1
|
Goculdas T, Ramirez M, Crossley M, Sadula S, Vlachos DG. Biomass-Derived, Target Specific, and Ecologically Safer Insecticide Active Ingredients. CHEMSUSCHEM 2024; 17:e202400824. [PMID: 38924470 DOI: 10.1002/cssc.202400824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
With the continuous increase in food production to support the growing population, ensuring agricultural sustainability using crop-protecting agents, such as pesticides, is vital. Conventional pesticides pose significant environmental risks, prompting the need for eco-friendly alternatives. This study reports the synthesis of new amide-based insecticidal active ingredients from biomass-derived monomers, specifically furfural and vanillin. The process involves reductive amination followed by carbonylation. The synthesis of the furfural-based carbamate yield reaches a cumulative 88 %, with catalysts Rh/Al2O3 and La(OTf)3 being recyclable at each stage. Insecticidal activity assessments reveal that the furfural carbamate exhibits competitive performance, achieving an LC50 of 254.22 μg/cm2, compared to 251.25 μg/cm2 for carbofuran. Ecotoxicity predictions indicate significantly lower toxicity levels toward non-target aquatic and terrestrial species. The importance of the low octanol-water partition coefficient of the biobased carbamate, attributed to the oxygen heteroatom and electron density of the furan ring, is discussed in detail. Building on these promising results, the synthesis strategy was extended to six other biobased aldehydes, resulting in a diverse portfolio of biomass-derived carbamates. A techno-economic analysis reveals a minimum selling price of 11.1 $/kg, only half that of comparable carbamates, demonstrating the economic viability of these new biobased insecticides.
Collapse
Affiliation(s)
- Tejas Goculdas
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, 19716, DE, USA
- Department of Chemical and Biomolecular Engineering, 150 Academy Street, University of Delaware, Newark, 19716, DE, USA
| | - Maximus Ramirez
- Department of Chemical and Biomolecular Engineering, 150 Academy Street, University of Delaware, Newark, 19716, DE, USA
| | - Michael Crossley
- Department of Entomology and Wildlife Ecology, 531 S. College Ave, University of Delaware, Newark, DE 19716, USA
| | - Sunitha Sadula
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, 19716, DE, USA
| | - Dionisios G Vlachos
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, 19716, DE, USA
- Department of Chemical and Biomolecular Engineering, 150 Academy Street, University of Delaware, Newark, 19716, DE, USA
| |
Collapse
|
2
|
Berselli A, Menziani MC, Muniz-Miranda F. Structure and Energetics of PET-Hydrolyzing Enzyme Complexes: A Systematic Comparison from Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:8236-8257. [PMID: 39432831 DOI: 10.1021/acs.jcim.4c01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Discovered in 2016, the enzyme PETase, secreted by bacterial Ideonella Sakaiensis 201-F6, has an excellent hydrolytic activity toward poly(ethylene terephthalate) (PET) at room temperature, while it decreases at higher temperatures due to the low thermostability. Many variants have been engineered to overcome this limitation, which hinders industrial application. In this work, we systematically compare PETase wild-type (WT) and four mutants (DuraPETase, ThermoPETase, FastPETase, and HotPETase) using standard molecular dynamics (MD) simulations and unbinding free energy calculations. In particular, we analyze the enzymes' structural characteristics and binding to a tetrameric PET chain (PET4) under two temperature conditions: T1─300 K and T2─350 K. Our results indicate that (i) PET4 forms stable complexes with the five enzymes at room temperature (∼300 K) and (ii) most of the interactions are localized close to the active site of the protein, where the W185 and Y87 residues interact with the aromatic rings of the substrate. Specifically, (iii) the W185 side-chain explores different conformations in each variant (a phenomenon known in the literature as "W185 wobbling"). This suggests that the binding pocket retains structural plasticity and flexibility among the variants, facilitating substrate recognition and localization events at moderate temperatures. Moreover, (iv) PET4 establishes aromatic interactions with the catalytic H237 residue, stabilizing the catalytic triad composed of residues S160-H237-D206, and helping the system achieve an effective configuration for the hydrolysis reaction. Conversely, (v) the binding affinity decreases at a higher temperature (∼350 K), retaining moderate interactions only for HotPETase. Finally, (vi) MD simulations of complexes formed with poly(ethylene-2,5-furan dicarboxylate) (PEF) show no persistent interactions, suggesting that these enzymes are not yet optimized for binding this alternative semiaromatic plastic polymer. Our study offers valuable insights into the structural stability of these enzymes and the molecular determinants driving PET binding onto their surfaces, sheds light on the mechanistic steps that precede the onset of hydrolysis, and provides a foundation for future enzyme optimization.
Collapse
Affiliation(s)
- Alessandro Berselli
- Department of Chemical and Geological Sciences (DSCG), University of Modena and Reggio Emilia (UNIMORE), Via Campi 103, 41125 Modena, Italy
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences (DSCG), University of Modena and Reggio Emilia (UNIMORE), Via Campi 103, 41125 Modena, Italy
| | - Francesco Muniz-Miranda
- Department of Chemical and Geological Sciences (DSCG), University of Modena and Reggio Emilia (UNIMORE), Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
3
|
Jha S, Akula B, Enyioma H, Novak M, Amin V, Liang H. Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions. Polymers (Basel) 2024; 16:2262. [PMID: 39204482 PMCID: PMC11359911 DOI: 10.3390/polym16162262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Biodegradable biobased polymers derived from biomass (such as plant, animal, marine, or forestry material) show promise in replacing conventional petrochemical polymers. Research and development have been conducted for decades on potential biodegradable biobased polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and succinate polymers. These materials have been evaluated for practicality, cost, and production capabilities as limiting factors in commercialization; however, challenges, such as the environmental limitations on the biodegradation rates for biodegradable biobased polymer, need to be addressed. This review provides a history and overview of the current development in the synthesis process and properties of biodegradable biobased polymers, along with a techno-commercial analysis and discussion on the environmental impacts of biodegradable biobased polymers. Specifically, the techno-commercial analysis focuses on the commercial potential, financial assessment, and life-cycle assessment of these materials, as well as government initiatives to facilitate the transition towards biodegradable biobased polymers. Lastly, the environmental assessment focuses on the current challenges with biodegradation and methods of improving the recycling process and reusability of biodegradable biobased polymers.
Collapse
Affiliation(s)
- Swarn Jha
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
| | - Bhargav Akula
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
| | - Hannah Enyioma
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
| | - Megan Novak
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
| | - Vansh Amin
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
| | - Hong Liang
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
| |
Collapse
|
4
|
Yi J, Dai Y, Li Y, Zhao Y, Wu Y, Jiang M, Zhou G. -COOH & -OH Condensation Reaction Utilization for Biomass FDCA-based Polyesters. CHEMSUSCHEM 2024; 17:e202301681. [PMID: 38339820 DOI: 10.1002/cssc.202301681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
A green and sustainable -COOH & -OH condensation solution polymerization method was hereby reported for FDCA-based polyesters to avoid discoloration and toxic solvents. First, taking poly(ethylene 2,5-furandicarboxylate) (PEF) as the representative of FDCA-based polyester, enabling good white appearance PEF with Mn=6.51×103 g mol-1 from FDCA and ethylene glycol in green solvent γ-valerolactone (GVL), catalyzed by 4-dimethylaminopyridine (DMAP) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC). Additionally, the molecular weight of PEF was rapidly improved (Mn >2.5×104 g mol-1) via remelting polycondensation within minutes, with the dispersity still kept relatively low dispersity (Đ<1.40). Importantly, the -COOH & -OH condensation solution polymerization method was successfully applied for the synthesis of various FDCA-based polyesters, including diols with varying carbon chain lengths (3 to 11 carbons) and cycloalkyl diols, especially the applicability of this method to diols containing C=C double bonds, which was found to exhibit low heat resistance. Lastly, assisting with 13C labeled 1,4-succinic acid and in-situ 13C-NMR, an in-depth study of the possible catalytic mechanism was proposed, by which, EDC activated FDCA, and then DMAP catalyzed it with diol to yield macromolecular chain of polyester. Overall, the results provided a green and sustainable strategy for the synthesis of FDCA-based polyesters.
Collapse
Affiliation(s)
- Jing Yi
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
| | - Yuze Dai
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuxuan Li
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuhao Zhao
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuanpeng Wu
- School of New Energy and Materials, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
| | - Min Jiang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guangyuan Zhou
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
5
|
Cai X, Zhao X, Mahmud S, Zhang X, Wang X, Wang J, Zhu J. Synthesis of Biobased Poly(butylene Furandicarboxylate) Containing Polysulfone with Excellent Thermal Resistance Properties. Biomacromolecules 2024; 25:1825-1837. [PMID: 38336482 DOI: 10.1021/acs.biomac.3c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
A synthetic biopolymer derived from furandicarboxylic acid monomer and hydroxyethyl-terminated poly(ether sulfone) is presented. The synthesis involves 4,4'-dichlorodiphenyl sulfone and 4,4-dihydroxydiphenyl sulfone, resulting in poly(butylene furandicarboxylate)-poly(ether sulfone) copolyesters (PBFES) through melt polycondensation with titanium-catalyzed polymerization. This facile method yields segmented polyesters incorporating polysulfone, creating a versatile group of high-temperature thermoplastics with adjustable thermomechanical properties. The PBFES copolyesters demonstrate an impressive tensile modulus of 2830 MPa and a tensile strength of 84 MPa for PBFES55. Additionally, the poly(ether sulfone) unit imparts a relatively high glass transition temperature (Tg), ranging from 36.6 °C for poly(butylene 2,5-furandicarboxylate) to 112.3 °C for PBFES62. Moreover, the complete amorphous film of PBFES exhibits excellent transparency and solvent resistance, making it suitable for applications, such as food packaging materials.
Collapse
Affiliation(s)
- Xinhong Cai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xuefeng Zhao
- Hangzhou Joyoung Household Electrical Appliances Co., Ltd., Hangzhou 310018, People's Republic of China
| | - Sakil Mahmud
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoxing Wang
- School of Materials Science and Chemical Engineering, Ningbo University, No.818 Fenghua Road, Ningbo 315211, People's Republic of China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
6
|
Song L, Chi W, Zhang Q, Ren J, Yang B, Cong F, Li Y, Wang W, Li X, Wang Y. Improvement of properties of polylactic acid/polypropylene carbonate blends using epoxy soybean oil as an efficient compatibilizer. Int J Biol Macromol 2023; 253:127407. [PMID: 37832613 DOI: 10.1016/j.ijbiomac.2023.127407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Epoxidized soybean oil (ESO) was used as a compatibilizer and blended with polylactic acid (PLA) and polypropylene carbonate (PPC) resin to prepare a series of PLA/PPC/ESO blends with varying compositions. The influence of the variation in the amount of ESO added to the blend system on the thermal properties, optical properties, rheological properties, mechanical properties, and microscopic morphology of the blends was studied. The research indicates that ESO can react with PLA and PPC to form a chemical bond interface, which improves the compatibility of PLA and PPC to a certain extent. With the increase in the amount of ESO added to the blend (1- 5 phr), the complete decomposition temperature, storage modulus, loss modulus, complex viscosity, notched impact strength, and elongation at break of the blend all show a trend of continuous increase. At the same time, the melt flow rate, light transmittance, and tensile strength of the blend do not show significant fluctuations. When the amount of ESO in the system is 5 phr, compared with the PLA/PPC blend, the notched impact strength and elongation at break of the PLA/PPC/ESO blend increase from 4270.3 J/m2, 43.89 % to 8560.4 J/m2, 211.28 %, respectively, and its tensile strength and transmittance still remain around 63 MPa, 92 %. This improves the toughness of the blend while maintaining its rigidity, demonstrating excellent mechanical and optical properties. At this time, the microscopic morphology of the fracture surface of the impact sample also shows obvious characteristics of tough fracture. However, when the amount of ESO added to the blend is excessive (6 phr), the compatibility of the blending system decreases, which will degrade the performance of the blending material and ultimately destroy the phase morphology of the blend and reduce its mechanical properties.
Collapse
Affiliation(s)
- Lixin Song
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Weihan Chi
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Qian Zhang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiannan Ren
- AVIC Shenyang Aircraft Corporation, Shenyang 110850, China
| | - Bing Yang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Fei Cong
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongchao Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Wei Wang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xianliang Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yuanxia Wang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
7
|
Wang Q, Li J, Wang J, Hu H, Dong Y, O'Young DL, Hu D, Zhang X, Wei DQ, Zhu J. Biobased Biodegradable Copolyesters from 2,5-Thiophenedicarboxylic Acid: Effect of Aliphatic Diols on Barrier Properties and Degradation. Biomacromolecules 2023; 24:5884-5897. [PMID: 37956178 DOI: 10.1021/acs.biomac.3c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The demand for sustainable development has led to increasing attention in biobased polyesters due to their adjustable thermal and mechanical properties and biodegradability. In this study, we used a novel bioderived aromatic diacid, 2,5-thiophenedicarboxylic acid (TDCA) to synthesize a list of novel aromatic-aliphatic poly(alkylene adipate-co-thiophenedicarboxylate) (PAATh) copolyesters through a facile melt polycondensation method. PAAThs are random copolyesters with weight-average molecular weights of 58400 to 84200 g·mol-1 and intrinsic viscosities of 0.80 to 1.27 dL·g-1. All PAAThs exhibit sufficiently high thermal stability as well as the highest tensile strength of 6.2 MPa and the best gas barrier performances against CO2 and O2, 4.3- and 3.3-fold better than those of poly(butylene adipate-co-terephthalate) (PBAT). The biodegradability of PAAThs was fully evaluated through a degradation experiment and various experimental parameters, including residue weights, surface morphology, and molecular compositions. The state-of-the-art molecular dynamics (MD) simulations were applied to elucidate the different enzymatic degradation behaviors of PAAThs due to the effect of diols with different chain structures. The sterically hindered carbonyl carbon of the PHATh-enzyme complex was more susceptible to nucleophilic attack and exhibited a higher tendency to enter a prereaction state. This study has introduced a group of novel biobased copolyesters with their structure-property relationships investigated thoroughly, and the effect of diol components on the enzymatic degradation was revealed by computational analysis. These findings may lay the foundation for the development of promising substitutes for commercial biodegradable polyesters and shed light on their complicated degradation mechanisms.
Collapse
Affiliation(s)
- Qianfeng Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yunxiao Dong
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Drow Lionel O'Young
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
| | - Di Hu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
| | - Xiaoqin Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Nanyang 473006, People's Republic of China
- Peng Cheng Laboratory, Shenzhen 518055, People's Republic of China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| |
Collapse
|
8
|
Janse van Rensburg H, N’Da DD, Suganuma K. In Vitro and In Vivo Trypanocidal Efficacy of Nitrofuryl- and Nitrothienylazines. ACS OMEGA 2023; 8:43088-43098. [PMID: 38024678 PMCID: PMC10652724 DOI: 10.1021/acsomega.3c06508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
African trypanosomiasis is a vector-borne disease of animals and humans in the tsetse fly belt of Africa. Trypanosoma congolense ("nagana") is the most pathogenic trypanosome in livestock and causes high morbidity and mortality rates among cattle. In the absence of effective preventative vaccines, the management of trypanosomiasis relies on chemoprophylaxis and/or -therapy. However, the trypanocides in clinical use exhibit poor oral bioavailability and toxicity, and therapeutic failures occur because of resistant strains. Because nitrofurantoin displayed, in addition to its clinical use, promising antiparasitic activity, the current study was conducted to evaluate the in vitro trypanocidal activity and preliminary in vivo treatment efficacy of previously synthesized nitrofuranylazines. The trypanocidal activity of these nitrofuran derivatives varied among the evaluated trypanosome species; however, T. congolense strain IL3000 was more susceptible than other animal and human trypanosomes. The nitrofurylazines 4a (IC50 0.04 μM; SI > 7761) and 7a (IC50 0.03 μM; SI > 9542) as well as the nitrothienylazine 8b (IC50 0.04 μM; SI 232), with nanomolar IC50 values, were revealed as early antitrypanosomal leads. Although these derivatives showed strong trypanocidal activity in vitro, no in vivo treatment efficacy was observed in T. congolense IL3000 infected mice after both oral and intraperitoneal administration in a preliminary study. This was attributed to the poor solubility of the test compounds in the in vivo testing media. Indeed, a challenge in drug discovery is finding a balance between the physicochemical properties of a drug candidate, particularly lipophilicity and water solubility, and maintaining adequate potency to provide an effective dose. Hence, future chemical modifications may be required to generate lead-like to lead-like nitrofuranylazines that possess optimal physicochemical and pharmacokinetic properties while retaining in vitro and, ultimately, in vivo trypanocidal efficacy.
Collapse
Affiliation(s)
| | - David D. N’Da
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Keisuke Suganuma
- National
Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
9
|
Ward LC, Goulding E, Rigden DJ, Allan FE, Pellis A, Hatton H, Guebitz GM, Salcedo‐Sora JE, Carnell AJ. Engineering a Carboxyl Methyltransferase for the Formation of a Furan-Based Bioplastic Precursor. CHEMSUSCHEM 2023; 16:e202300516. [PMID: 37067062 PMCID: PMC10946451 DOI: 10.1002/cssc.202300516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
FtpM from Aspergillus fumigatus was the first carboxyl methyltransferase reported to catalyse the dimethylation of dicarboxylic acids. Here the creation of mutant R166M that can catalyse the quantitative conversion of bio-derived 2,5-furandicarboxylic acid (FDCA) to its dimethyl ester (FDME), a bioplastics precursor, was reported. Wild type FtpM gave low conversion due to its reduced catalytic efficiency for the second methylation step. An AlphaFold 2 model revealed a highly electropositive active site, due to the presence of 4 arginine residues, postulated to favour the binding of the dicarboxylic acid over the intermediate monoester. The R166M mutation improved both binding and turnover of the monoester to permit near quantitative conversion to the target dimethyl ester product. The mutant also had improved activity for other diacids and a range of monoacids. R166M was incorporated into 2 multienzyme cascades for the synthesis of the bioplastics precursor FDME from bioderived 5-hydroxymethylfurfural (HMF) as well as from poly(ethylene furanoate) (PEF) plastic, demonstrating the potential to recycle waste plastic.
Collapse
Affiliation(s)
- Lucy C. Ward
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - Ellie Goulding
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - Daniel J. Rigden
- Institute of SystemsMolecular and Integrative BiologyUniversity of LiverpoolCrown StreetLiverpoolL69 7ZBUnited Kingdom
| | - Faye E. Allan
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - Alessandro Pellis
- Department of Chemistry and Industrial ChemistryUniversity of Genovavia Dodecaneso 3116146GenovaItaly
| | - Harry Hatton
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - Georg M. Guebitz
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-TullnUniversity of Natural Resources and Life Sciences ViennaKonrad Lorenz Strasse 203430TullnAustria
- Austrian Centre of Industrial BiotechnologyKonrad Lorenz Strasse 203430TullnAustria
| | | | - Andrew J. Carnell
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| |
Collapse
|
10
|
Guidotti G, Soccio M, Gazzano M, Siracusa V, Lotti N. New Random Aromatic/Aliphatic Copolymers of 2,5-Furandicarboxylic and Camphoric Acids with Tunable Mechanical Properties and Exceptional Gas Barrier Capability for Sustainable Mono-Layered Food Packaging. Molecules 2023; 28:molecules28104056. [PMID: 37241804 DOI: 10.3390/molecules28104056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
High molecular weight, fully biobased random copolymers of 2,5-furandicarboxylic acid (2,5-FDCA) containing different amounts of (1R, 3S)-(+)-Camphoric Acid (CA) have been successfully synthesized by two-stage melt polycondensation and compression molding in the form of films. The synthesized copolyesters have been first subjected to molecular characterization by nuclear magnetic resonance spectroscopy and gel-permeation chromatography. Afterward, the samples have been characterized from a thermal and structural point of view by means of differential scanning calorimetry, thermogravimetric analysis, and wide-angle X-ray scattering, respectively. Mechanical and barrier properties to oxygen and carbon dioxide were also tested. The results obtained revealed that chemical modification permitted a modulation of the abovementioned properties depending on the amount of camphoric co-units present in the copolymers. The outstanding functional properties promoted by camphor moieties addition could be associated with improved interchain interactions (π-π ring stacking and hydrogen bonds).
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, 40138 Bologna, Italy
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40136 Bologna, Italy
| | - Massimo Gazzano
- Organic Synthesis and Photoreactivity Institute, ISOF, CNR, 40129 Bologna, Italy
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, 95125 Catania, Italy
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40136 Bologna, Italy
- Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
11
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
12
|
Han W, Liao X. Specific interchain interactions of poly(ethylene 2,5‐furandicarboxylate) with polyglycolide acid blends and its effect on miscibility. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Weiqiang Han
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Xia Liao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|
13
|
Wang Q, Wang J, Dong Y, Zhang X, Hu H, OYoung L, Hu D, Zhu J. Synthesis of 2,5-furandicarboxylic acid-based biodegradable copolyesters with excellent gas barrier properties composed of various aliphatic diols. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Mao HI, Yang ZY, Chen CW, Rwei SP. Bio-based poly(hexamethylene 2,5-furandicarboxylate- co-2,6-naphthalate) copolyesters: a study of thermal, mechanical, and gas-barrier properties. SOFT MATTER 2022; 18:7631-7641. [PMID: 36168773 DOI: 10.1039/d2sm00689h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of poly(hexamethylene 2,5-furandicarboxylate-co-2,6-naphthalate) copolyesters were synthesized using various amounts of poly(hexylene 2,5-furandicarboxylate) (PHF) and poly(hexylene 2,6-naphthalate) (PHN) via melt polymerization. The effects of introducing 2,6-naphthalene dicarboxylic acid (NDCA) on the thermal, mechanical, and gas-barrier properties were investigated. When the NDCA content was less than 30 mol%, the temperatures of crystallization (Tc) and melting (Tm) decreased as the amount of NDCA was increased owing to disturbance of the polymer-chain regularity. When the NDCA content was above 50 mol%, the Tc and Tm of the materials increased as the NDCA content was increased, showing that the dominant crystallization behavior varied from 2,5-furandicarboxylic acid to NDCA. Hence, the glass transition temperature (Tg) increased as the NDCA content was increased, which was attributed to the incorporation of NDCA with a more rigid naphthalate structure compared with the furan ring. The gas-barrier properties of the samples were observed to improve with the introduction of NDCA; this tendency could be explained by the β-relaxation behavior and free volume values of the samples in the amorphous state. The activation energy (Ea) of β-relaxation increased with the NDCA content, indicating that higher amounts of energy were needed to trigger the onset of long-range molecular motions. Free-volume calculations of the polymer structure showed that the introduction of NDCA hindered the space for gas penetration. For these reasons, the gas-barrier properties were improved and evaluated.
Collapse
Affiliation(s)
- Hsu-I Mao
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan.
| | - Zhi-Yu Yang
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan.
| | - Chin-Wen Chen
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan.
| | - Syang-Peng Rwei
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan.
| |
Collapse
|
15
|
Yang C, Ma Z, Zhi H, Li H, Hu Y, Zhang Y. Dissolution and initial esterification kinetics of 2,5‐furandicarboxylic acid in ethylene glycol without a catalyst. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cui Yang
- School of Materials Science and Engineering Shanghai University Shanghai People's Republic of China
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - Zhong‐Sen Ma
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - He‐Wen Zhi
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - Hao Li
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| | - Ye‐Min Hu
- School of Materials Science and Engineering Shanghai University Shanghai People's Republic of China
| | - Ya‐Jie Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo People's Republic of China
| |
Collapse
|
16
|
Synthesis and characterization of novel potentially biodegradable aromatic polyesters consisting of divanillic acids with free phenolic hydroxyl groups. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Lv X, Luo F, Zheng L, Niu R, Liu Y, Xie Q, Song D, Zhang Y, Zhou T, Zhu S. Biodegradable poly(butylene succinate‐co‐butylene furandicarboxylate): Effect of butylene furandicarboxylate unit on thermal, mechanical, and ultraviolet shielding properties, and biodegradability. J Appl Polym Sci 2022. [DOI: 10.1002/app.53122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuedong Lv
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Faliang Luo
- High‐Efficiency Coal Utilization and Green Chemical Engineering Ningxia University Yinchuan China
| | - Liuchun Zheng
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Ruixue Niu
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Yi Liu
- School of Textile Science and Engineering Tiangong University Tianjin China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials Hubei University of Science and Technology Xianning China
| | - Qiqi Xie
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - DanQing Song
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - YunChuan Zhang
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Tianbo Zhou
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Shifan Zhu
- School of Textile Science and Engineering Tiangong University Tianjin China
| |
Collapse
|
18
|
Dong Y, Wang J, Yang Y, Wang Q, Zhang X, Hu H, Zhu J. Bio-based poly(butylene diglycolate-co-furandicarboxylate) copolyesters with balanced mechanical, barrier and biodegradable properties: A prospective substitute for PBAT. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Poly(ethylene furanoate-co-ethylene vanillate) biobased copolymers: Impact of the incorporation of vanillic acid units in poly(ethylene furanoate). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Zhang Y, Zhang C, Jiang M, Zhou G. Bio-effects of bio-based and fossil-based microplastics: Case study with lettuce-soil system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119395. [PMID: 35525514 DOI: 10.1016/j.envpol.2022.119395] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Bio-based plastics have been developed as alternative materials to solve the energy crisis brought by plastic production, but their impacts on soil ecosystems (e.g. plant and microorganisms) remain largely unknown. Here, we conducted study on the impacts of polyethylene 2,5-furan-dicarboxylate (PEF), a new bio-based plastic, on the plant-soil ecosystem, with comparison of fossil-based plastic polyethylene terephthalate (PET). Our investigation showed that, after 21 days exposure to microplastics (MPs) at doses of 0.5%, 1% and 2%, both PEF and PET MPs inhibited the growth of lettuce, where chlorophyll was found to be the most sensitive index. According to the comprehensive stress resistance indicators, PET MPs showed more severe phytotoxicity than PEF MPs. Although both PEF and PET MPs could inhibit soil enzyme activities, PET MPs exhibited significantly reduction on the diversity of rhizosphere soil bacterial community and changed the relative abundance of dominant species. Our study gave insights into the effects of PEF and PET MPs on the plant-soil system, where bio-based PEF MPs showed more friendly interaction with plant and soil than fossil-based PET MPs. Our results provided scientific data for risk assessment and useful information for the prospective application of bio-based plastics.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Chunxiang Zhang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Min Jiang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guangyuan Zhou
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
21
|
Fei X, Zhang X, Liu J, Wang J, Liu X. Synthesis of a fire-retardant and high Tg biobased polyester from 2,5-furandicarboxylic acid. Polym J 2022. [DOI: 10.1038/s41428-022-00642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
A proposal for enhanced microstructural development of Poly(ethylene 2,5-furandicarboxylate), PEF, upon stretching: On strain-induced crystallization and amorphous phase stability improvement. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Fei X, Wang J, Zhang X, Jia Z, Jiang Y, Liu X. Recent Progress on Bio-Based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA). Polymers (Basel) 2022; 14:E625. [PMID: 35160613 PMCID: PMC8838965 DOI: 10.3390/polym14030625] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
The big challenge today is the upgrading of sustainable materials to replace miscellaneous ones from petroleum resources. Thus, a generic bio-based building block lays the foundation of the huge bio-market to green economy. 2,5-Furandicarboxylic acid (FDCA), a rigid diacid derived from lignocellulose or fructose, represents a great potential as a contender to terephthalic acid (TPA). Recently, studies on the synthesis, modification, and functionalization of bio-based polyesters based on FDCA have attracted widespread attention. To apply furanic polyesters on engineering plastics, packaging materials, electronics, etc., researchers have extended the properties of basic FDCA-based homo-polyesters by directional copolymerization and composite preparation. This review covers the synthesis and performance of polyesters and composites based on FDCA with emphasis bedded on the thermomechanical, crystallization, barrier properties, and biodegradability. Finally, a summary of what has been achieved and the issues waiting to be addressed of FDCA-based polyester materials are suggested.
Collapse
Affiliation(s)
- Xuan Fei
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
- University of Chinese Academy of Sciences, No.19 A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Zhen Jia
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Yanhua Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China; (X.F.); (X.Z.); (Z.J.); (Y.J.)
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| |
Collapse
|
24
|
|
25
|
Lightfoot JC, Buchard A, Castro-Dominguez B, Parker SC. Comparative Study of Oxygen Diffusion in Polyethylene Terephthalate and Polyethylene Furanoate Using Molecular Modeling: Computational Insights into the Mechanism for Gas Transport in Bulk Polymer Systems. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jasmine C. Lightfoot
- Centre for Sustainable and Circular Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Antoine Buchard
- Centre for Sustainable and Circular Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | | | - Stephen C. Parker
- Centre for Sustainable and Circular Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
26
|
Tian S, Cao X, Luo K, Lin Y, Wang W, Xu J, Guo B. Effects of Nonhydroxyl Oxygen Heteroatoms in Diethylene Glycols on the Properties of 2,5-Furandicarboxylic Acid-Based Polyesters. Biomacromolecules 2021; 22:4823-4832. [PMID: 34669395 DOI: 10.1021/acs.biomac.1c01106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With regard to polyesters based on biobased 2,5-furandicarboxylic acid (FDCA), our work presents a new strategy, heteroatom substitution, to adjust the thermal and gas barrier properties. The effects of nonhydroxyl oxygen heteroatoms in the diols on the properties of FDCA-based polyesters were first investigated by a combination of an experiment and molecular simulation. The results demonstrated that the introduction of oxygen heteroatoms significantly influenced the thermal and gas barrier properties. As for the two model polymers with a very similar skeleton structure, poly(pentylene 2,5-furandicarboxylate) (PPeF) and poly(diethylene glycol 2,5-furandicarboxylate) (PDEF), their Tg exhibited an obviously increasing order. Moreover, they showed similar thermal stability and thermal oxidative stability. Dynamic mechanical analysis, positron annihilation lifetime spectroscopy, and molecular dynamics simulation indicated that the gas barrier properties followed the sequence of PDEF > PPeF mainly due to the decreased chain mobility and smaller fractional free volume. In-depth analysis of the effects of heteroatom substitution has an important directive significance for the design and preparation of new high glass transition temperature or novel excellent gas barrier materials. Through the manipulation of different heteroatoms in the diols, the polyesters with varied properties can be expected.
Collapse
Affiliation(s)
- Sunan Tian
- Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiqiang Luo
- Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanyan Lin
- PetroChina Liaoyang Petrochemical Company, Liaoyang 111003, China
| | - Wenjuan Wang
- PetroChina Liaoyang Petrochemical Company, Liaoyang 111003, China
| | - Jun Xu
- Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Baohua Guo
- Key Laboratory of Advanced Materials of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.,Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
| |
Collapse
|
27
|
Pandey S, Dumont MJ, Orsat V, Rodrigue D. Biobased 2,5-furandicarboxylic acid (FDCA) and its emerging copolyesters’ properties for packaging applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Ma K, Jiang H, Chen G, Wang W, Zhang Y. Polyimides from 2,5-bis[4-(4-aminophenoxy)benzoyl]furan and their thermal crosslinking reaction. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211052270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several polyimides were prepared via two-step polycondensation from novel 2,5-furandicarboxylic acid–based diamine, 2,5-bis[4-(4-aminophenoxy)benzoyl]furan, with commercial dianhydrides. The chemical structures of the monomers and polymers were characterized by FT-IR and NMR in detail, respectively. The polyimides exhibited high performances with 5 wt% weight loss temperatures of over 410 oC, glass transition temperatures of over 214 oC, and tensile strengths and Young’s moduli of up to 130 MPa and 3.2 GPa, respectively. The thermal crosslinking mechanism was studied by FT-IR, Raman spectroscopy, and model reaction analysis, which showed the Diels–Alder reaction between the furan group and diphenylethylene group was the main reaction. The crosslinked polyimide films showed improved solvent resistance, and thermal and mechanical properties.
Collapse
Affiliation(s)
- Kai Ma
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Hanzhou Jiang
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Guofei Chen
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Wei Wang
- Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, PR China
| | - Yonggang Zhang
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| |
Collapse
|
29
|
Wang G, Song J. Synthesis and characterization of bio‐based polyesters derived from 1,10‐decanediol. J Appl Polym Sci 2021. [DOI: 10.1002/app.51163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Guoqiang Wang
- College of Material Science and Engineering Jilin Jianzhu University Changchun China
| | - Jiaqi Song
- College of Material Science and Engineering Jilin Jianzhu University Changchun China
| |
Collapse
|
30
|
Synthesis of homo- and copolyesters containing divanillic acid, 1,4-cyclohexanedimethanol, and alkanediols and their thermal and mechanical properties. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Gao H, Cao W, He J, Bai Y. Highly transparent biaxially oriented poly(ester amide) film with improved gas barrier properties and good mechanical strength. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Qu X, Zhou G, Wang R, Zhang H, Wang Z, Jiang M, Tang J. Insights into high molecular weight poly(ethylene 2,5-furandicarboxylate) with satisfactory appearance: Roles of in-situ catalysis of metal zinc. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Chang H, Gilcher EB, Huber GW, Dumesic JA. Synthesis of performance-advantaged polyurethanes and polyesters from biomass-derived monomers by aldol-condensation of 5-hydroxymethyl furfural and hydrogenation. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:4355-4364. [PMID: 36275196 PMCID: PMC9585942 DOI: 10.1039/d1gc00899d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Functional polyurethanes and polyesters with tunable properties were synthesized from biomass-derived 5-hydroxymethyl furfural (HMF)-Acetone-HMF (HAH) monomers. HAH can be selectively hydrogenated over Cu and Ru catalysts to produce partially-hydrogenated (PHAH) and fully-hydrogenated (FHAH). The HAH units in these polymers improve the thermal stability and stiffness of the polymers compared to polyurethanes produced with ethylene glycol. Polyurethanes produced from PHAH provide diene binding sites for electron deficient C=C double bonds, such as in maleimide compounds, that can participate in Diels-Alder reactions. Such sites can function to create crosslinking by Diels-Alder coupling with bismaleimides and can be used to impart functionality to PHAH (giving rise to anti-microbial activity or controlled drug delivery). The symmetric triol structure of FHAH leads to energy-dissipating rubbers with branched structures. Accordingly, the properties of these biomass-derived polymers can be tuned by controlling the blending ratio of HAH-derived monomers or the degree of Diels-Alder reaction. The polyester produced from HAH can be used in packaging applications.
Collapse
Affiliation(s)
- Hochan Chang
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
| | - Elise B. Gilcher
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - George W. Huber
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
34
|
Kashparova VP, Chernysheva DV, Klushin VA, Andreeva VE, Kravchenko OA, Smirnova NV. Furan monomers and polymers from renewable plant biomass. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Takarada W, Sugimoto K, Nakajima H, Visser HA, Gruter GJM, Kikutani T. Melt-Spun Fibers from Bio-Based Polyester-Fiber Structure Development in High-Speed Melt Spinning of Poly(ethylene 2,5-furandicarboxylate) (PEF). MATERIALS 2021; 14:ma14051172. [PMID: 33801526 PMCID: PMC7958854 DOI: 10.3390/ma14051172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF) is regarded as a bio-based alternative or complementary polyester for the widely used fossil resource-based polyester, poly(ethylene terephthalate) (PET). High-speed melt spinning of PEF of low and high molecular weight (L-PEF, H-PEF) was conducted, and the structure and properties of the resultant as-spun fibers were investigated. The occurrence of orientation-induced crystallization was confirmed for the H-PEF at the take-up velocity of 6.0 km/min, the highest speed for producing PET fibers in the industry. Molecular orientation and crystallinity of the as-spun fibers increased with the increase of take-up velocity, where the H-PEF fibers always showed a higher degree of structural development than the L-PEF fibers. The tensile modulus of the high-speed spun H-PEF fibers was relatively low at 5 GPa, whereas a sufficiently high tensile strength of approximately 500 MPa was measured. These values are adequately high for the application in the general semi-engineering fiber field.
Collapse
Affiliation(s)
- Wataru Takarada
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan;
| | - Kenichi Sugimoto
- Reinforcement Materials Research Department, Bridgestone Corporation, 3-1-1, Ogawahigashi-cho, Kodaira-shi, Tokyo 187-8531, Japan;
| | - Hajime Nakajima
- Avantium Renewable Polymers BV, Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (H.N.); (H.A.V.); (G.-J.M.G.)
| | - Hendrikus A. Visser
- Avantium Renewable Polymers BV, Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (H.N.); (H.A.V.); (G.-J.M.G.)
| | - Gert-Jan M. Gruter
- Avantium Renewable Polymers BV, Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (H.N.); (H.A.V.); (G.-J.M.G.)
| | - Takeshi Kikutani
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan;
- Correspondence:
| |
Collapse
|
36
|
Wang G, Hao X, Jiang M, Wang R, Liang Y, Zhou G. Partially bio-based copolyesters poly(ethylene 2,5-thiophenedicarboxylate-co-ethylene terephthalate): Synthesis and properties. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Yang Y, Tian AP, Fang YJ, Wang JG, Zhu J. Improvement in Toughness of Poly(ethylene 2,5-furandicarboxylate) by Melt Blending with Bio-based Polyamide11 in the Presence of a Reactive Compatibilizer. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2449-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Chang H, Bajaj I, Huber GW, Maravelias CT, Dumesic JA. Catalytic strategy for conversion of fructose to organic dyes, polymers, and liquid fuels. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2020. [PMID: 34703386 DOI: 10.1039/d1gc00311a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We report a process to produce a versatile platform chemical from biomass-derived fructose for organic dye, polymer, and liquid fuel industries. An aldol-condensed chemical (HAH) is synthesized as a platform chemical from fructose by catalytic reactions in acetone/water solvent with non-noble metal catalysts (e.g., HCl, NaOH). Then, selective reactions (e.g., etherification, reduction, dimerization) of the functional groups, such as enone and hydroxyl groups, in the HAH molecule enable applications in organic dyes and polyether precursors. High yields of target products, such as 5-(hydroxymethyl) furfural (HMF) (85.9% from fructose) and HAH (86.3% from HMF) are achieved by sequential dehydration and aldol-condensation with a simple purification process (>99% HAH purity). The use of non-noble metal catalysts, the high yield of each reaction, and the simple purification of the target product allow for beneficial economics of the process. Techno-economic analysis indicates that the process produces HAH at minimum selling price (MSP) of $1958/ton. The MSP of HAH product allows the economic viability of applications in organic dye and polyether markets by replacing its counterparts, such as anthraquinone ($3200-$3900/ton) and bisphenol-A ($1360-$1720/ton).
Collapse
Affiliation(s)
- Hochan Chang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ishan Bajaj
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - George W Huber
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Christos T Maravelias
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI 53726, USA
| | - James A Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI 53726, USA
| |
Collapse
|
39
|
Wang JG, Zhang XQ, Shen A, Zhu J, Song PA, Wang H, Liu XQ. Synthesis and Properties Investigation of Thiophene-aromatic Polyesters: Potential Alternatives for the 2,5-Furandicarboxylic Acid-based Ones. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2438-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Yang ZY, Chen CW, Rwei SP. Influence of asymmetric substituent group 2-methyl-1,3-propanediol on bio-based poly(propylene furandicarboxylate) copolyesters. SOFT MATTER 2020; 16:402-410. [PMID: 31789335 DOI: 10.1039/c9sm02081k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of bio-based poly(propylene-co-2-methyl-1,3-propanediol 2,5-furandicarboxylate) (PPMF) copolyesters, with various compositions from poly(propylene 2,5-furandicarboxylate) (PPF) to poly(2-methyl-1,3-propylene 2,5-furandicarboxylate) (PMePF), were synthesized by conventional melt polymerization. The effects of the substituent group to PPF on the thermal properties, mechanical properties, and gas barrier properties were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, and the oxygen permeation test. The introduction of the methyl group with a hydrogen atom altered the thermal behavior and gas barrier properties of copolyesters, suggesting that the glass temperature (Tg) and the melting temperature (Tm) were decreased as the 2-methyl-1,3-propanediol (MPO) content increased. PPF exhibited the highest Tm and Tg of 175.9 °C and 83.0 °C with a melting enthalpy (ΔHm) of 38.6 J g-1, and poly(2-methyl-1,3-propylene 2,5-furandicarboxylate) formed as an amorphous polyester. Moreover, the effect of a substituent methyl group on the barrier properties was attributed to β relaxation and fraction free volume, which could be raised by replacing the methyl group with a hydrogen atom for PPF, weakening the barrier properties.
Collapse
Affiliation(s)
- Zhi-Yu Yang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei, 10608, Taiwan, Republic of China.
| | | | | |
Collapse
|