1
|
Wurm FR. Polyphosphoester cubosomes: introducing a novel drug delivery system. Expert Opin Drug Deliv 2025; 22:609-613. [PMID: 40130619 DOI: 10.1080/17425247.2025.2484309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Affiliation(s)
- Frederik R Wurm
- Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
2
|
Rheinberger T, Ankone MJK, Grijpma DW, Wurm FR. Rubber-like and Antifouling Poly(trimethylene carbonate-ethylphosphonate) Copolymers with Tunable Hydrolysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23513-23521. [PMID: 40230046 PMCID: PMC12022945 DOI: 10.1021/acsami.4c21079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Controlling the degradation and cell interaction of polymer materials is vital for numerous applications. Transitioning from enzymatic to nonenzymatic hydrolysis offers precise control over degradation processes. In this study, we synthesized high molar mass poly(trimethylene carbonate) (PTMC)-polyphosphonate copolymers to achieve distinctive antifouling and controlled degradation properties. 2-Ethyl-2-oxo-1,3,2-dioxaphospholane (EtPPn) is copolymerized with trimethylene carbonate (TMC) to random P(TMC-co-EtPPn) copolymers through ring-opening copolymerization, utilizing Sn(Oct)2 as the catalyst. Copolymers with molar masses reaching up to Mn = 218 kg/mol and molar mass dispersities of D̵ < 1.9 are obtained. To maintain hydrophobicity, 10 and 20 mol % of hydrophilic phosphonate units are incorporated into PTMC-copolymers. While copolymers with 10 mol % EtPPn display mechanical properties akin to the homopolymer PTMC, a deviation in elongation at break and yield strength results when 20 mol % EtPPN is incorporated. PTMC-PPE copolymers demonstrate antifouling behavior, i.e., cell repulsion for human mesenchymal stem cells (hMSCs) and inhibited enzymatic degradation by lipase in contrast to PTMC-homopolymers. Conversely, P(TMC-co-EtPPn) undergo abiotic hydrolytic degradation with hydrolysis rates increasing with increasing phosphonate contents. In conclusion, copolymerization with EtPPn enables the switch from enzymatic PTMC degradation to adjustable hydrolytic degradation, offering controlled stabilities of such copolymers in the desired applications.
Collapse
Affiliation(s)
- Timo Rheinberger
- Sustainable
Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Marc J. K. Ankone
- Department
of Advanced Organ Bioengineering and Therapeutics (AOT), Faculty of
Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Dirk W. Grijpma
- Department
of Advanced Organ Bioengineering and Therapeutics (AOT), Faculty of
Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Frederik R. Wurm
- Sustainable
Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
3
|
Huang S, Dong Q, Che S, Li R, Tang KHD. Bioplastics and biodegradable plastics: A review of recent advances, feasibility and cleaner production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178911. [PMID: 40022973 DOI: 10.1016/j.scitotenv.2025.178911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
As awareness of plastic pollution increases, there is a growing emphasis on sustainable alternatives. Bioplastics and biodegradable plastics have surfaced as potential substitutes. Yet, their limited properties and high production costs hinder their practicality. This paper systematically reviews more than 280 articles to comprehensively outline the advantages and drawbacks of emerging bioplastics and biodegradable plastics, alongside advancements in cleaner production methods. Bioplastics, sourced from renewable materials, decrease dependency on fossil fuels and help lower carbon footprints during production and disposal. Some bioplastics, such as polylactic acid (PLA) and polyhydroxyalkanoates, are compostable, but their manufacturing costs usually surpass that of conventional plastics. Additionally, certain bioplastics exhibit lower mechanical strength, heat resistance, or durability. PLA and bio-polybutylene succinate (bio-PBS) are viable for single-use items and biodegradable products, with scalable production using established technologies, although bio-PBS is somewhat pricier than PLA. Biodegradable plastics lessen environmental impact by naturally degrading and can be composted in industrial settings, providing an eco-friendly disposal option. However, they require specific industrial composting conditions for complete degradation, which can lead to microplastic formation in the environment. PBS, polybutylene adipate terephthalate, and polybutylene succinate-co-adipate seem to be the most promising options, with PBS being a strong contender for replacing traditional plastics due to its biodegradable and compostable nature. It has the potential to be partially or entirely bio-based (bio-PBS). Innovative technologies, especially next-generation industrial biotechnology and microbial cell factories, offer cleaner methods for synthesizing these plastics. This review aids in identifying feasible and sustainable alternatives to conventional plastics.
Collapse
Affiliation(s)
- Shirui Huang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; The Department of Environmental Science, The University of Arizona (UA), Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Qianhe Dong
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; The Department of Environmental Science, The University of Arizona (UA), Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Sichen Che
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; The Department of Environmental Science, The University of Arizona (UA), Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Kuok Ho Daniel Tang
- The Department of Environmental Science, The University of Arizona (UA), Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Tolba SA, Arshad A, Ash T, Xia W. Unraveling Polymer-Water Interaction: Ab Initio Insights into Neutral Polymer Hydration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6065-6073. [PMID: 40025721 DOI: 10.1021/acs.langmuir.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The prevention of ice formation and accumulation on solid surfaces presents a significant challenge across various engineering and technological domains. Recent advancements in aqueous self-lubricating coatings have garnered considerable attention due to their promising anti-icing performance. These coatings effectively reduce ice formation, offering potential solutions for various applications. Our study focuses on the hydration of neutral polymers, providing significant insights into water-polymer interactions at the molecular level. We employ density functional theory (DFT) to investigate the hydration behavior of four representative neutral polymers: poly(ethylene glycol) (PEG), linear polyglycerol (linPG), polyvinylpyrrolidone (PVP), and polyethylene (PE), each selected for their distinct properties and hydrophilicity/hydrophobicity. A comprehensive bond analysis using crystal orbital hamilton populations (COHP) reveals strong hydrogen bonding between the water molecules and the oxygen atoms of the hydroxyl group in hydrophilic polymers. Polymers with diverse functional groups exhibit pronounced interactions with water molecules, particularly hydrophilic moieties, which show strong affinity toward water molecules. In contrast, polymers lacking hydrophilic functionalities exhibit significantly reduced interactions with water molecules. This bonding characterization is further supported by electron partial density of states (PDOS), Bader charge analysis, and energy calculations, which collectively elucidate the physicochemical nature of the water-polymer interactions. A detailed understanding of molecular-level interactions opens new avenues for tailoring polymer design and hydration behaviors to achieve enhanced anti-icing performance.
Collapse
Affiliation(s)
- Sara A Tolba
- Materials and Nanotechnology, North Dakota State University, Fargo, North Dakota 58108, United States
- Center for Computationally Assisted Science and Technology, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Amara Arshad
- Materials and Nanotechnology, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Tamalika Ash
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Boucq P, Ucakar B, Debuisson F, Riva R, des Rieux A, Jérôme C, Debuigne A. High Internal Phase Emulsion-Templated Hydrophilic Polyphosphoester Scaffolds: Tailoring the Porosity and Degradation for Soft Tissue Engineering. Biomacromolecules 2025; 26:1935-1947. [PMID: 39957081 DOI: 10.1021/acs.biomac.4c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Synthetic porous scaffolds are key elements in tissue engineering (TE), requiring controlled porosity for cell colonization, along with a degradation rate aligned with tissue growth. While biodegradable polyester scaffolds are widely used in TE, they are primarily hydrophobic and suited for semirigid to hard tissue applications. This work broadens the scope of TE by introducing porous scaffolds made of polyphosphoesters (PPEs), degradable polymers with adaptable physicochemical properties. PPE hydrogels were shaped into 3D scaffolds using an emulsion templating method, yielding hydrophilic matrices with controlled porosity and tunable Young's moduli for soft tissues. Degradation assays at physiological pH confirmed the scaffolds' biodegradability. Cytotoxicity tests with PPE scaffolds showed excellent cell viability, while RGD functionalization further enhanced cell adhesion. Scaffold colonization, low inflammation, and angiogenesis were demonstrated in vivo through subcutaneous implantation of the scaffolds in mice and histological analysis. These results highlight PPE-based scaffolds as promising candidates for regenerative medicine.
Collapse
Affiliation(s)
- Pascal Boucq
- Center for Education and Research on Macromolecules (CERM), PolyHealth Unit, CESAM Research Unit, University of Liège (ULiege), Quartier Agora, Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, 1200 Bruxelles, Belgium
| | - Floriane Debuisson
- Advanced Drug Delivery and Biomaterials UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, 1200 Bruxelles, Belgium
| | - Raphael Riva
- Center for Education and Research on Macromolecules (CERM), PolyHealth Unit, CESAM Research Unit, University of Liège (ULiege), Quartier Agora, Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, 1200 Bruxelles, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), PolyHealth Unit, CESAM Research Unit, University of Liège (ULiege), Quartier Agora, Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), PolyHealth Unit, CESAM Research Unit, University of Liège (ULiege), Quartier Agora, Allée du Six Août, Sart-Tilman, B-4000 Liège, Belgium
| |
Collapse
|
6
|
Liu X, Schreiber AC, Astudillo Potes MD, Dashtdar B, Hamouda AM, Rezaei A, Elder BD, Lu L. Bone Enzyme-Responsive Biodegradable Poly(propylene fumarate) and Polycaprolactone Polyphosphoester Dendrimer Cross-Linked via Click Chemistry for Bone Tissue Engineering. Biomacromolecules 2025; 26:835-847. [PMID: 39818811 DOI: 10.1021/acs.biomac.4c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Traditional polymer systems often rely on toxic initiators or catalysts for cross-linking, posing significant safety risks. For bone tissue engineering, another issue is that the scaffolds often take a longer time to degrade, inconsistent with bone formation pace. Here, we developed an enzyme-responsive biodegradable poly(propylene fumarate) (PPF) and polycaprolactone (PCL) polyphosphoester (PPE) dendrimer cross-linked utilizing click chemistry (EnzDeg-click-PFCLPE scaffold) for enhanced biocompatibility and degradation. The strain-promoted alkyne-azide cycloaddition (SPAAC) offers high efficiency and biocompatibility without harmful agents. The polyphosphoesters render polymer cleavage responsive to alkaline phosphatase (ALP) enzyme in bone formation, ensuring facilitated scaffold biodegradation. The in vitro testing confirmed biocompatibility, enzyme-responsive degradation, and capability to support stem cell differentiation. Further in vivo implantation in rat demonstrated bone regeneration and scaffold integration. In summary, this polymer system combining click chemistry with ALP-responsive biodegradation ensures initial bone support and facilitates scaffold degradation synchronized with the natural bone healing process.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Areonna C Schreiber
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Abdelrahman M Hamouda
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
7
|
Li J, Hao Y, Wang H, Zhang M, He J, Ni P. Advanced Biomaterials Derived from Functional Polyphosphoesters: Synthesis, Properties, and Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51876-51898. [PMID: 39311719 DOI: 10.1021/acsami.4c11899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Polyphosphoesters (PPEs) represent an innovative class of biodegradable polymers, with the phosphate ester serving as the core repeating unit of their polymeric backbone. Recently, biomaterials derived from functionalized PPEs have garnered significant interest in biomedical applications because of their commendable biocompatibility, biodegradability, and the capacity for functional modification. This review commences with a brief overview of synthesis methodologies and the distinctive properties of PPEs, including thermoresponsiveness, degradability, stealth effect, and biocompatibility. Subsequently, the review delves into the latest applications of PPEs-based nanocarriers for drug or gene delivery and PPEs-based polymeric prodrugs and scaffolds in the biomedical field, presenting several illustrative examples for each application. By encapsulating the advancements of recent years, this review aims to offer an enhanced understanding and serve as a reference for the synthesis and biomedical applications of functional PPEs.
Collapse
Affiliation(s)
- Jintao Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Hairong Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
8
|
Leng Y, Britten CN, Tarannum F, Foley K, Billings C, Liu Y, Walters KB. Stimuli-Responsive Phosphate Hydrogel: A Study on Swelling Behavior, Mechanical Properties, and Application in Expansion Microscopy. ACS OMEGA 2024; 9:37687-37701. [PMID: 39281925 PMCID: PMC11391540 DOI: 10.1021/acsomega.4c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
Phosphorus-based stimuli-responsive hydrogels have potential in a wide range of applications due to their ionizable phosphorus groups, biocompatibility, and tunable swelling capacity utilizing hydrogel design parameters and external stimuli. In this study, poly(2-methacryloyloxyethyl phosphate) (PMOEP) hydrogels were synthesized via aqueous activators regenerated by electron transfer atomic transfer radical polymerization using ascorbic acid as the reducing agent. Swelling and deswelling behaviors of PMOEP hydrogels were examined in different salt solutions, pH conditions, and temperatures. The degree of swelling in salt solutions followed CaCl2 < MgCl2 < KCl < NaCl with a decrease in swelling rate at higher concentrations until reaching a saturation point. In water, the degree of swelling increased significantly around neutral pH and remained constant at basic pH values. The effects of polymerization conditions, including pH, temperature (30, 40, 50 °C), and MOEP concentration (40, 50, 60% v/v MOEP/H2O), on the hydrogel swelling behavior in various salt solutions were also investigated. PMOEP hydrogels showed a decrease in the degree of swelling as the pH was increased above the native pH of the monomer solution. Scanning electron microscopy and energy-dispersive spectroscopy were utilized to examine the microstructure and chemical composition of the dried hydrogel after salt solution swelling. Cytotoxicity testing using rat bone marrow stem cells confirmed the biocompatibility of the PMOEP hydrogels. A unique feature of this effort was evaluation of these phosphate hydrogels for use in expansion microscopy where a significant twofold enhancement in cellular expansion capacity was showcased utilizing 4T1 mouse breast cancer cells. This comprehensive study provides valuable insights into the stimuli-responsive behavior and expansion characteristics of phosphate hydrogels, highlighting their potential in diverse biomedical applications.
Collapse
Affiliation(s)
- Yokly Leng
- School of Chemical, Materials, and Biological Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Collin N Britten
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Fatema Tarannum
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Kayla Foley
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Christopher Billings
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yingtao Liu
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Keisha B Walters
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
9
|
Slomkowski S, Basinska T, Gadzinowski M, Mickiewicz D. Polyesters and Polyester Nano- and Microcarriers for Drug Delivery. Polymers (Basel) 2024; 16:2503. [PMID: 39274136 PMCID: PMC11397835 DOI: 10.3390/polym16172503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Many therapies require the transport of therapeutic compounds or substances encapsulated in carriers that reduce or, if possible, eliminate their direct contact with healthy tissue and components of the immune system, which may react to them as something foreign and dangerous to the patient's body. To date, inorganic nanoparticles, solid lipids, micelles and micellar aggregates, liposomes, polymeric micelles, and other polymer assemblies were tested as drug carriers. Specifically, using polymers creates a variety of options to prepare nanocarriers tailored to the chosen needs. Among polymers, aliphatic polyesters are a particularly important group. The review discusses controlled synthesis of poly(β-butyrolactone)s, polylactides, polyglycolide, poly(ε-caprolactone), and copolymers containing polymacrolactone units with double bonds suitable for preparation of functionalized nanoparticles. Discussed are syntheses of aliphatic polymers with controlled molar masses ranging from a few thousand to 106 and, in the case of polyesters with chiral centers in the chains, with controlled microstructure. The review presents also a collection of methods useful for the preparation of the drug-loaded nanocarriers: classical, developed and mastered more recently (e.g., nanoprecipitation), and forgotten but still with great potential (by the direct synthesis of the drug-loaded nanoparticles in the process comprising monomer and drug). The article describes also in-vitro and model in-vivo studies for the brain-targeted drugs based on polyester-containing nanocarriers and presents a brief update on the clinical studies and the polyester nanocarrier formulation approved for application in the clinics in South Korea for the treatment of breast, lung, and ovarian cancers.
Collapse
Affiliation(s)
- Stanislaw Slomkowski
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| | - Teresa Basinska
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mariusz Gadzinowski
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| | - Damian Mickiewicz
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
10
|
Tran DT, Yadav AS, Nguyen NK, Singha P, Ooi CH, Nguyen NT. Biodegradable Polymers for Micro Elastofluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303435. [PMID: 37292037 DOI: 10.1002/smll.202303435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 06/10/2023]
Abstract
Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.
Collapse
Affiliation(s)
- Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
11
|
Cruz-Maya I, Cirillo V, Serrano-Bello J, Serri C, Alvarez-Perez MA, Guarino V. Optimization of Diclofenac-Loaded Bicomponent Nanofibers: Effect of Gelatin on In Vitro and In Vivo Response. Pharmaceutics 2024; 16:925. [PMID: 39065622 PMCID: PMC11279899 DOI: 10.3390/pharmaceutics16070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The use of electrospun fibers as anti-inflammatory drug carriers is currently one of the most interesting approaches for the design of drug delivery systems. In recent years, biodegradable polymers blended with naturally derived ones have been extensively studied to fabricate bioinspired platforms capable of driving biological responses by releasing selected molecular/pharmaceutical signals. Here, sodium diclofenac (DicNa)-loaded electrospun fibers, consisting of polycaprolactone (PCL) or gelatin-functionalized PCL, were studied to evaluate fibroblasts' in vitro and in vivo response. In vitro studies demonstrated that cell adhesion of L929 cells (≈70%) was not affected by the presence of DicNa after 4 h. Moreover, the initial burst release of the drug from PD and PGD fibers, e.g., 80 and 48%, respectively, after 5 h-combined with its sustained release-did not produce any cytotoxic effect and did not negatively influence the biological activity of the cells. In particular, it was demonstrated that the addition of gelatin concurred to slow down the release mechanism, thus limiting the antiproliferative effect of DicNa, as confirmed by the significant increase in cell viability and collagen deposition after 7 days, with respect to PCL alone. In vivo studies in a rat subcutaneous model also confirmed the ability of DicNa-loaded fibers to moderate the inflammatory/foreign body response independently through the presence of gelatin that played a significant role in supporting the formation of small-caliber vessels after 10 days of implantation. All of these results suggest using bicomponent fibers loaded with DicNa as a valid therapeutic tool capable of supporting the wound healing process and limiting in vivo inflammation and rejection phenomena.
Collapse
Affiliation(s)
- Iriczalli Cruz-Maya
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F.Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.C.)
- Tissue Bioengineering Laboratory, Department of Posgraduate Studies and Research (DEPeI), School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Valentina Cirillo
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F.Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.C.)
| | - Janeth Serrano-Bello
- Tissue Bioengineering Laboratory, Department of Posgraduate Studies and Research (DEPeI), School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy;
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Department of Posgraduate Studies and Research (DEPeI), School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F.Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.C.)
| |
Collapse
|
12
|
Kesharwani P, Alexander A, Shukla R, Jain S, Bisht A, Kumari K, Verma K, Sharma S. Tissue regeneration properties of hydrogels derived from biological macromolecules: A review. Int J Biol Macromol 2024; 271:132280. [PMID: 38744364 DOI: 10.1016/j.ijbiomac.2024.132280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The successful tissue engineering depends on the development of biologically active scaffolds that possess optimal characteristics to effectively support cellular functions, maintain structural integrity and aid in tissue regeneration. Hydrogels have emerged as promising candidates in tissue regeneration due to their resemblance to the natural extracellular matrix and their ability to support cell survival and proliferation. The integration of hydrogel scaffold into the polymer has a variable impact on the pseudo extracellular environment, fostering cell growth/repair. The modification in size, shape, surface morphology and porosity of hydrogel scaffolds has consequently paved the way for addressing diverse challenges in the tissue engineering process such as tissue architecture, vascularization and simultaneous seeding of multiple cells. The present review provides a comprehensive update on hydrogel production using natural and synthetic biomaterials and their underlying mechanisms. Furthermore, it delves into the application of hydrogel scaffolds in tissue engineering for cardiac tissues, cartilage tissue, adipose tissue, nerve tissue and bone tissue. Besides, the present article also highlights various clinical studies, patents, and the limitations associated with hydrogel-based scaffolds in recent times.
Collapse
Affiliation(s)
- Payal Kesharwani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India; Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education Greater Noida, India
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| |
Collapse
|
13
|
Zhang Z, Sun H, Giannino J, Wu Y, Cheng C. Biodegradable Zwitterionic Polymers as PEG Alternatives for Drug Delivery. JOURNAL OF POLYMER SCIENCE 2024; 62:2231-2250. [PMID: 39247254 PMCID: PMC11376432 DOI: 10.1002/pol.20230916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 09/10/2024]
Abstract
Poly(ethylene glycol) (PEG) is a highly biocompatible and water-soluble polymer that is widely utilized for biomedical applications. Unfortunately, the immunogenicity and antigenicity of PEG severely restrict the biomedical efficacy of pegylated therapeutics. As emerging PEG alternatives, biodegradable zwitterionic polymers (ZPs) have attracted significant interest in recent years. Biodegradable ZPs generally are not only water-soluble and immunologically inert, but also possess a range of favorable biomedically relevant properties, without causing long-term side effects for in vivo biomedical applications. This review presents a systematic overview of recent studies on biodegradable ZPs. Their structural designs and synthetic strategies by integrating biodegradable base polymers with zwitterions are addressed. Their applications in the delivery of small molecule drugs (as mono-drugs or multi-drugs) and proteins are highlighted.
Collapse
Affiliation(s)
- Ziwen Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260
| | - Haotian Sun
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260
| | - Justin Giannino
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260
- Cell, Gene and Tissue Engineering Center, University at Buffalo, the State University of New York, Buffalo, NY 14260
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260
| |
Collapse
|
14
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
15
|
Kracíková L, Androvič L, Červený D, Jirát-Ziółkowska N, Babič M, Švábová M, Jirák D, Laga R. Iron-based compounds coordinated with phospho-polymers as biocompatible probes for dual 31P/ 1H magnetic resonance imaging and spectroscopy. Sci Rep 2024; 14:3847. [PMID: 38360883 PMCID: PMC10869799 DOI: 10.1038/s41598-024-54158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
In this work, we present the synthesis and evaluation of magnetic resonance (MR) properties of novel phosphorus/iron-containing probes for dual 31P and 1H MR imaging and spectroscopy (MRI and MRS). The presented probes are composed of biocompatible semitelechelic and multivalent phospho-polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) coordinated with small paramagnetic Fe3+ ions or superparamagnetic maghemite (γ-Fe2O3) nanoparticles via deferoxamine group linked to the end or along the polymer chains. All probes provided very short 1H T1 and T2 relaxation times even at low iron concentrations. The presence of iron had a significant impact on the shortening of 31P relaxation, with the effect being more pronounced for probes based on γ-Fe2O3 and multivalent polymer. While the water-soluble probe having one Fe3+ ion per polymer chain was satisfactorily visualized by both 31P-MRS and 31P-MRI, the probe with multiple Fe3+ ions could only be detected by 31P-MRS, and the probes consisting of γ-Fe2O3 nanoparticles could not be imaged by either technique due to their ultra-short 31P relaxations. In this proof-of-principle study performed on phantoms at a clinically relevant magnetic fields, we demonstrated how the different forms and concentrations of iron affect both the 1H MR signal of the surrounding water molecules and the 31P MR signal of the phospho-polymer probe. Thus, this double contrast can be exploited to simultaneously visualize body anatomy and monitor probe biodistribution.
Collapse
Affiliation(s)
- Lucie Kracíková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00, Prague 6, Czech Republic
- Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Ladislav Androvič
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00, Prague 6, Czech Republic
| | - David Červený
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Prague 4, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, 121 08, Prague, Czech Republic
| | - Natalia Jirát-Ziółkowska
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Prague 4, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Kateřinská 1660/32, 121 08, Prague, Czech Republic
| | - Michal Babič
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00, Prague 6, Czech Republic
| | - Monika Švábová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00, Prague 6, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21, Prague 4, Czech Republic.
- Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 46117, Liberec, Czech Republic.
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00, Prague 6, Czech Republic.
| |
Collapse
|
16
|
Chan WJ, Li H. Recent advances in nano/micro systems for improved circulation stability, enhanced tumor targeting, penetration, and intracellular drug delivery: a review. Biomed Phys Eng Express 2024; 10:022001. [PMID: 38086099 DOI: 10.1088/2057-1976/ad14f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
In recent years, nanoparticles (NPs) have been extensively developed as drug carriers to overcome the limitations of cancer therapeutics. However, there are several biological barriers to nanomedicines, which include the lack of stability in circulation, limited target specificity, low penetration into tumors and insufficient cellular uptake, restricting the active targeting toward tumors of nanomedicines. To address these challenges, a variety of promising strategies were developed recently, as they can be designed to improve NP accumulation and penetration in tumor tissues, circulation stability, tumor targeting, and intracellular uptake. In this Review, we summarized nanomaterials developed in recent three years that could be utilized to improve drug delivery for cancer treatments.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
17
|
Fukaura S, Iwasaki Y. Effect of phosphodiester composition in polyphosphoesters on the inhibition of osteoclastic differentiation of murine bone marrow mononuclear cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2319-2331. [PMID: 37530459 DOI: 10.1080/09205063.2023.2244737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Osteoporosis is a common bone disorder characterized by reduced bone density and increased risk of fractures. The modulation of bone cell functions, particularly the inhibition of osteoclastic differentiation, plays a crucial role in osteoporosis treatment. Polyphosphoesters (PPEs) have shown the potential in reducing the function of osteoclast cells, but the effect of their chemical structure on osteoclastic differentiation remains largely unexplored. In this study, we evaluated the effect of PPE's chemical structure on the inhibition of osteoclastic differentiation of murine bone marrow mononuclear cells (BMNCs). PPEs containing phosphotriester and phosphodiester units at varying compositions were synthesized. Cytotoxicity testing confirmed the biocompatibility of the copolymers at concentrations below 0.5 mg/mL. Isolated from long bones, BMNCs were cultured in a differentiation medium supplemented with different PPE concentrations. Osteoclast formation was assessed through tartrate-resistant acid phosphatase and phalloidin staining. A significant decrease in the size of osteoclast cells formed upon BMNC contact with PPEs was observed, with a more pronounced effect observed at higher PPE concentrations. In addition, an increased composition of phosphodiester units in the PPEs yielded a decreased density of differentiated osteoclasts. Furthermore, real-time PCR analysis of major osteoclastic markers provided gene expression data that correlated with microscopic observations, confirming the effect of phosphodiester units in suppressing osteoclast differentiation of BMNCs from the early stages. These findings highlight the potential of PPEs as polymers are capable of modulating bone cell functions through their chemical structures.
Collapse
Affiliation(s)
- Sota Fukaura
- Graduate School of Science and Technology, Kansai University, Osaka, Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Kansai University, Osaka, Japan
- ORDIST, Kansai University, Osaka, Japan
| |
Collapse
|
18
|
Haudum S, Strasser P, Teasdale I. Phosphorus and Silicon-Based Macromolecules as Degradable Biomedical Polymers. Macromol Biosci 2023; 23:e2300127. [PMID: 37326117 DOI: 10.1002/mabi.202300127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Synthetic polymers are indispensable in biomedical applications because they can be fabricated with consistent and reproducible properties, facile scalability, and customizable functionality to perform diverse tasks. However, currently available synthetic polymers have limitations, most notably when timely biodegradation is required. Despite there being, in principle, an entire periodic table to choose from, with the obvious exception of silicones, nearly all known synthetic polymers are combinations of carbon, nitrogen, and oxygen in the main chain. Expanding this to main-group heteroatoms can open the way to novel material properties. Herein the authors report on research to incorporate the chemically versatile and abundant silicon and phosphorus into polymers to induce cleavability into the polymer main chain. Less stable polymers, which degrade in a timely manner in mild biological environments, have considerable potential in biomedical applications. Herein the basic chemistry behind these materials is described and some recent studies into their medical applications are highlighted.
Collapse
Affiliation(s)
- Stephan Haudum
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Paul Strasser
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Ian Teasdale
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| |
Collapse
|
19
|
Liu X, Liu Y, Yang X, Lu X, Xu XN, Zhang J, Chen R. Potentiating the Immune Responses of HBsAg-VLP Vaccine Using a Polyphosphoester-Based Cationic Polymer Adjuvant. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48871-48881. [PMID: 37816068 PMCID: PMC10614196 DOI: 10.1021/acsami.3c07491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023]
Abstract
Virus-like particle (VLP)-based vaccines are required to be associated with a suitable adjuvant to potentiate their immune responses. Herein, we report a novel, biodegradable, and biocompatible polyphosphoester-based amphiphilic cationic polymer, poly(ethylene glycol)-b-poly(aminoethyl ethylene phosphate) (PEG-PAEEP), as a Hepatitis B surface antigen (HBsAg)-VLP vaccine adjuvant. The polymer adjuvant effectively bound with HBsAg-VLP through electrostatic interactions to form a stable vaccine nanoformulation with a net positive surface charge. The nanoformulations exhibited enhanced cellular uptake by macrophages. HBsAg-VLP/PEG-PAEEP induced a significantly higher HBsAg-specific IgG titer in mice than HBsAg-VLP alone after second immunization, indicative of the antigen-dose sparing advantage of PEG-PAEEP. Furthermore, the nanoformulations exhibited a favorable biocompatibility and in vivo tolerability. This work presents the PEG-PAEEP copolymer as a promising vaccine adjuvant and as a potentially effective alternative to aluminum adjuvants.
Collapse
Affiliation(s)
- Xuhan Liu
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Department
of Emergency Medicine, Shenzhen University
General Hospital, Shenzhen University, Shenzhen 518051, China
| | - Yifan Liu
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Xiaoyu Yang
- AIM
Honesty Biopharmaceutical Co., Ltd, Dalian 116620, China
| | - Xinyu Lu
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Xiao-Ning Xu
- Department
of Infectious Diseases, Imperial College
London, London W12 0NN, U.K.
| | - Jiancheng Zhang
- AIM
Honesty Biopharmaceutical Co., Ltd, Dalian 116620, China
| | - Rongjun Chen
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
20
|
Resendiz-Lara DA, Azhdari S, Gojzewski H, Gröschel AH, Wurm FR. Water-soluble polyphosphonate-based bottlebrush copolymers via aqueous ring-opening metathesis polymerization. Chem Sci 2023; 14:11273-11282. [PMID: 37860667 PMCID: PMC10583743 DOI: 10.1039/d3sc02649c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Ring-opening metathesis polymerization (ROMP) is a versatile method for synthesizing complex macromolecules from various functional monomers. In this work, we report the synthesis of water-soluble and degradable bottlebrush polymers, based on polyphosphoesters (PPEs) via ROMP. First, PPE-macromonomers were synthesized via organocatalytic anionic ring-opening polymerization of 2-ethyl-2-oxo-1,3,2-dioxaphospholane using N-(hydroxyethyl)-cis-5-norbornene-exo-2,3-dicarboximide as the initiator and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the catalyst. The resulting norbornene-based macromonomers had degrees of polymerization (DPn) ranging from 25 to 243 and narrow molar mass dispersity (Đ ≤ 1.10). Subsequently, these macromonomers were used in ROMP with the Grubbs 3rd-generation bispyridyl complex (Ru-G3) to produce a library of well-defined bottlebrush polymers. The ROMP was carried out either in dioxane or in aqueous conditions, resulting in well-defined and water-soluble bottlebrush PPEs. Furthermore, a two-step protocol was employed to synthesize double hydrophilic diblock bottlebrush copolymers via ROMP in water at neutral pH-values. This general protocol enabled the direct combination of PPEs with ROMP to synthesize well-defined bottlebrush polymers and block copolymers in water. Degradation of the PPE side chains was proven resulting in low molar mass degradation products only. The biocompatible and biodegradable nature of PPEs makes this pathway promising for designing novel biomedical drug carriers or viscosity modifiers, as well as many other potential applications.
Collapse
Affiliation(s)
- Diego A Resendiz-Lara
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Suna Azhdari
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
- Physical Chemistry, University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Hubert Gojzewski
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Andre H Gröschel
- Physical Chemistry, University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
21
|
Rheinberger T, Flögel U, Koshkina O, Wurm FR. Real-time 31P NMR reveals different gradient strengths in polyphosphoester copolymers as potential MRI-traceable nanomaterials. Commun Chem 2023; 6:182. [PMID: 37658116 PMCID: PMC10474120 DOI: 10.1038/s42004-023-00954-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/05/2023] [Indexed: 09/03/2023] Open
Abstract
Polyphosphoesters (PPEs) are used in tissue engineering and drug delivery, as polyelectrolytes, and flame-retardants. Mostly polyphosphates have been investigated but copolymers involving different PPE subclasses have been rarely explored and the reactivity ratios of different cyclic phospholanes have not been reported. We synthesized binary and ternary PPE copolymers using cyclic comonomers, including side-chain phosphonates, phosphates, thiophosphate, and in-chain phosphonates, through organocatalyzed ring-opening copolymerization. Reactivity ratios were determined for all cases, including ternary PPE copolymers, using different nonterminal models. By combining different comonomers and organocatalysts, we created gradient copolymers with adjustable amphiphilicity and microstructure. Reactivity ratios ranging from 0.02 to 44 were observed for different comonomer sets. Statistical ring-opening copolymerization enabled the synthesis of amphiphilic gradient copolymers in a one-pot procedure, exhibiting tunable interfacial and magnetic resonance imaging (MRI) properties. These copolymers self-assembled in aqueous solutions, 31 P MRI imaging confirmed their potential as MRI-traceable nanostructures. This systematic study expands the possibilities of PPE-copolymers for drug delivery and theranostics.
Collapse
Affiliation(s)
- Timo Rheinberger
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Ulrich Flögel
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich-Heine-University, Düsseldorf, Germany
| | - Olga Koshkina
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands.
| |
Collapse
|
22
|
Koshkina O, Rheinberger T, Flocke V, Windfelder A, Bouvain P, Hamelmann NM, Paulusse JMJ, Gojzewski H, Flögel U, Wurm FR. Biodegradable polyphosphoester micelles act as both background-free 31P magnetic resonance imaging agents and drug nanocarriers. Nat Commun 2023; 14:4351. [PMID: 37468502 DOI: 10.1038/s41467-023-40089-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
In vivo monitoring of polymers is crucial for drug delivery and tissue regeneration. Magnetic resonance imaging (MRI) is a whole-body imaging technique, and heteronuclear MRI allows quantitative imaging. However, MRI agents can result in environmental pollution and organ accumulation. To address this, we introduce biocompatible and biodegradable polyphosphoesters, as MRI-traceable polymers using the 31P centers in the polymer backbone. We overcome challenges in 31P MRI, including background interference and low sensitivity, by modifying the molecular environment of 31P, assembling polymers into colloids, and tailoring the polymers' microstructure to adjust MRI-relaxation times. Specifically, gradient-type polyphosphonate-copolymers demonstrate improved MRI-relaxation times compared to homo- and block copolymers, making them suitable for imaging. We validate background-free imaging and biodegradation in vivo using Manduca sexta. Furthermore, encapsulating the potent drug PROTAC allows using these amphiphilic copolymers to simultaneously deliver drugs, enabling theranostics. This first report paves the way for polyphosphoesters as background-free MRI-traceable polymers for theranostic applications.
Collapse
Affiliation(s)
- Olga Koshkina
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Timo Rheinberger
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Vera Flocke
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich Heine University, Düsseldorf, Germany
| | - Anton Windfelder
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Laboratory of Experimental Radiology, Justus Liebig University, Giessen, Germany
| | - Pascal Bouvain
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich Heine University, Düsseldorf, Germany
| | - Naomi M Hamelmann
- Biomolecular Nanotechnology Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Jos M J Paulusse
- Biomolecular Nanotechnology Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Hubert Gojzewski
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ulrich Flögel
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich Heine University, Düsseldorf, Germany.
| | - Frederik R Wurm
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
23
|
Strasser P, Montsch B, Weiss S, Sami H, Kugler C, Hager S, Schueffl H, Mader R, Brüggemann O, Kowol CR, Ogris M, Heffeter P, Teasdale I. Degradable Bottlebrush Polypeptides and the Impact of their Architecture on Cell Uptake, Pharmacokinetics, and Biodistribution In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300767. [PMID: 36843221 PMCID: PMC11475343 DOI: 10.1002/smll.202300767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 06/02/2023]
Abstract
Bottlebrush polymers are highly promising as unimolecular nanomedicines due to their unique control over the critical parameters of size, shape and chemical function. However, since they are prepared from biopersistent carbon backbones, most known bottlebrush polymers are non-degradable and thus unsuitable for systemic therapeutic administration. Herein, we report the design and synthesis of novel poly(organo)phosphazene-g-poly(α-glutamate) (PPz-g-PGA) bottlebrush polymers with exceptional control over their structure and molecular dimensions (Dh ≈ 15-50 nm). These single macromolecules show outstanding aqueous solubility, ultra-high multivalency and biodegradability, making them ideal as nanomedicines. While well-established in polymer therapeutics, it has hitherto not been possible to prepare defined single macromolecules of PGA in these nanosized dimensions. A direct correlation was observed between the macromolecular dimensions of the bottlebrush polymers and their intracellular uptake in CT26 colon cancer cells. Furthermore, the bottlebrush macromolecular structure visibly enhanced the pharmacokinetics by reducing renal clearance and extending plasma half-lives. Real-time analysis of the biodistribution dynamics showed architecture-driven organ distribution and enhanced tumor accumulation. This work, therefore, introduces a robust, controlled synthesis route to bottlebrush polypeptides, overcoming limitations of current polymer-based nanomedicines and, in doing so, offers valuable insights into the influence of architecture on the in vivo performance of nanomedicines.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| | - Bianca Montsch
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Silvia Weiss
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Haider Sami
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Christoph Kugler
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Sonja Hager
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Robert Mader
- Department of Medicine IMedical University of ViennaVienna1090Austria
| | - Oliver Brüggemann
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Manfred Ogris
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| |
Collapse
|
24
|
Kiyono K, Mabuchi S, Otaka A, Iwasaki Y. Bone-targeting polyphosphodiesters that promote osteoblastic differentiation. J Biomed Mater Res A 2023; 111:714-724. [PMID: 36622032 DOI: 10.1002/jbm.a.37499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Polymers for pharmaceutical use have been attractive in medical treatments because of the conjugation of multifunctional components and their long circulation time in the blood stream. Bone-targeted drug delivery systems are also no exceptional, and several polymers have been proposed for the treatment of bone diseases, such as cancer metastasis and osteoporosis. Herein, we report that polyphosphodiesters (PPDEs) have a potential to enhance osteoblastic differentiation, and they have a targeting ability to bone tissues in vivo. Two types of PPDEs, poly (ethylene sodium phosphate) (PEP•Na) and poly (propylene sodium phosphate) (PPP•Na), have been synthesized. Regardless of the alkylene structure in the main chain of PPDEs, the gene expression of osteoblast-specific transcription factors and differentiation markers of mouse osteoblastic-like cells (MC3T3-E1 cells) cultured in a differentiation medium was significantly upregulated by the addition of PPDEs. Moreover, it was also clarified that the signaling pathway related to cytoplasmic calcium ions was activated by PPDEs. The mineralization of MC3T3-E1 cells has a similar trend with its gene expression and is synergistically enhanced by PPDEs with β-glycerophosphate. The biodistribution of fluorescence-labeled PPDEs was also determined after intravenous injection in mice. PPDEs accumulated well in the bone through the blood stream, whereas polyphosphotriesters (PPTEs) tended to be excreted from the kidneys. Hydrophilic PEP•Na showed a superior bone affinity as compared with PPP•Na. PPDEs could be candidate polymers for the restoration of bone remodeling and bone-targeting drug delivery platforms.
Collapse
Affiliation(s)
- Kenjiro Kiyono
- Department of Chemistry and Materials Engineering, Kansai University, Suita-shi, Osaka, Japan
| | - Shun Mabuchi
- Department of Chemistry and Materials Engineering, Kansai University, Suita-shi, Osaka, Japan
| | - Akihisa Otaka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
- ORDIST, Kansai University, Suita-shi, Osaka, Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Kansai University, Suita-shi, Osaka, Japan
- ORDIST, Kansai University, Suita-shi, Osaka, Japan
| |
Collapse
|
25
|
Phosphorus-Containing Polymers as Sensitive Biocompatible Probes for 31P Magnetic Resonance. Molecules 2023; 28:molecules28052334. [PMID: 36903579 PMCID: PMC10005191 DOI: 10.3390/molecules28052334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The visualization of organs and tissues using 31P magnetic resonance (MR) imaging represents an immense challenge. This is largely due to the lack of sensitive biocompatible probes required to deliver a high-intensity MR signal that can be distinguished from the natural biological background. Synthetic water-soluble phosphorus-containing polymers appear to be suitable materials for this purpose due to their adjustable chain architecture, low toxicity, and favorable pharmacokinetics. In this work, we carried out a controlled synthesis, and compared the MR properties, of several probes consisting of highly hydrophilic phosphopolymers differing in composition, structure, and molecular weight. Based on our phantom experiments, all probes with a molecular weight of ~3-400 kg·mol-1, including linear polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(ethyl ethylenephosphate) (PEEP), and poly[bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)]phosphazene (PMEEEP) as well as star-shaped copolymers composed of PMPC arms grafted onto poly(amidoamine) dendrimer (PAMAM-g-PMPC) or cyclotriphosphazene-derived cores (CTP-g-PMPC), were readily detected using a 4.7 T MR scanner. The highest signal-to-noise ratio was achieved by the linear polymers PMPC (210) and PMEEEP (62) followed by the star polymers CTP-g-PMPC (56) and PAMAM-g-PMPC (44). The 31P T1 and T2 relaxation times for these phosphopolymers were also favorable, ranging between 1078 and 2368 and 30 and 171 ms, respectively. We contend that select phosphopolymers are suitable for use as sensitive 31P MR probes for biomedical applications.
Collapse
|
26
|
Rheinberger T, Deuker M, Wurm FR. The microstructure of polyphosphoesters controls polymer hydrolysis kinetics from minutes to years. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
27
|
Raman Study of Block Copolymers of Methyl Ethylene Phosphate with Caprolactone and L-lactide. Polymers (Basel) 2022; 14:polym14245367. [PMID: 36559733 PMCID: PMC9782745 DOI: 10.3390/polym14245367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
We present an in-depth analysis of Raman spectra of novel block copolymers of methyl ethylene phosphate (MeOEP) with caprolactone (CL) and L-lactide (LA), recorded with the excitation wavelengths of 532 and 785 nm. The experimental peak positions, relative intensities and profiles of the poly(methyl ethylene phosphate) (PMeOEP), polycaprolactone (PCL) and poly(L-lactide) (PLA) bands in the spectra of the copolymers and in the spectra of the PMeOEP, PCL and PLA homopolymers turn out to be very similar. This clearly indicates the similarity between the conformational and phase compositions of PMeOEP, PCL and PLA parts in molecules of the copolymers and in the PMeOEP, PCL and PLA homopolymers. Experimental ratios of the peak intensities of PMeOEP bands at 737 and 2963 cm-1 and the PCL bands at 1109, 1724 and 2918 cm-1 can be used for the estimation of the PCL-b-PMeOEP copolymers chemical composition. Even though only one sample of the PMeOEP-b-PLA copolymers was experimentally studied in this work, we assume that the ratios of the peak intensities of PLA bands at 402, 874 and 1768 cm-1 and the PMeOEP band at 737 cm-1 can be used to characterize the copolymer chemical composition.
Collapse
|
28
|
Lo Celso F, Barone G, Maiuolo L, Algieri V, Cretu C, Calandra P. Dissolution of nitrones in alkylphosphates: A structural study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Nifant’ev IE, Ivchenko PV. Design, Synthesis and Actual Applications of the Polymers Containing Acidic P-OH Fragments: Part 1. Polyphosphodiesters. Int J Mol Sci 2022; 23:14857. [PMID: 36499185 PMCID: PMC9738169 DOI: 10.3390/ijms232314857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Among natural and synthetic polymers, main-chain phosphorus-containing polyacids (PCPAs) (polyphosphodiesters), stand in a unique position at the intersection of chemistry, physics, biology and medicine. The structural similarity of polyphosphodiesters PCPAs to natural nucleic and teichoic acids, their biocompatibility, mimicking to biomolecules providing the 'stealth effect', high bone mineral affinity of polyphosphodiesters resulting in biomineralization at physiological conditions, and adjustable hydrolytic stability of polyphosphodiesters are the basis for various biomedical, industrial and household applications of this type of polymers. In the present review, we discuss the synthesis, properties and actual applications of polyphosphodiesters.
Collapse
Affiliation(s)
- Ilya E. Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia
| | - Pavel V. Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
30
|
Chug M, Brisbois EJ. Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials. ACS MATERIALS AU 2022; 2:525-551. [PMID: 36124001 PMCID: PMC9479141 DOI: 10.1021/acsmaterialsau.2c00040] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
Implant-associated infections arising from biofilm development are known to have detrimental effects with compromised quality of life for the patients, implying a progressing issue in healthcare. It has been a struggle for more than 50 years for the biomaterials field to achieve long-term success of medical implants by discouraging bacterial and protein adhesion without adversely affecting the surrounding tissue and cell functions. However, the rate of infections associated with medical devices is continuously escalating because of the intricate nature of bacterial biofilms, antibiotic resistance, and the lack of ability of monofunctional antibacterial materials to prevent the colonization of bacteria on the device surface. For this reason, many current strategies are focused on the development of novel antibacterial surfaces with dual antimicrobial functionality. These surfaces are based on the combination of two components into one system that can eradicate attached bacteria (antibiotics, peptides, nitric oxide, ammonium salts, light, etc.) and also resist or release adhesion of bacteria (hydrophilic polymers, zwitterionic, antiadhesive, topography, bioinspired surfaces, etc.). This review aims to outline the progress made in the field of biomedical engineering and biomaterials for the development of multifunctional antibacterial biomedical devices. Additionally, principles for material design and fabrication are highlighted using characteristic examples, with a special focus on combinational nitric oxide-releasing biomedical interfaces. A brief perspective on future research directions for engineering of dual-function antibacterial surfaces is also presented.
Collapse
Affiliation(s)
- Manjyot
Kaur Chug
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
31
|
Cao H, Yi M, Wei H, Zhang S. Construction of Folate-Conjugated and pH-Responsive Cell Membrane Mimetic Mixed Micelles for Desirable DOX Release and Enhanced Tumor-Cellular Target. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9546-9555. [PMID: 35880856 DOI: 10.1021/acs.langmuir.2c00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart multifunctional polymeric micelles are in urgent demand for future cancer diagnosis and therapy. In this paper, doxorubicin (DOX)-loaded folic acid (FA)-targeting and pH-responsive cell membrane mimetic mixed micelles of P(DMAEMA-co-MaPCL) (PCD) and FA-P(MPC-co-MaPCL) (PMCF) (mass ratio 5/5) were prepared by a dialysis method. The micelle size, morphology, X-ray powder diffraction (XRD), pH responsiveness, in vitro DOX release, cytotoxicity, and cellular uptake were studied in detail. The results indicated that DOX could be efficiently loaded into mixed micelles (PDMCF micelles), and the DOX-loaded mixed micelles (DOX@PDMCF micelles) exhibited a size of 150 nm and pH-responsive DOX release in an extended period. Furthermore, the DOX@PDMCF micelles could efficiently suppress the proliferation of tumor cells, HeLa and MCF-7 cells. Our data suggest that the DOX@PDMCF micelles have the potential to be applied in tumor therapy, especially for treating various folate receptor overexpressed tumors.
Collapse
Affiliation(s)
- Haimei Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Meijun Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Henan Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Shiping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
32
|
Zhou R, Zhang M, He J, Liu J, Sun X, Ni P. Functional cRGD-Conjugated Polymer Prodrug for Targeted Drug Delivery to Liver Cancer Cells. ACS OMEGA 2022; 7:21325-21336. [PMID: 35755339 PMCID: PMC9219052 DOI: 10.1021/acsomega.2c02683] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 05/07/2023]
Abstract
To overcome the limitation of conventional nanodrugs in tumor targeting efficiency, coupling targeting ligands to polymeric nanoparticles can enhance the specific binding of nanodrugs to tumors. Cyclo(Arg-Gly-Asp-d-Phe-Lys) (abbreviated as c(RGDfK)) peptide has been widely adopted due to its high affinity to the tumor marker αvβ3 integrin receptor. In this study, we develop a cRGD peptide-conjugated camptothecin (CPT) prodrug, which enables self-assembly of nanoparticles for precise targeting and enrichment in tumor tissue. We first synthesized a camptothecin derivative (CPT-ss-N3) with a reduction-sensitive bond and simultaneously modified PEG to obtain cRGD-PEG-N3. After ring-opening polymerization of the 2-(but-3-yn-1-yolxy)-2-oxo-1,3,2-dioxaphospholane (BYP), an amphiphilic polymeric prodrug, referred to as cRGD-PEG-g-(PBYP-ss-CPT), was obtained via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The self-assembly in buffer solution of the cRGD-functional prodrug was studied through DLS and TEM. The in vitro drug release behavior of cRGD-PEG-g-(PBYP-ss-CPT) nanoparticles was investigated. The results show that the nanoparticles are reduction-responsive and the bonded CPT can be released. Endocytosis and MTT assays demonstrate that the cRGD-conjugated prodrug has better affinity for tumor cells, accumulates more intracellularly, and is therefore, more effective. The in vivo drug metabolism studies show that nanoparticles greatly prolong the retention time in circulation. By monitoring drug distribution in tumor and in various tissues, we find that free CPT can be rapidly metabolized, resulting in low accumulation in all tissues. However, cRGD-PEG-g-(PBYP-ss-CPT) nanoparticles accumulate in tumor tissues in higher amounts than PEG-g-(PBYP-ss-CPT) nanoparticles, except for the inevitable capture by the liver. This indicates that the nanomedicine with cRGD has a certain targeting property, which can improve drug delivery efficiency.
Collapse
Affiliation(s)
- Ru Zhou
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jinlin He
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jian Liu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Xingwei Sun
- Intervention
Department, The Second Affiliated Hospital
of Soochow University, Suzhou 215004, P. R. China
| | - Peihong Ni
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
- . Tel: +86
512 65882047
| |
Collapse
|
33
|
Pelosi C, Arrico L, Zinna F, Wurm FR, Di Bari L, Tinè MR. A circular dichroism study of the protective role of polyphosphoesters polymer chains in polyphosphoester-myoglobin conjugates. Chirality 2022; 34:1257-1265. [PMID: 35713334 PMCID: PMC9544571 DOI: 10.1002/chir.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Abstract
Protein‐polymer conjugates are a blooming class of hybrid systems with high biomedical potential. Despite a plethora of papers on their biomedical properties, the physical–chemical characterization of many protein‐polymer conjugates is missing. Here, we evaluated the thermal stability of a set of fully‐degradable polyphosphoester‐protein conjugates by variable temperature circular dichroism, a common but powerful technique. We extensively describe their thermodynamic stability in different environments (in physiological buffer or in presence of chemical denaturants, e.g., acid or urea), highlighting the protective role of the polymer in preserving the protein from denaturation. For the first time, we propose a simple but effective protocol to achieve useful information on these systems in vitro, useful to screen new samples in their early stages.
Collapse
Affiliation(s)
- Chiara Pelosi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Lorenzo Arrico
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Maria R Tinè
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| |
Collapse
|
34
|
Development of natural rubber with enhanced oxidative degradability. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Carboué Q, Fadlallah S, Lopez M, Allais F. Progress in degradation behavior of most common types of functionalized polymers: a review. Macromol Rapid Commun 2022; 43:e2200254. [DOI: 10.1002/marc.202200254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Quentin Carboué
- URD Agro‐Biotechnologies Industrielles (ABI) CEBB AgroParisTech Pomacle 51110 France
| | - Sami Fadlallah
- URD Agro‐Biotechnologies Industrielles (ABI) CEBB AgroParisTech Pomacle 51110 France
| | - Michel Lopez
- URD Agro‐Biotechnologies Industrielles (ABI) CEBB AgroParisTech Pomacle 51110 France
| | - Florent Allais
- URD Agro‐Biotechnologies Industrielles (ABI) CEBB AgroParisTech Pomacle 51110 France
| |
Collapse
|
36
|
Sheffey VV, Siew EB, Tanner EEL, Eniola‐Adefeso O. PLGA's Plight and the Role of Stealth Surface Modification Strategies in Its Use for Intravenous Particulate Drug Delivery. Adv Healthc Mater 2022; 11:e2101536. [PMID: 35032406 PMCID: PMC9035064 DOI: 10.1002/adhm.202101536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Numerous human disorders can benefit from targeted, intravenous (IV) drug delivery. Polymeric nanoparticles have been designed to undergo systemic circulation and deliver their therapeutic cargo to target sites in a controlled manner. Poly(lactic-co-glycolic) acid (PLGA) is a particularly promising biomaterial for designing intravenous drug carriers due to its biocompatibility, biodegradability, and history of clinical success across other routes of administration. Despite these merits, PLGA remains markedly absent in clinically approved IV drug delivery formulations. A prominent factor in PLGA particles' inability to succeed intravenously may lie in the hydrophobic character of the polyester, leading to the adsorption of serum proteins (i.e., opsonization) and a cascade of events that end in their premature clearance from the bloodstream. PEGylation, or surface-attached polyethylene glycol chains, is a common strategy for shielding particles from opsonization. Polyethylene glycol (PEG) continues to be regarded as the ultimate "stealth" solution despite the lack of clinical progress of PEGylated PLGA carriers. This review reflects on some of the reasons for the clinical failure of PLGA, particularly the drawbacks of PEGylation, and highlights alternative surface coatings on PLGA particles. Ultimately, a new approach will be needed to harness the potential of PLGA nanoparticles and allow their widespread clinical adoption.
Collapse
Affiliation(s)
- Violet V. Sheffey
- Macromolecular Science and Engineering Program University of Michigan Ann Arbor NCRC Building 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| | - Emily B. Siew
- Department of Chemical Engineering University of Michigan Ann Arbor NCRC 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| | - Eden E. L. Tanner
- Department of Chemistry and Biochemistry University of Mississippi 179 Coulter Hall University MS 38677 USA
| | - Omolola Eniola‐Adefeso
- Macromolecular Science and Engineering Program University of Michigan Ann Arbor NCRC Building 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
- Department of Chemical Engineering University of Michigan Ann Arbor NCRC 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| |
Collapse
|
37
|
Dirauf M, Muljajew I, Weber C, Schubert US. Recent advances in degradable synthetic polymers for biomedical applications – Beyond polyesters. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Pelosi C, Constantinescu I, Son HH, Tinè MR, Kizhakkedathu JN, Wurm FR. Blood Compatibility of Hydrophilic Polyphosphoesters. ACS APPLIED BIO MATERIALS 2022; 5:1151-1158. [PMID: 35201742 PMCID: PMC8941511 DOI: 10.1021/acsabm.1c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
Abstract
Polyphosphoesters (PPEs) are a class of versatile degradable polymers. Despite the high potential of this class of polymers in biomedical applications, little is known about their blood interaction and compatibility. We evaluated the hemocompatibility of water-soluble PPEs (with different hydrophilicities and molar masses) and PPE-coated model nanocarriers. Overall, we identified high hemocompatibility of PPEs, comparable to poly(ethylene glycol) (PEG), currently used for many applications in nanomedicine. Hydrophilic PPEs caused no significant changes in blood coagulation, negligible platelet activation, the absence of red blood cells lysis, or aggregation. However, when a more hydrophobic copolymer was studied, some changes in the whole blood clot strength at the highest concentration were detected, but only concentrations above that are typically used for biomedical applications. Also, the PPE-coated model nanocarriers showed high hemocompatibility. These results contribute to defining hydrophilic PPEs as a promising platform for degradable and biocompatible materials in the biomedical field.
Collapse
Affiliation(s)
- Chiara Pelosi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi 13, 56120 Pisa, Italy
| | - Iren Constantinescu
- Center
for Blood Research, Life Sciences Centre, Department of Pathology
and Laboratory Medicine, University of British
Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Helena H. Son
- Center
for Blood Research, Life Sciences Centre, Department of Pathology
and Laboratory Medicine, University of British
Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Maria Rosaria Tinè
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi 13, 56120 Pisa, Italy
| | - Jayachandran N. Kizhakkedathu
- Center
for Blood Research, Life Sciences Centre, Department of Pathology
and Laboratory Medicine, University of British
Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- School
of Biomedical Engineering, University of
British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Frederik R. Wurm
- Sustainable
Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| |
Collapse
|
39
|
Bilardo R, Traldi F, Vdovchenko A, Resmini M. Influence of surface chemistry and morphology of nanoparticles on protein corona formation. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1788. [PMID: 35257495 PMCID: PMC9539658 DOI: 10.1002/wnan.1788] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
Nanomaterials offer promising solutions as drug delivery systems and imaging agents in response to the demand for better therapeutics and diagnostics. However, the limited understanding of the interaction between nanoparticles and biological entities is currently hampering the development of new systems and their applications in clinical settings. Proteins and lipids in biological fluids are known to complex with nanoparticles to form a "biomolecular corona". This has been shown to affect particles' morphology and behavior in biological systems and their interactions with cells. Hence, understanding how nanomaterials' physicochemical properties affect the formation and composition of this biocorona is a crucial step. This work evaluates existing literature on how morphology (size and shape), and surface chemistry (charge and hydrophobicity) of nanoparticles influence the formation of protein corona. The latest evidence suggest that although surface charge promotes the interaction with proteins and lipids, surface chemistry plays a leading role in determining the affinity of the nanoparticle for biomolecules and, ultimately, the composition of the corona. More recently the study of additional nanoparticles' properties like shape and surface chirality have demonstrated a significant effect on protein corona architecture, providing new tools to tailor biomolecular corona formation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Roberta Bilardo
- Department of Chemistry, Queen Mary University of London, London, UK
| | - Federico Traldi
- Department of Chemistry, Queen Mary University of London, London, UK
| | - Alena Vdovchenko
- Department of Chemistry, Queen Mary University of London, London, UK
| | - Marina Resmini
- Department of Chemistry, Queen Mary University of London, London, UK
| |
Collapse
|
40
|
Stasiuk A, Fihurka N, Vlizlo V, Prychak S, Ostapiv D, Varvarenko S, Samaryk V. Synthesis and Properties of Phosphorus-Containing Pseudo-Poly(Amino Acid)sof Polyester Type Based on N-Derivatives of Glutaminic Acid. CHEMISTRY & CHEMICAL TECHNOLOGY 2022. [DOI: 10.23939/chcht16.01.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poly(phosphoeter)s (PPE)s are a class of polymers possessing a high chemical functionality and biodegradability. Novel, glutamic acid based poly(phosphoeter)s were synthesized by the Steglich reaction. The developed synthetic approach allows controlling the composition and the structure of PPEs, and therefore their physical and colloidal properties. The studies on solubilization and cytotoxicity in vitro proved the potential of PPEs for drug delivery applications.
Collapse
|
41
|
Metal-free, in bulk synthesis of highly hydrophilic polyester bearing pyrrolidone pendants and its diblock copolymers with UCST-type phase transition in water. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Vandermeulen GWM, Boarino A, Klok H. Biodegradation of
water‐soluble
and
water‐dispersible
polymers for agricultural, consumer, and industrial applications—Challenges and opportunities for sustainable materials solutions. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Alice Boarino
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD Lausanne Switzerland
| | - Harm‐Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD Lausanne Switzerland
| |
Collapse
|
43
|
Daglar O, Alkan B, Gunay US, Hizal G, Tunca U, Durmaz H. Ultrafast synthesis of phosphorus-containing polythioethers in the presence of TBD. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
|
45
|
Alahmdi MI, Mohareb RM, Abdelaziz Mahmoud MA, Alkhamis K, Abo‐Dya NE, Zidan NS, Khasim S, Alsharif MA. Anti‐proliferative Activities of Thiophenes, Pyrans and PyridinesDerived from 1,3‐Dicarbonyl Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohammed I. Alahmdi
- Department of Chemistry Faculty of Science University of Tabuk Tabuk 71491 Saudi Arabia
| | | | | | - Kholood Alkhamis
- Department of Chemistry Faculty of Science University of Tabuk Tabuk 71491 Saudi Arabia
| | - Nader Elmaghwry Abo‐Dya
- Department of Pharmaceutical Organic Chemistry Faculty of Pharmacy Zagazig University Zagazig 44519 Egypt
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Tabuk Tabuk 71491 Saudi Arabia
| | - Nahla S. Zidan
- Department of Nutrition and Food Science Faculty of Home Economics Tabuk University Saudi Arabia
- Department of Home Economics Faculty of Specific Education Kafr El-Shaikh University Egypt
| | - Syed Khasim
- Department of Physics Faculty of Science University of Tabuk Kingdom of Saudi Arabia
| | - Meshari A. Alsharif
- Chemistry Department Faculty of Applied Science Umm Al-Qura University Makkah Saudi Arabia
| |
Collapse
|
46
|
Krieghoff J, Gronbach M, Schulz-Siegmund M, Hacker MC. Biodegradable macromers for implant bulk and surface engineering. Biol Chem 2021; 402:1357-1374. [PMID: 34433237 DOI: 10.1515/hsz-2021-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
Macromers, polymeric molecules with at least two functional groups for cross-polymerization, are interesting materials to tailor mechanical, biochemical and degradative bulk and surface properties of implants for tissue regeneration. In this review we focus on macromers with at least one biodegradable building block. Manifold design options, such as choice of polymeric block(s), optional core molecule and reactive groups, as well as cross-co-polymerization with suitable anchor or linker molecules, allow the adaptation of macromer-based biomaterials towards specific application requirements in both hard and soft tissue regeneration. Implants can be manufactured from macromers using additive manufacturing as well as molding and templating approaches. This review summarizes and discusses the overall concept of biodegradable macromers and recent approaches for macromer processing into implants as well as techniques for surface modification directed towards bone regeneration. These aspects are reviewed including a focus on the authors' contributions to the field through research within the collaborative research project Transregio 67.
Collapse
Affiliation(s)
- Jan Krieghoff
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany
| | - Mathis Gronbach
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany
| | - Michaela Schulz-Siegmund
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany
| | - Michael C Hacker
- Medical Faculty, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15A, D-04317 Leipzig, Germany.,Collaborative Research Center (SFB-TRR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin - From Material Science to Clinical Application", Leipzig and Dresden, Germany.,Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Resendiz-Lara DA, Wurm FR. Polyphosphonate-Based Macromolecular RAFT-CTA Enables the Synthesis of Well-Defined Block Copolymers Using Vinyl Monomers. ACS Macro Lett 2021; 10:1273-1279. [PMID: 35549040 DOI: 10.1021/acsmacrolett.1c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerization has become a straightforward approach to block copolymers using a wide variety of functional vinyl monomers. Polyphosphoester (PPE) macroinitiators from ring-opening polymerization (ROP) of their corresponding cyclic phosphoesters have been previously prepared for atom transfer radical polymerization; however, to date, these biodegradable macroinitiators for RAFT polymerization have not been reported. Herein, a macromolecular RAFT-chain transfer agent (CTA) based on poly(ethyl ethylene phosphonate) was prepared by the organocatalytic ROP of 2-ethyl-2-oxo-1,3,2-dioxaphospholane using 2-cyano-5-hydroxypentan-2-yl dodecyl trithiocarbonate as the initiator and 1,8-diazabycyclo[5.4.0]undec-7-ene as the catalyst. Precise macro-CTAs of degrees of polymerization (DPn) from 34 to 70 with Đ ≤ 1.10 were prepared and used in the dioxane solution RAFT polymerization of acrylamide, acrylates, methacrylates, and 2-vinylpyridine to yield a library of well-defined block copolymers. Additionally, the PPE-based macro RAFT-CTA was used as a nonionic surfactant in a typical aqueous emulsion polymerization of styrene to produce well-defined nanoparticles with the hydrophilic PPEs on their surface as the stabilizing agent. This general protocol allowed the combination of polyphosphoesters with RAFT polymerization.
Collapse
Affiliation(s)
- Diego A Resendiz-Lara
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
48
|
Guazzelli E, Lusiani N, Monni G, Oliva M, Pelosi C, Wurm FR, Pretti C, Martinelli E. Amphiphilic Polyphosphonate Copolymers as New Additives for PDMS-Based Antifouling Coatings. Polymers (Basel) 2021; 13:3414. [PMID: 34641229 PMCID: PMC8512855 DOI: 10.3390/polym13193414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023] Open
Abstract
Poly(ethyl ethylene phosphonate)-based methacrylic copolymers containing polysiloxane methacrylate (SiMA) co-units are proposed as surface-active additives as alternative solutions to the more investigated polyzwitterionic and polyethylene glycol counterparts for the fabrication of novel PDMS-based coatings for marine antifouling applications. In particular, the same hydrophobic SiMA macromonomer was copolymerized with a methacrylate carrying a poly(ethyl ethylene phosphonate) (PEtEPMA), a phosphorylcholine (MPC), and a poly(ethylene glycol) (PEGMA) side chain to obtain non-water soluble copolymers with similar mole content of the different hydrophilic units. The hydrolysis of poly(ethyl ethylene phosphonate)-based polymers was also studied in conditions similar to those of the marine environment to investigate their potential as erodible films. Copolymers of the three classes were blended into a condensation cure PDMS matrix in two different loadings (10 and 20 wt%) to prepare the top-coat of three-layer films to be subjected to wettability analysis and bioassays with marine model organisms. Water contact angle measurements showed that all of the films underwent surface reconstruction upon prolonged immersion in water, becoming much more hydrophilic. Interestingly, the extent of surface modification appeared to be affected by the type of hydrophilic units, showing a tendency to increase according to the order PEGMA < MPC < PEtEPMA. Biological tests showed that Ficopomatus enigmaticus release was maximized on the most hydrophilic film containing 10 wt% of the PEtEP-based copolymer. Moreover, coatings with a 10 wt% loading of the copolymer performed better than those containing 20 wt% for the removal of both Ficopomatus and Navicula, independent from the copolymer nature.
Collapse
Affiliation(s)
- Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (E.G.); (N.L.); (C.P.)
| | - Niccolò Lusiani
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (E.G.); (N.L.); (C.P.)
| | - Gianfranca Monni
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy; (G.M.); (C.P.)
| | - Matteo Oliva
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata ‘‘G. Bacci’’, 57128 Livorno, Italy;
| | - Chiara Pelosi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (E.G.); (N.L.); (C.P.)
| | - Frederik R. Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy; (G.M.); (C.P.)
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (E.G.); (N.L.); (C.P.)
| |
Collapse
|
49
|
Hiranphinyophat S, Otaka A, Fujii S, Iwasaki Y. Lanoconazole-loaded emulsion stabilized with cellulose nanocrystals decorated with polyphosphoesters reduced inflammatory edema in a mouse model. Polym J 2021. [DOI: 10.1038/s41428-021-00548-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Hiranphinyophat S, Iwasaki Y. Controlled biointerfaces with biomimetic phosphorus-containing polymers. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:301-316. [PMID: 34104114 PMCID: PMC8168784 DOI: 10.1080/14686996.2021.1908095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 06/02/2023]
Abstract
Phosphorus is a ubiquitous and one of the most common elements found in living organisms. Almost all molecules containing phosphorus in our body exist as analogs of phosphate salts or phosphoesters. Their functions are versatile and important, being responsible for forming the genetic code, cell membrane, and mineral components of hard tissue. Several materials inspired from these phosphorus-containing biomolecules have been recently developed. These materials have shown unique properties at the biointerface, such as nonfouling ability, blood compatibility, lubricity, mineralization induction capability, and bone affinity. Several unfavorable events occur at the interface of materials and living organisms because most of these materials have not been designed while taking host responses into account. These unfavorable events are directly linked to reducing functions and shorten the usable periods of medical devices. Biomimetic phosphorus-containing polymers can improve the reliability of materials in biological systems. In addition, phosphorus-containing biomimetic polymers are useful not only for improving the biocompatibility of material surfaces but also for adding new functions due to the flexibility in molecular design. In this review, we describe the recent advances in the control of biointerfacial phenomena with phosphorus-containing polymers. We especially focus on zwitterioninc phosphorylcholine polymers and polyphosphoesters.
Collapse
Affiliation(s)
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan
| |
Collapse
|