly is a promising route to manufacture functional nanomaterials for applications from nanolithography to optical metamaterials. Self-assembled cubic morphologies cannot, however, be conveniently optically characterized in the lab due to their structural isotropy. Here, the aligned crystallization behavior of a semicrystalline-amorphous polyisoprene-b-polystyrene-b-poly(ethylene oxide) (ISO) triblock terpolymer was utilized to visualize the grain structure of the cubic microphase-separated morphology. Upon quenching from a solvent swollen state, ISO first self-assembles into an alternating gyroid morphology, in the confinement of which the PEO crystallizes preferentially along the least tortuous pathways of the single gyroid morphology with grain sizes of hundreds of micrometers. Strikingly, the resulting anisotropic alignment of PEO crystallites gives rise to a unique optical birefringence of the alternating gyroid domains, which allows imaging of the self-assembled grain structure by optical microscopy alone. This study provides insight into polymer crystallization within a tortuous three-dimensional network and establishes a useful method for the optical visualization of cubic BCP morphologies that serve as functional nanomaterial templates.
Collapse
Affiliation(s)
- Raphael Dehmel
- Department
of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - James A. Dolan
- Department
of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Engineering, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Yibei Gu
- Department
of Materials Science and Engineering, Cornell
University, 214 Bard Hall, Ithaca, New York 14853-1501, United States
| | - Ulrich Wiesner
- Department
of Materials Science and Engineering, Cornell
University, 214 Bard Hall, Ithaca, New York 14853-1501, United States
| | - Timothy D. Wilkinson
- Department
of Engineering, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Jeremy J. Baumberg
- Department
of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Ullrich Steiner
- Adolphe Merkle
Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D. Wilts
- Adolphe Merkle
Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Ilja Gunkel
- Adolphe Merkle
Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
42
|
Wang R, Di ZY, Müller-Buschbaum P, Frielinghaus H. Effect of PCBM additive on morphology and optoelectronic properties of P3HT-b-PS films. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Liu J, Lhermitte J, Tian Y, Zhang Z, Yu D, Yager KG. Healing X-ray scattering images. IUCRJ 2017; 4:455-465. [PMID: 28875032 PMCID: PMC5571808 DOI: 10.1107/s2052252517006212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/24/2017] [Indexed: 05/03/2023]
Abstract
X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS) data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.
Collapse
Affiliation(s)
- Jiliang Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Julien Lhermitte
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Ye Tian
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Zheng Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Dantong Yu
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, USA
- New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
44
|
Black CT, Forrey C, Yager KG. Thickness-dependence of block copolymer coarsening kinetics. SOFT MATTER 2017; 13:3275-3283. [PMID: 28393167 DOI: 10.1039/c7sm00212b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite active research, many fundamental aspects of block copolymer ordering remain unresolved. We studied the thickness-dependence of block copolymer grain coarsening kinetics, and find that thinner films order more rapidly than thicker films. Bilayer films, or monolayers with partial layers of islands, order more slowly than monolayers because of the greater amount of material that must rearrange in a coordinated fashion. Sub-monolayer films order much more rapidly than monolayers, exhibiting considerably smaller activation energies, as well as larger exponents for the time-growth power-law. Using molecular dynamics simulations, we directly study the motion of defects in these film regimes. We attribute the enhanced grain growth in sub-monolayers to the film boundaries, where defects can be spontaneously eliminated. The boundaries thus act as efficient sinks for morphological defects, pointing towards methods for engineering rapid ordering of self-assembling thin films.
Collapse
Affiliation(s)
- Charles T Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.
| | | | | |
Collapse
|
45
|
Ferrarese Lupi F, Giammaria TJ, Seguini G, Laus M, Dubček P, Pivac B, Bernstorff S, Perego M. GISAXS Analysis of the In-Depth Morphology of Thick PS-b-PMMA Films. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11054-11063. [PMID: 28263052 DOI: 10.1021/acsami.7b01366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The morphological evolution of cylinder-forming poly(styrene)-b-poly(methyl methacrylate) block copolymer (BCP) thick films treated at high temperatures in the rapid thermal processing (RTP) machine was monitored by means of in-depth grazing-incidence small-angle X-ray scattering (GISAXS). The use of this nondisruptive technique allowed one to reveal the formation of buried layers composed of both parallel- and perpendicular-oriented cylinders as a function of the film thickness (24 ≤ h ≤ 840 nm) and annealing time (0 ≤ t ≤ 900 s). Three distinct behaviors were observed depending on the film thickness. Up to h ≤ 160 nm, a homogeneous film consisting of perpendicular-oriented cylinders is observed. When h is between 160 and 700 nm, a decoupling process between both the air-BCP and substrate-BCP interfaces takes place, leading to the formation of mixed orientations (parallel and perpendicular) of the cylinders. Finally, for h > 700 nm, the two interfaces are completely decoupled, and the formation of a superficial layer of about 50 nm composed of perpendicular cylinders is observed. Furthermore, the through-film morphology affects the nanodomain long-range order, which substantially decreases in correspondence with the beginning of the decoupling process. When the thick samples are exposed to longer thermal treatments, an increase in the long-range order of the nanodomains occurs, without any sensible variation of the thickness of the superficial layer.
Collapse
Affiliation(s)
- Federico Ferrarese Lupi
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
- Nanoscience and Materials Division, Istituto Nazionale Ricerca Metrologica , Strada delle Cacce 91, 10135 Torino, Italy
| | - Tommaso Jacopo Giammaria
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale ''A. Avogadro'' , Viale T. Michel 11, 1512 Alessandria, Italy
| | - Gabriele Seguini
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale ''A. Avogadro'' , Viale T. Michel 11, 1512 Alessandria, Italy
| | - Pavo Dubček
- Institut Ruđer Bošković , Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Branko Pivac
- Institut Ruđer Bošković , Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Sigrid Bernstorff
- Elettra-Sincrotrone Trieste , SS 14, Km 163.5, in AREA Science Park, 34149 Basovizza (TS), Italy
| | - Michele Perego
- Laboratorio MDM, IMM-CNR , Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| |
Collapse
|
46
|
Posselt D, Zhang J, Smilgies DM, Berezkin AV, Potemkin II, Papadakis CM. Restructuring in block copolymer thin films: In situ GISAXS investigations during solvent vapor annealing. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Rahman A, Majewski PW, Doerk G, Black CT, Yager KG. Non-native three-dimensional block copolymer morphologies. Nat Commun 2016; 7:13988. [PMID: 28004774 PMCID: PMC5196037 DOI: 10.1038/ncomms13988] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials-block copolymer thin films-can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers through subtle surface topography. This strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.
Collapse
Affiliation(s)
- Atikur Rahman
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Pawel W. Majewski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Gregory Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Charles T. Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
48
|
Cummins C, Collins TW, Kelly RA, McCarthy EK, Morris MA. In-depth TEM characterization of block copolymer pattern transfer at germanium surfaces. NANOTECHNOLOGY 2016; 27:484003. [PMID: 27819793 DOI: 10.1088/0957-4484/27/48/484003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dry plasma etching for the pattern transfer of mask features is fundamental to semiconductor processing and the development of device and electrically conducting elements becomes more challenging as features reach the deep nanoscale regime. In this work, high resolution transmission electron microscopy (TEM) coupled with energy dispersive x-ray (EDX) characterization were used to analyze the pattern transfer of graphoepitaxially aligned block copolymer (BCP) features to germanium (Ge) substrates as a function of time. The BCP patterns were converted into metal oxide hardmasks in order to affect good aspect ratios of the transferred features. An unusual interface layer between metal oxide nanowires and the germanium-on-insulator substrate was observed. EDX analysis shows that the origin of this interface layer is a result of the presence of a negative tone e-beam resist material, HSQ (hydrogen silsesquioxane). HSQ was employed as a guiding material to align line-space features of poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) BCP with 16 nm half-pitch topography. Additionally, the existence of a metal oxide layer (from the initial PS-b-P4VP film) is also shown through ex situ TEM and EDX characterization. Three dimensional modeling of features is also provided giving a unique insight into the arrangement and structure of BCP features prior to and after the pattern transfer process. The results presented in this article highlight the accuracy of high resolution electron microscopy and elemental mapping of BCP generated on-chip etch masks to observe and understand through-film features affecting pattern transfer.
Collapse
Affiliation(s)
- Cian Cummins
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN/AMBER), Trinity College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
49
|
Samant S, Strzalka J, Yager KG, Kisslinger K, Grolman D, Basutkar M, Salunke N, Singh G, Berry B, Karim A. Ordering Pathway of Block Copolymers under Dynamic Thermal Gradients Studied by in Situ GISAXS. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01555] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Saumil Samant
- Department
of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Joseph Strzalka
- X-ray
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Kevin G. Yager
- Center
for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kim Kisslinger
- Center
for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Danielle Grolman
- Department
of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Monali Basutkar
- Department
of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Namrata Salunke
- Department
of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Gurpreet Singh
- Department
of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Brian Berry
- Department
of Chemistry, University of Arkansas, Little Rock, Arkansas 72701, United States
| | - Alamgir Karim
- Department
of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
50
|
Majewski PW, Yager KG. Rapid ordering of block copolymer thin films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:403002. [PMID: 27537062 DOI: 10.1088/0953-8984/28/40/403002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times-hours or days-required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.
Collapse
Affiliation(s)
- Pawel W Majewski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA. Department of Chemistry, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|