1
|
Kutuk T, Zhang Y, Akdemir EY, Yarlagadda S, Tolakanahalli R, Hall MD, La Rosa A, Wieczorek DJJ, Lee YC, Press RH, Appel H, McDermott MW, Odia Y, Ahluwalia MS, Gutierrez AN, Mehta MP, Kotecha R. Comparative evaluation of outcomes amongst different radiosurgery management paradigms for patients with large brain metastasis. J Neurooncol 2024; 169:105-117. [PMID: 38837019 DOI: 10.1007/s11060-024-04706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION This study compares four management paradigms for large brain metastasis (LMB): fractionated SRS (FSRS), staged SRS (SSRS), resection and postoperative-FSRS (postop-FSRS) or preoperative-SRS (preop-SRS). METHODS Patients with LBM (≥ 2 cm) between July 2017 and January 2022 at a single tertiary institution were evaluated. Primary endpoints were local failure (LF), radiation necrosis (RN), leptomeningeal disease (LMD), a composite of these variables, and distant intracranial failure (DIF). Gray's test compared cumulative incidence, treating death as a competing risk with a random survival forests (RSF) machine-learning model also used to evaluate the data. RESULTS 183 patients were treated to 234 LBMs: 31.6% for postop-FSRS, 28.2% for SSRS, 20.1% for FSRS, and 20.1% for preop-SRS. The overall 1-year composite endpoint rates were comparable (21 vs 20%) between nonoperative and operative strategies, but 1-year RN rate was 8 vs 4% (p = 0.012), 1-year overall survival (OS) was 48 vs. 69% (p = 0.001), and 1-year LMD rate was 5 vs 10% (p = 0.052). There were differences in the 1-year RN rates (7% FSRS, 3% postop-FSRS, 5% preop-SRS, 10% SSRS, p = 0.037). With RSF analysis, the out-of-bag error rate for the composite endpoint was 47%, with identified top-risk factors including widespread extracranial disease, > 5 total lesions, and breast cancer histology. CONCLUSION This is the first study to conduct a head-to-head retrospective comparison of four SRS methods, addressing the lack of randomized data in LBM literature amongst treatment paradigms. Despite patient characteristic trends, no significant differences were found in LF, composite endpoint, and DIF rates between non-operative and operative approaches.
Collapse
Affiliation(s)
- Tugce Kutuk
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Yanjia Zhang
- TD - Artificial Intelligence and Machine Learning, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Eyub Yasar Akdemir
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Sreenija Yarlagadda
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Matthew D Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - DJay J Wieczorek
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Yongsook C Lee
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Robert H Press
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Haley Appel
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Michael W McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL, USA
| | - Yazmin Odia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Neuro Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Manmeet S Ahluwalia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA.
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
2
|
Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023; 12:79. [PMID: 38255186 PMCID: PMC10813710 DOI: 10.3390/biomedicines12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Qu Y, Yao Z, Xu N, Shi G, Su J, Ye S, Chang K, Li K, Wang Y, Tan S, Pei X, Chen Y, Qin Z, Feng J, Lv J, Zhu J, Ma F, Tang S, Xu W, Tian X, Anwaier A, Tian S, Xu W, Wu X, Zhu S, Zhu Y, Cao D, Sun M, Gan H, Zhao J, Zhang H, Ye D, Ding C. Plasma proteomic profiling discovers molecular features associated with upper tract urothelial carcinoma. Cell Rep Med 2023; 4:101166. [PMID: 37633276 PMCID: PMC10518597 DOI: 10.1016/j.xcrm.2023.101166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/16/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Upper tract urothelial carcinoma (UTUC) is often diagnosed late and exhibits poor prognosis. Limited data are available on potential non-invasive biomarkers for disease monitoring. Here, we investigate the proteomic profile of plasma in 362 UTUC patients and 239 healthy controls. We present an integrated tissue-plasma proteomic approach to infer the signature proteins for identifying patients with muscle-invasive UTUC. We discover a protein panel that reflects lymph node metastasis, which is of interest in identifying UTUC patients with high risk and poor prognosis. We also identify a ten-protein classifier and establish a progression clock predicting progression-free survival of UTUC patients. Finally, we further validate the signature proteins by parallel reaction monitoring assay in an independent cohort. Collectively, this study portrays the plasma proteomic landscape of a UTUC cohort and provides a valuable resource for further biological and diagnostic research in UTUC.
Collapse
Affiliation(s)
- Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zhenmei Yao
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Ning Xu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Jiaqi Su
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Shiqi Ye
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Kun Chang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Kai Li
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yunzhi Wang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Subei Tan
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Xiaoru Pei
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yijiao Chen
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Zhaoyu Qin
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Jinwen Feng
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Jiacheng Lv
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Jiajun Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Fahan Ma
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Shaoshuai Tang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Sha Tian
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Wenbo Xu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Xinqiang Wu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Shuxuan Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Dalong Cao
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Menghong Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China; Tissue Bank & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hualei Gan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China; Tissue Bank & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jianyuan Zhao
- Institute for Development and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| | - Chen Ding
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Klekowski J, Zielińska D, Hofman A, Zajdel N, Gajdzis P, Chabowski M. Clinical Significance of Nectins in HCC and Other Solid Malignant Tumors: Implications for Prognosis and New Treatment Opportunities-A Systematic Review. Cancers (Basel) 2023; 15:3983. [PMID: 37568798 PMCID: PMC10416819 DOI: 10.3390/cancers15153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The nectin family comprises four proteins, nectin-1 to -4, which act as cell adhesion molecules. Nectins have various regulatory functions in the immune system and can be upregulated or decreased in different tumors. The literature research was conducted manually by the authors using the PubMed database by searching articles published before 2023 with the combination of several nectin-related keywords. A total of 43 studies were included in the main section of the review. Nectins-1-3 have different expressions in tumors. Both the loss of expression and overexpression could be negative prognostic factors. Nectin-4 is the best characterized and the most consistently overexpressed in various tumors, which generally correlates with a worse prognosis. New treatments based on targeting nectin-4 are currently being developed. Enfortumab vedotin is a potent antibody-drug conjugate approved for use in therapy against urothelial carcinoma. Few reports focus on hepatocellular carcinoma, which leaves room for further studies comparing the utility of nectins with commonly used markers.
Collapse
Affiliation(s)
- Jakub Klekowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | - Dorota Zielińska
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | - Adriana Hofman
- Student Research Club No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.H.); (N.Z.)
| | - Natalia Zajdel
- Student Research Club No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.H.); (N.Z.)
| | - Paweł Gajdzis
- Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Pathomorphology, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| |
Collapse
|
5
|
Nisa MU, Farooq S, Ali S, Eachkoti R, Rehman MU, Hafiz S. Proteomics: A modern tool for identifying therapeutic targets in different types of carcinomas. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
6
|
Serum protein profiling of lung, pancreatic, and colorectal cancers reveals alcohol consumption-mediated disruptions in early-stage cancer detection. Heliyon 2022; 8:e12359. [PMID: 36590537 PMCID: PMC9794896 DOI: 10.1016/j.heliyon.2022.e12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
While the link between serum proteins and cancer has been studied in an effort to enable early-stage cancer detection, factors that might perturb this link has been poorly understood. To ask this question, we performed serum protein profiling on a prospective cohort of 601 individuals with or without lung, pancreatic, or colorectal cancers and identified ten distinct serum protein signatures with distinct link to the patient metadata. Importantly, we discovered that a positive history of alcohol consumption is a major factor that diminishes the sensitivity of serum protein-mediated liquid biopsy in early-stage malignancies, resulting in a 44% decline in the sensitivity of detecting American Joint Committee on Cancer (AJCC) stage I malignancies. Our data provide evidence that patient lifestyle can affect the sensitivity of liquid biopsy and suggest the potential need for abstinence from alcohol before measurement during serum protein-based cancer screening.
Collapse
|
7
|
Cai C, Zhang M, Liu L, Zhang H, Guo Y, Lan T, Xu Y, Ma P, Li S. ADAM10-cleaved ephrin-A5 contributes to prostate cancer metastasis. Cell Death Dis 2022; 13:453. [PMID: 35551177 PMCID: PMC9098485 DOI: 10.1038/s41419-022-04893-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/27/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
A disintegrin and metalloprotease-10(ADAM10) promotes the metastasis of prostate cancer (PCa), but the specific mechanism is indistinct. Herein, DU145 cell lines with stable overexpression and knockdown of ADAM10 were constructed. We found that ectopic expression of ADAM10 not only significantly facilitated cell proliferation, migration, invasion, and inhibited apoptosis, but also could specifically hydrolyze ephrin-A5 and release the ephrin-A5 soluble ectodomain into extracellular media in vitro. These effects were reversed by ADAM10 depletion or treatment of GI254023X. Meanwhile, the co-location and physical interaction among EphA3, ephrin-A5, and ADAM10 were observed in PCa cells using immunofluorescence and immunoprecipitation techniques. Interestingly, overexpression of EphA3 exerted opposite effects in DU145 (ephrin-A5 + ) cells and PC-3 (ephrin-A5 ± ) cells. In addition, the pro-tumor function of EphA3 was reversed by the treatment with the exogenous ephrin-A5-Fc, which increased the phosphorylation level of EphA3 in PC-3 (ephrin-A5 ± ) cells. In nude mice, ADAM10 accelerated growth of the primary tumor, decreased the level of ephrin-A5 in the tumor tissue, but increased the level of ephrin-A5 in the peripheral blood, accompanied with an increase in the expression of CD31 and VEGF (vascular endothelial growth factor) in the tissue. What is more, the serum ephrin-A5 content of patients with metastatic PCa was significantly higher than that of the non-metastatic group (P < 0.05). The receiver operating characteristic curve(ROC) showed that the area under the curve(AUC) of serum ephrin-A5 as a marker of PCa metastasis was 0.843, with a sensitivity of 93.5% and a specificity of 75%. It is concluded that ADAM10-mediated ephrin-A5 shedding promotes PCa metastasis via transforming the role of EphA3 from ligand-dependent tumor suppressor to ligand-independent promoter, and ephrin-A5 in the blood can be used as a new biomarker for PCa metastasis.
Collapse
Affiliation(s)
- Chenchen Cai
- grid.417303.20000 0000 9927 0537Medical Technology School of Xuzhou Medical University, Xuzhou, 221004 China ,grid.452207.60000 0004 1758 0558Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009 China
| | - Miaomiao Zhang
- grid.417303.20000 0000 9927 0537Medical Technology School of Xuzhou Medical University, Xuzhou, 221004 China ,grid.413389.40000 0004 1758 1622Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 PR China
| | - Lei Liu
- grid.417303.20000 0000 9927 0537Department of Physiology, Xuzhou Medical University, Xuzhou, 221004 PR China
| | - Haoliang Zhang
- grid.413389.40000 0004 1758 1622Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 PR China
| | - Yi Guo
- grid.413389.40000 0004 1758 1622Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 PR China
| | - Ting Lan
- grid.417303.20000 0000 9927 0537Medical Technology School of Xuzhou Medical University, Xuzhou, 221004 China
| | - Yinhai Xu
- grid.413389.40000 0004 1758 1622Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 PR China
| | - Ping Ma
- grid.417303.20000 0000 9927 0537Medical Technology School of Xuzhou Medical University, Xuzhou, 221004 China ,grid.413389.40000 0004 1758 1622Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 PR China
| | - Shibao Li
- grid.417303.20000 0000 9927 0537Medical Technology School of Xuzhou Medical University, Xuzhou, 221004 China ,grid.413389.40000 0004 1758 1622Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 PR China
| |
Collapse
|
8
|
Campistol M, Morote J, Regis L, Celma A, Planas J, Trilla E. Proclarix, A New Biomarker for the Diagnosis of Clinically Significant Prostate Cancer: A Systematic Review. Mol Diagn Ther 2022; 26:273-281. [PMID: 35471698 DOI: 10.1007/s40291-022-00584-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 12/09/2022]
Abstract
INTRODUCTION Multiparametric magnetic resonance imaging (mpMRI) has improved the early detection of clinically significant prostate cancer (csPCa). However, an appropriate selection of men for mpMRI or prostate biopsy is still challenging, which is why new biomarkers or predictive models are recommended to determine those patients who will benefit from prostate biopsy. Proclarix is a new test that provides the risk of csPCa based on thrombospondin-1 (THBS1), cathepsin D (CTSD), prostate-specific antigen (PSA), and percentage of free PSA (%fPSA), as well as age. This systematic review analyzes the current clinical status of Proclarix and future development. EVIDENCE ACQUISITION A systematic review of the literature was carried out by two independent reviewers. The Medical Subject Heading (MeSH) terms 'prostate', 'thrombospondin-1', 'cathepsin-D' and 'Proclarix' were used. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the Population, Intervention, Comparison and Outcomes (PICO) selection criteria were followed. Finally, four articles analyzed the clinical usefulness of Proclarix. EVIDENCE SYNTHESIS Proclarix has been developed in men with PSA levels between 2 and 10 ng/mL, normal digital rectal examination (DRE), and prostate volume (PV) ≥ 35 cm3. Proclarix is associated with the PCa grade group and is more effective than %fPSA in detecting csPCa. Two studies analyzed the efficacy of Proclarix in men undergoing guided and systematic biopsies, obtaining similar results to PSA density. CONCLUSION Initial studies have shown the potential benefit of Proclarix in patients with specific characteristics. Future studies are needed to verify the clinical usefulness of Proclarix in men with suspected PCa before and after mpMRI.
Collapse
Affiliation(s)
- Míriam Campistol
- Department of Urology, Vall d'Hebron Hospital, Barcelona, Spain. .,Department of Surgery, Universitat Autònoma de Barcelona/Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain.
| | - Juan Morote
- Department of Urology, Vall d'Hebron Hospital, Barcelona, Spain.,Department of Surgery, Universitat Autònoma de Barcelona/Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Lucas Regis
- Department of Urology, Vall d'Hebron Hospital, Barcelona, Spain.,Department of Surgery, Universitat Autònoma de Barcelona/Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Ana Celma
- Department of Urology, Vall d'Hebron Hospital, Barcelona, Spain.,Department of Surgery, Universitat Autònoma de Barcelona/Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Jacques Planas
- Department of Urology, Vall d'Hebron Hospital, Barcelona, Spain.,Department of Surgery, Universitat Autònoma de Barcelona/Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Enrique Trilla
- Department of Urology, Vall d'Hebron Hospital, Barcelona, Spain.,Department of Surgery, Universitat Autònoma de Barcelona/Vall d'Hebron Hospital, Passeig de la Vall d'Hebron 119, 08035, Barcelona, Spain
| |
Collapse
|
9
|
Identification of Lifestyle Behaviors Associated with Recurrence and Survival in Colorectal Cancer Patients Using Random Survival Forests. Cancers (Basel) 2021; 13:cancers13102442. [PMID: 34069979 PMCID: PMC8157840 DOI: 10.3390/cancers13102442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 01/03/2023] Open
Abstract
Current lifestyle recommendations for cancer survivors are the same as those for the general public to decrease their risk of cancer. However, it is unclear which lifestyle behaviors are most important for prognosis. We aimed to identify which lifestyle behaviors were most important regarding colorectal cancer (CRC) recurrence and all-cause mortality with a data-driven method. The study consisted of 1180 newly diagnosed stage I-III CRC patients from a prospective cohort study. Lifestyle behaviors included in the current recommendations, as well as additional lifestyle behaviors related to diet, physical activity, adiposity, alcohol use, and smoking were assessed six months after diagnosis. These behaviors were simultaneously analyzed as potential predictors of recurrence or all-cause mortality with Random Survival Forests (RSFs). We observed 148 recurrences during 2.6-year median follow-up and 152 deaths during 4.8-year median follow-up. Higher intakes of sugary drinks were associated with increased recurrence risk. For all-cause mortality, fruit and vegetable, liquid fat and oil, and animal protein intake were identified as the most important lifestyle behaviors. These behaviors showed non-linear associations with all-cause mortality. Our exploratory RSF findings give new ideas on potential associations between certain lifestyle behaviors and CRC prognosis that still need to be confirmed in other cohorts of CRC survivors.
Collapse
|
10
|
Mass Spectrometry-Based Glycoproteomics and Prostate Cancer. Int J Mol Sci 2021; 22:ijms22105222. [PMID: 34069262 PMCID: PMC8156230 DOI: 10.3390/ijms22105222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Aberrant glycosylation has long been known to be associated with cancer, since it is involved in key mechanisms such as tumour onset, development and progression. This review will focus on protein glycosylation studies in cells, tissue, urine and serum in the context of prostate cancer. A dedicated section will cover the glycoforms of prostate specific antigen, the molecule that, despite some important limitations, is routinely tested for helping prostate cancer diagnosis. Our aim is to provide readers with an overview of mass spectrometry-based glycoproteomics of prostate cancer. From this perspective, the first part of this review will illustrate the main strategies for glycopeptide enrichment and mass spectrometric analysis. The molecular information obtained by glycoproteomic analysis performed by mass spectrometry has led to new insights into the mechanism linking aberrant glycosylation to cancer cell proliferation, migration and immunoescape.
Collapse
|
11
|
Wang YA, Sfakianos J, Tewari AK, Cordon-Cardo C, Kyprianou N. Molecular tracing of prostate cancer lethality. Oncogene 2020; 39:7225-7238. [PMID: 33046797 DOI: 10.1038/s41388-020-01496-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023]
Abstract
Prostate cancer is diagnosed mostly in men over the age of 50 years, and has favorable 5-year survival rates due to early cancer detection and availability of curative surgical management. However, progression to metastasis and emergence of therapeutic resistance are responsible for the majority of prostate cancer mortalities. Recent advancement in sequencing technologies and computational capabilities have improved the ability to organize and analyze large data, thus enabling the identification of novel biomarkers for survival, metastatic progression and patient prognosis. Large-scale sequencing studies have also uncovered genetic and epigenetic signatures associated with prostate cancer molecular subtypes, supporting the development of personalized targeted-therapies. However, the current state of mainstream prostate cancer management does not take full advantage of the personalized diagnostic and treatment modalities available. This review focuses on interrogating biomarkers of prostate cancer progression, including gene signatures that correspond to the acquisition of tumor lethality and those of predictive and prognostic value in progression to advanced disease, and suggest how we can use our knowledge of biomarkers and molecular subtypes to improve patient treatment and survival outcomes.
Collapse
Affiliation(s)
- Yuanshuo Alice Wang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carlos Cordon-Cardo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
12
|
Cheng CY, Zhou Z, Stone M, Lu B, Flesken-Nikitin A, Nanus DM, Nikitin AY. Membrane metalloendopeptidase suppresses prostate carcinogenesis by attenuating effects of gastrin-releasing peptide on stem/progenitor cells. Oncogenesis 2020; 9:38. [PMID: 32205838 PMCID: PMC7090072 DOI: 10.1038/s41389-020-0222-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 11/08/2022] Open
Abstract
Aberrant neuroendocrine signaling is frequent yet poorly understood feature of prostate cancers. Membrane metalloendopeptidase (MME) is responsible for the catalytic inactivation of neuropeptide substrates, and is downregulated in nearly 50% of prostate cancers. However its role in prostate carcinogenesis, including formation of castration-resistant prostate carcinomas, remains uncertain. Here we report that MME cooperates with PTEN in suppression of carcinogenesis by controlling activities of prostate stem/progenitor cells. Lack of MME and PTEN results in development of adenocarcinomas characterized by propensity for vascular invasion and formation of proliferative neuroendocrine clusters after castration. Effects of MME on prostate stem/progenitor cells depend on its catalytic activity and can be recapitulated by addition of the MME substrate, gastrin-releasing peptide (GRP). Knockdown or inhibition of GRP receptor (GRPR) abrogate effects of MME deficiency and delay growth of human prostate cancer xenografts by reducing the number of cancer-propagating cells. In sum, our study provides a definitive proof of tumor-suppressive role of MME, links GRP/GRPR signaling to the control of prostate stem/progenitor cells, and shows how dysregulation of such signaling may promote formation of castration-resistant prostate carcinomas. It also identifies GRPR as a valuable target for therapies aimed at eradication of cancer-propagating cells in prostate cancers with MME downregulation.
Collapse
Affiliation(s)
- Chieh-Yang Cheng
- Department of Biomedical Sciences, and Cornell Stem Cell Program, Cornell University, Ithaca, NY, 14850, USA
| | - Zongxiang Zhou
- Department of Biomedical Sciences, and Cornell Stem Cell Program, Cornell University, Ithaca, NY, 14850, USA
| | - Meredith Stone
- Department of Biomedical Sciences, and Cornell Stem Cell Program, Cornell University, Ithaca, NY, 14850, USA
| | - Bao Lu
- Harvard Medical School, Children's Hospital, Boston, MA, 02115, USA
| | - Andrea Flesken-Nikitin
- Department of Biomedical Sciences, and Cornell Stem Cell Program, Cornell University, Ithaca, NY, 14850, USA
| | - David M Nanus
- Department of Medicine, Weill Cornell Medicine and Meyer Cancer Center, New York, NY, 10021, USA
| | - Alexander Yu Nikitin
- Department of Biomedical Sciences, and Cornell Stem Cell Program, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
13
|
Pinart M, Kunath F, Lieb V, Tsaur I, Wullich B, Schmidt S. Prognostic models for predicting overall survival in metastatic castration-resistant prostate cancer: a systematic review. World J Urol 2018; 38:613-635. [PMID: 30554274 DOI: 10.1007/s00345-018-2574-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Prognostic models are developed to estimate the probability of the occurrence of future outcomes incorporating multiple variables. We aimed to identify and summarize existing multivariable prognostic models developed for predicting overall survival in patients with metastatic castration-resistant prostate cancer (mCRPC). METHODS The protocol was prospectively registered (CRD42017064448). We systematically searched Medline and reference lists up to May 2018 and included experimental and observational studies, which developed and/or internally validated prognostic models for mCRPC patients and were further externally validated or updated. The outcome of interest was overall survival. Two authors independently performed literature screening and quality assessment. RESULTS We included 12 studies that developed models including 8750 patients aged 42-95 years. Models included 4-11 predictor variables, mostly hemoglobin, baseline PSA, alkaline phosphatase, performance status, and lactate dehydrogenase. Very few incorporated Gleason score. Two models included predictors related to docetaxel and mitoxantrone treatments. Model performance after internal validation showed similar discrimination power ranging from 0.62 to 0.73. Overall survival models were mainly constructed as nomograms or risk groups/score. Two models obtained an overall judgment of low risk of bias. CONCLUSIONS Most models were not suitable for clinical use due to methodological shortcomings and lack of external validation. Further external validation and/or model updating is required to increase prognostic accuracy and clinical applicability prior to their incorporation in clinical practice as a useful tool in patient management.
Collapse
Affiliation(s)
- M Pinart
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Erlangen, Germany
- UroEvidence@Deutsche Gesellschaft für Urologie, Berlin, Germany
| | - F Kunath
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Erlangen, Germany
- UroEvidence@Deutsche Gesellschaft für Urologie, Berlin, Germany
| | - V Lieb
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - I Tsaur
- Department of Urology, University Medicine Mainz, Mainz, Germany
| | - B Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Schmidt
- UroEvidence@Deutsche Gesellschaft für Urologie, Berlin, Germany.
| |
Collapse
|
14
|
Gabriele C, Cantiello F, Nicastri A, Crocerossa F, Russo GI, Cicione A, Vartolomei MD, Ferro M, Morgia G, Lucarelli G, Cuda G, Damiano R, Gaspari M. High-throughput detection of low abundance sialylated glycoproteins in human serum by TiO 2 enrichment and targeted LC-MS/MS analysis: application to a prostate cancer sample set. Anal Bioanal Chem 2018; 411:755-763. [PMID: 30483857 DOI: 10.1007/s00216-018-1497-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/03/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
Glycopeptide enrichment can be a strategy to allow the detection of peptides belonging to low abundance proteins in complex matrixes such as blood serum or plasma. Though several glycopeptide enrichment protocols have shown excellent sensitivities in this respect, few reports have demonstrated the applicability of these methods to relatively large sample cohorts. In this work, a fast protocol based on TiO2 enrichment and highly sensitive mass spectrometric analysis by Selected Reaction Monitoring (SRM) has been applied to a cohort of serum samples from prostate cancer and benign prostatic hyperplasia patients in order to detect low abundance proteins in a single LC-MS/MS analysis in nanoscale format, without immunodepletion or peptide fractionation. A peptide library of over 700 formerly N-glycosylated peptides was created by data dependent analysis. Then, 16 medium to low abundance proteins were selected for detection by single injection LC-MS/MS based on selected-reaction monitoring. Results demonstrated the consistent detection of the low-level proteins under investigation. Following label-free quantification, four proteins (Adipocyte plasma membrane-associated protein, Periostin, Cathepsin D and Lysosome-associated membrane glycoprotein 2) were found significantly increased in prostate cancer sera compared to the control group. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Caterina Gabriele
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Francesco Cantiello
- Urology Unit, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy.
| | - Annalisa Nicastri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Fabio Crocerossa
- Urology Unit, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Giorgio Ivan Russo
- Urology Section, Department of Surgery, University of Catania, 95131, Catania, Italy
| | - Antonio Cicione
- Urology Unit, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Mihai D Vartolomei
- Department of Urology, European Institute of Oncology, 20141, Milan, Italy.,Department of Cell and Molecular Biology, University of Medicine, Pharmacy, Sciences and Technology, 540139, Targu Mures, Romania
| | - Matteo Ferro
- Department of Urology, European Institute of Oncology, 20141, Milan, Italy
| | - Giuseppe Morgia
- Urology Section, Department of Surgery, University of Catania, 95131, Catania, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology & Kidney Transplantation Unit, Department of Emergency & Organ Transplantation, University of Bari, 70121, Bari, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Rocco Damiano
- Urology Unit, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy
| | - Marco Gaspari
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus "S. Venuta", Viale Europa, Loc. Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
15
|
Steuber T, Tennstedt P, Macagno A, Athanasiou A, Wittig A, Huber R, Golding B, Schiess R, Gillessen S. Thrombospondin 1 and cathepsin D improve prostate cancer diagnosis by avoiding potentially unnecessary prostate biopsies. BJU Int 2018; 123:826-833. [PMID: 30216634 PMCID: PMC7379977 DOI: 10.1111/bju.14540] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objectives To investigate and further validate if two novel cancer‐related glycoproteins, discovered by a genetic‐guided proteomics approach, can distinguish benign disease from prostate cancer (PCa) in men with enlarged prostates. Patients and Methods A retrospective study was performed that included men with a total prostate‐specific antigen (PSA) concentration of 2.0–10 ng/mL, negative digital rectal examination and enlarged prostate (volume ≥35 mL). Serum samples were collected between 2011 and 2016 at a single centre from 474 men before they underwent prostate biopsy. Serum concentrations of thrombospondin 1 (THBS1) and cathepsin D (CTSD) glycoproteins were combined with the percentage of free PSA to total PSA ratio (%fPSA) to predict any or significant cancer at biopsy. Results The multivariable logistic regression model including THBS1, CTSD and %fPSA discriminated among biopsy‐positive and biopsy‐negative patients in the validation set with an area under the curve (AUC) of 0.86 (P < 0.001, 95% confidence interval (CI) 0.82–0.91), while %fPSA alone showed an AUC of 0.64 (P < 0.001, 95% CI 0.57–0.71). At 90% sensitivity for PCa, the specificity of the model was 62%, while %fPSA had a specificity of 23%. For high grade (Gleason score ≥ 7 in prostatectomy specimen) PCa, the specificity was 48% at 90% sensitivity, with an AUC of 0.83, (P < 0.001, 95% CI 0.77 to 0.88). Limitations of the study include the retrospective set‐up and single‐centre cohort. Conclusions A model combining two cancer‐related glycoproteins (THBS1 and CTSD) and %fPSA can improve PCa diagnosis and may reduce the number of unnecessary prostate biopsies because of its improved specificity for PCa when compared to %fPSA alone.
Collapse
Affiliation(s)
- Thomas Steuber
- Martini-Klinik, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Pierre Tennstedt
- Martini-Klinik, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | - Silke Gillessen
- Cantonal Hospital St. Gallen, Oncology and Haematology, St Gallen and University of Berne, Berne, Switzerland
| |
Collapse
|
16
|
Zhao WJ, Zhang ZJ, Zhu ZY, Song Q, Zheng WJ, Hu X, Mao L, Lian HZ. Time-dependent response of A549 cells upon exposure to cadmium. J Appl Toxicol 2018; 38:1437-1446. [PMID: 30051583 DOI: 10.1002/jat.3665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 01/15/2023]
Abstract
Cadmium is considered one of the most harmful carcinogenic heavy metals in the human body. Although many scientists have performed research on cadmium toxicity mechanism, the toxicokinetic process of cadmium toxicity remains unclear. In the present study, the kinetic response of proteome in/and A549 cells to exposure of exogenous cadmium was profiled. A549 cells were treated with cadmium sulfate (CdSO4 ) for different periods and expressions of proteins in cells were detected by two-dimensional gel electrophoresis. The kinetic expressions of proteins related to cadmium toxicity were further investigated by reverse transcription-polymerase chain reaction and western blotting. Intracellular cadmium accumulation and content fluctuation of several essential metals were observed after 0-24 hours of exposure by inductively coupled plasma mass spectrometry. Fifty-four protein spots showed significantly differential responses to CdSO4 exposure at both 4.5 and 24 hours. From these proteins, four expression patterns were concluded. Their expressions always exhibited a maximum abundance ratio after CdSO4 exposure for 24 hours. The expression of metallothionein-1 and ZIP-8, concentration of total protein, and contents of cadmium, zinc, copper, cobalt and manganese in cells also showed regular change. In synthesis, the replacement of the essential metals, the inhibition of the expression of metal storing protein and the activation of metal efflux system are involved in cadmium toxicity.
Collapse
Affiliation(s)
- Wen-Jie Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of E-Waste Recycling, College of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Zi-Jin Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| | - Zhen-Yu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qun Song
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| | - Wei-Juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Kou CTJ, Kandpal RP. Differential Expression Patterns of Eph Receptors and Ephrin Ligands in Human Cancers. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7390104. [PMID: 29682554 PMCID: PMC5851329 DOI: 10.1155/2018/7390104] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, which are activated by ephrin ligands that either are anchored to the membrane or contain a transmembrane domain. These molecules play important roles in the development of multicellular organisms, and the physiological functions of these receptor-ligand pairs have been extensively documented in axon guidance, neuronal development, vascular patterning, and inflammation during tissue injury. The recognition that aberrant regulation and expression of these molecules lead to alterations in proliferative, migratory, and invasive potential of a variety of human cancers has made them potential targets for cancer therapeutics. We present here the involvement of Eph receptors and ephrin ligands in lung carcinoma, breast carcinoma, prostate carcinoma, colorectal carcinoma, glioblastoma, and medulloblastoma. The aberrations in their abundances are described in the context of multiple signaling pathways, and differential expression is suggested as the mechanism underlying tumorigenesis.
Collapse
Affiliation(s)
- Chung-Ting Jimmy Kou
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Raj P. Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
18
|
Expression and activity of angiotensin-regulating enzymes is associated with prognostic outcome in clear cell renal cell carcinoma patients. PLoS One 2017; 12:e0181711. [PMID: 28809959 PMCID: PMC5557356 DOI: 10.1371/journal.pone.0181711] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 07/06/2017] [Indexed: 12/15/2022] Open
Abstract
The discovery of the intrarenal renin-angiotensin system (iRAS), which regulates angiogenesis, cell differentiation and proliferation, has opened new perspectives in the knowledge of kidney carcinogenesis. In this study we analyzed the immunohistochemical expression and fluorimetric activity of four key peptidases of iRAS in tumor tissue (n = 144) and serum samples (n = 128) from patients with renal neoplasms. Neutral endopeptidase (NEP/CD10), Angiotensin-converting enzyme-2 (ACE2), and aminopeptidase A (APA) were expressed in tumor cells whilst Angiotensin-converting enzyme (ACE) was expressed in the endothelial cells of intratumor blood vessels. The expression of ACE, ACE2 and NEP/CD10 was highest in clear cell renal cell carcinoma (CCRCC) and papillary renal cell carcinoma (PRCC). The expression of these enzymes correlated with CCRCC aggressiveness. In addition, NEP/CD10 correlated with 15-year overall survival. On the other hand, APA expression was decreased in CCRCC with higher grade and stage. The loss of expression of APA independently correlated with a worse 15-year overall survival. Serum activity of ACE2, NEP/CD10 and APA was significantly higher in renal tumor patients than in healthy subjects. Serum ACE activity was lower in high grade and metastatic CCRCC patients, and NEP/CD10 activity was negatively correlated with UISS (UCLA Integrated Staging System) and SSIGN (Mayo Clinic stage, size, grade and necrosis model) scores and with overall survival of CCRCC patients. These results suggest a metabolic imbalance of iRAS in renal tumors. This finding should be taken into account in the search of new diagnostic, prognostic and therapeutic tools for this disease.
Collapse
|
19
|
Nectin spot: a novel type of nectin-mediated cell adhesion apparatus. Biochem J 2017; 473:2691-715. [PMID: 27621480 DOI: 10.1042/bcj20160235] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/23/2016] [Indexed: 01/10/2023]
Abstract
Nectins are Ca(2+)-independent immunoglobulin (Ig) superfamily cell adhesion molecules constituting a family with four members, all of which have three Ig-like loops at their extracellular regions. Nectins play roles in the formation of a variety of cell-cell adhesion apparatuses. There are at least three types of nectin-mediated cell adhesions: afadin- and cadherin-dependent, afadin-dependent and cadherin-independent, and afadin- and cadherin-independent. In addition, nectins trans-interact with nectin-like molecules (Necls) with three Ig-like loops and other Ig-like molecules with one to three Ig-like loops. Furthermore, nectins and Necls cis-interact with membrane receptors and integrins, some of which are associated with the nectin-mediated cell adhesions, and play roles in the regulation of many cellular functions, such as cell polarization, movement, proliferation, differentiation, and survival, co-operatively with these cell surface proteins. The nectin-mediated cell adhesions are implicated in a variety of diseases, including genetic disorders, neural disorders, and cancers. Of the three types of nectin-mediated cell adhesions, the afadin- and cadherin-dependent apparatus has been most extensively investigated, but the examples of the third type of apparatus independent of afadin and cadherin are recently increasing and its morphological and functional properties have been well characterized. We review here recent advances in research on this type of nectin-mediated cell adhesion apparatus, which is named nectin spot.
Collapse
|
20
|
Zhao J. Reducing Bias for Maximum Approximate Conditional Likelihood Estimator with General Missing Data Mechanism. J Nonparametr Stat 2017; 29:577-593. [PMID: 31551650 PMCID: PMC6759332 DOI: 10.1080/10485252.2017.1339306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
Abstract
In missing data analysis, the assumption of the missing data mechanism is crucial. Under different assumptions, different statistical methods have to be developed accordingly; however, in reality this kind of assumption is usually unverifiable. Therefore a less stringent, and hence more flexible, assumption is preferred. In this paper, we consider a generally applicable missing data mechanism, which includes various instances in all three scenarios: missing completely at random, missing at random, and missing not at random. Under this general missing data mechanism, we introduce the conditional likelihood and its approximate version as the base for estimating the unknown parameter of interest. Since this approximate conditional likelihood uses the completely observed samples only, it may result in large estimation bias, which could deteriorate the statistical inference and also jeopardize other statistical procedure. To tackle this problem, we propose to use some resampling techniques to reduce the estimation bias. We consider both the Jackknife and the Bootstrap in our paper. We compare their asymptotic biases through a higher order expansion up to O(n -1). We also derive some results for the mean squared error in terms of estimation accuracy. We conduct comprehensive simulation studies under different situations to illustrate our proposed method. We also apply our method to a prostate cancer data analysis.
Collapse
Affiliation(s)
- Jiwei Zhao
- Department of Biostatistics, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
21
|
Adham D, Abbasgholizadeh N, Abazari M. Prognostic Factors for Survival in Patients with Gastric Cancer using a Random Survival Forest. Asian Pac J Cancer Prev 2017; 18:129-134. [PMID: 28240020 PMCID: PMC5563089 DOI: 10.22034/apjcp.2017.18.1.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Gastric cancer is the fifth most common cancer and the third top cause of cancer related death with about 1 million new cases and 700,000 deaths in 2012. The aim of this investigation was to identify important factors for outcome using a random survival forest (RSF) approach. Materials and Methods: Data were collected from 128 gastric cancer patients through a historical cohort study in Hamedan-Iran from 2007 to 2013. The event under consideration was death due to gastric cancer. The random survival forest model in R software was applied to determine the key factors affecting survival. Four split criteria were used to determine importance of the variables in the model including log-rank, conversation?? of events, log-rank score, and randomization. Efficiency of the model was confirmed in terms of Harrell’s concordance index. Results: The mean age of diagnosis was 63 ±12.57 and mean and median survival times were 15.2 (95%CI: 13.3, 17.0) and 12.3 (95%CI: 11.0, 13.4) months, respectively. The one-year, two-year, and three-year rates for survival were 51%, 13%, and 5%, respectively. Each RSF approach showed a slightly different ranking order. Very important covariates in nearly all the 4 RSF approaches were metastatic status, age at diagnosis and tumor size. The performance of each RSF approach was in the range of 0.29-0.32 and the best error rate was obtained by the log-rank splitting rule; second, third, and fourth ranks were log-rank score, conservation of events, and the random splitting rule, respectively. Conclusion: Low survival rate of gastric cancer patients is an indication of absence of a screening program for early diagnosis of the disease. Timely diagnosis in early phases increases survival and decreases mortality.
Collapse
Affiliation(s)
- Davoud Adham
- Department of Public Health, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran.
| | | | | |
Collapse
|
22
|
Huang Z, Ma L, Huang C, Li Q, Nice EC. Proteomic profiling of human plasma for cancer biomarker discovery. Proteomics 2016; 17. [PMID: 27550791 DOI: 10.1002/pmic.201600240] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Zhao Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou P. R. China
- Criminal police detachment of Guang'an City Public Security Bureau; P. R. China
| | - Linguang Ma
- Criminal police detachment of Guang'an City Public Security Bureau; P. R. China
| | - Canhua Huang
- State Key Laboratory for Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center of Biotherapy; Chengdu P. R. China
| | - Qifu Li
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou P. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Australia
| |
Collapse
|
23
|
Kitayama M, Mizutani K, Maruoka M, Mandai K, Sakakibara S, Ueda Y, Komori T, Shimono Y, Takai Y. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development. J Biol Chem 2016; 291:5817-5831. [PMID: 26757815 PMCID: PMC4786717 DOI: 10.1074/jbc.m115.685917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development.
Collapse
Affiliation(s)
- Midori Kitayama
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and; Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Kiyohito Mizutani
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and
| | - Masahiro Maruoka
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and
| | - Kenji Mandai
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and
| | - Shotaro Sakakibara
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and
| | - Yuki Ueda
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and
| | - Takahide Komori
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yohei Shimono
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and
| | - Yoshimi Takai
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan and; Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology and.
| |
Collapse
|
24
|
Tan WJ, Cima I, Choudhury Y, Wei X, Lim JCT, Thike AA, Tan MH, Tan PH. A five-gene reverse transcription-PCR assay for pre-operative classification of breast fibroepithelial lesions. Breast Cancer Res 2016; 18:31. [PMID: 26961242 PMCID: PMC4784364 DOI: 10.1186/s13058-016-0692-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/25/2016] [Indexed: 11/30/2022] Open
Abstract
Background Breast fibroepithelial lesions are biphasic tumors and include fibroadenomas and phyllodes tumors. Preoperative distinction between fibroadenomas and phyllodes tumors is pivotal to clinical management. Fibroadenomas are clinically benign while phyllodes tumors are more unpredictable in biological behavior, with potential for recurrence. Differentiating the tumors may be challenging when they have overlapping clinical and histological features especially on core biopsies. Current molecular and immunohistochemical techniques have a limited role in the diagnosis of breast fibroepithelial lesions. We aimed to develop a practical molecular test to aid in distinguishing fibroadenomas from phyllodes tumors in the pre-operative setting. Methods We profiled the transcriptome of a training set of 48 formalin-fixed, paraffin-embedded fibroadenomas and phyllodes tumors and further designed 43 quantitative polymerase chain reaction (qPCR) assays to verify differentially expressed genes. Using machine learning to build predictive regression models, we selected a five-gene transcript set (ABCA8, APOD, CCL19, FN1, and PRAME) to discriminate between fibroadenomas and phyllodes tumors. We validated our assay in an independent cohort of 230 core biopsies obtained pre-operatively. Results Overall, the assay accurately classified 92.6 % of the samples (AUC = 0.948, 95 % CI 0.913–0.983, p = 2.51E-19), with a sensitivity of 82.9 % and specificity of 94.7 %. Conclusions We provide a robust assay for classifying breast fibroepithelial lesions into fibroadenomas and phyllodes tumors, which could be a valuable tool in assisting pathologists in differential diagnosis of breast fibroepithelial lesions. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0692-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wai Jin Tan
- Division of Biodevices and Diagnostics, Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Singapore, 138669, Republic of Singapore.
| | - Igor Cima
- Division of Biodevices and Diagnostics, Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Singapore, 138669, Republic of Singapore.
| | - Yukti Choudhury
- Division of Biodevices and Diagnostics, Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Singapore, 138669, Republic of Singapore.
| | - Xiaona Wei
- Division of Biodevices and Diagnostics, Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Singapore, 138669, Republic of Singapore.
| | - Jeffrey Chun Tatt Lim
- Department of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Diagnostics Tower, Singapore, 169856, Republic of Singapore.
| | - Aye Aye Thike
- Department of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Diagnostics Tower, Singapore, 169856, Republic of Singapore.
| | - Min-Han Tan
- Division of Biodevices and Diagnostics, Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Singapore, 138669, Republic of Singapore.
| | - Puay Hoon Tan
- Department of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Diagnostics Tower, Singapore, 169856, Republic of Singapore. .,Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Republic of Singapore.
| |
Collapse
|
25
|
Urao N, Mirza RE, Heydemann A, Garcia J, Koh TJ. Thrombospondin-1 levels correlate with macrophage activity and disease progression in dysferlin deficient mice. Neuromuscul Disord 2016; 26:240-51. [PMID: 26927626 DOI: 10.1016/j.nmd.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/24/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
Dysferlinopathy is associated with accumulation of thrombospondin (TSP)-1 and macrophages, both of which may contribute to the pathogenesis of the disease. The purpose of this study was to determine whether TSP-1 levels can predict macrophage activity and disease progression in dysferlin deficient BlaJ mice, focusing on the early disease process. In 3 month-old BlaJ mice, muscle TSP-1 levels exhibited strong positive correlations with both accumulation of F4/80hi macrophages and with their in vivo phagocytic activity in psoas muscles as measured by magnetic resonance imaging and flow cytometry. Muscle TSP-1 levels also exhibited a strong negative correlation with muscle mass and strong positive correlations with histological measurements of muscle fiber infiltration and regeneration. Over the course of disease progression from 3 to 12 months of age, muscle TSP-1 levels showed more complicated relationships with macrophage activity and an inverse relationship with muscle mass. Importantly, blood TSP-1 levels showed strong correlations with macrophage activity and muscle degeneration, particularly early in disease progression in BlaJ mice. These data indicate that TSP-1 may contribute to a destructive macrophage response in dysferlinopathy and pose the intriguing possibility that TSP-1 levels may serve as a biomarker for disease progression.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA; Center for Tissue Repair and Regeneration, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rita E Mirza
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ahlke Heydemann
- Department of Physiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jesus Garcia
- Department of Physiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA; Center for Tissue Repair and Regeneration, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
26
|
Leibowitz-Amit R, Pintilie M, Khoja L, Azad AA, Berger R, Laird AD, Aftab DT, Chi KN, Joshua AM. Changes in plasma biomarkers following treatment with cabozantinib in metastatic castration-resistant prostate cancer: a post hoc analysis of an extension cohort of a phase II trial. J Transl Med 2016; 14:12. [PMID: 26762579 PMCID: PMC4712499 DOI: 10.1186/s12967-015-0747-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/04/2015] [Indexed: 11/10/2022] Open
Abstract
Background
Cabozantinib is an orally available inhibitor of tyrosine kinases including VEGFR2 and c-MET. We performed a post hoc analysis to find associations between select plasma biomarkers and treatment response in patients (pts) with metastatic castration resistant prostate cancer (mCRPC) who received cabozantinib 100 mg daily as part of a phase 2 non-randomized expansion cohort (NCT00940225). Methods
Plasma samples were collected at baseline, 6 weeks and at time of maximal response from 81 mCRPC pts with bone metastases, of which 33 also had measurable soft-tissue disease. Levels of 27 biomarkers were measured in duplicate using enzyme-linked immunosorbent assay. Spearman correlation coefficients were calculated for the association between biomarker levels or their change on treatment and either bone scan response (BSR) or soft tissue response according to RECIST. Results A BSR and RECIST response were seen in 66/81 pts (81 %) and 6/33 pts (18 %) respectively. No significant associations were found between any biomarker at any time point and either type of response. Plasma concentrations of VEGFA, FLT3L, c-MET, AXL, Gas6A, bone-specific alkaline phosphatase, interleukin-8 and the hypoxia markers CA9 and clusterin significantly increased during treatment with cabozantinib irrespective of response. The plasma concentrations of VEGFR2, Trap5b, Angiopoietin-2, TIMP-2 and TIE-2 significantly decreased during treatment with caboznatinib. Conclusions Our data did not reveal plasma biomarkers associated with response to cabozantinib. The observed alterations in several biomarkers during treatment with cabozantinib may provide insights on the effects of cabozantinib on tumor cells and on tumor micro-environment and may help point to potential co-targeting approaches.
Collapse
Affiliation(s)
| | - Melania Pintilie
- Division of Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| | - Leila Khoja
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, 610 University Ave, Toronto, ON, M5G 2M9, Canada.
| | - Arun A Azad
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Raanan Berger
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | - Kim N Chi
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Anthony M Joshua
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, 610 University Ave, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
27
|
Li S, Wu Z, Chen Y, Kang Z, Wang H, He P, Zhang X, Hu T, Zhang Q, Cai Y, Xu X, Guan M. Diagnostic and prognostic value of tissue and circulating levels of Ephrin-A2 in prostate cancer. Tumour Biol 2015; 37:5365-74. [PMID: 26561474 DOI: 10.1007/s13277-015-4398-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022] Open
Abstract
Ephrin-A2, a member of the Eph/ephrin family, is associated with tumorigenesis and tumor progression. This study aimed to assess the diagnostic and prognostic value of both serum and tissue levels of Ephrin-A2 in prostate cancer (PCa) management. One hundred and forty-five frozen prostate tissues, 55 paraffin-embedded prostate tissues, 88 serum samples, and seven prostate cell lines (RWPE-1, LNCaP, LNCaP-LN3, PC-3, PC-3M, PC-3M-LN4, and DU145) were examined via quantitative reverse transcription-PCR (qRT-PCR), immunohistochemistry, enzyme-linked immunosorbent assay, and western blotting. Induced Ephrin-A2 messenger RNA (mRNA) or protein expression was detected in 8.6 % (5/58) benign prostatic hyperplasia (BPH), 59.8 % (52/87) PCa, and five prostate cancer cell lines. Ephrin-A2 immunostaining was present in 6.7 % (1/15) patients with BPHs and 62.5 % (25/40) clinically localized PCa. Accordingly, serum Ephrin-A2 was significantly higher in PCa patients compared to those in the BPH patients and controls (P < 0.001). The expression of Ephrin-A2 was higher in tumor patients with an elevated Gleason score or T3-T4 staging. Ephrin-A2 expression was correlated with Ki-67 expression in PCa patients, both at the gene scale and protein level. Our data indicate that Ephrin-A2 is a potential diagnostic and prognostic biomarker and a promising molecular therapeutic target to attenuate prostate cancer progression.
Collapse
Affiliation(s)
- Shibao Li
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China.,Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhiyuan Wu
- Department of Laboratory Medicine, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yuming Chen
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China
| | - Zhihua Kang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China
| | - Ping He
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xinju Zhang
- Central Laboratory, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Tingting Hu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China
| | - Qunfeng Zhang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China.,Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yanqun Cai
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China.,Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Xiao Xu
- Central Laboratory, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China. .,Department of Laboratory Medicine, Huashan Hospital North, Fudan University, Shanghai, China. .,Central Laboratory, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Ebhardt HA, Root A, Sander C, Aebersold R. Applications of targeted proteomics in systems biology and translational medicine. Proteomics 2015; 15:3193-208. [PMID: 26097198 PMCID: PMC4758406 DOI: 10.1002/pmic.201500004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/27/2015] [Accepted: 06/09/2015] [Indexed: 01/28/2023]
Abstract
Biological systems are composed of numerous components of which proteins are of particularly high functional significance. Network models are useful abstractions for studying these components in context. Network representations display molecules as nodes and their interactions as edges. Because they are difficult to directly measure, functional edges are frequently inferred from suitably structured datasets consisting of the accurate and consistent quantification of network nodes under a multitude of perturbed conditions. For the precise quantification of a finite list of proteins across a wide range of samples, targeted proteomics exemplified by selected/multiple reaction monitoring (SRM, MRM) mass spectrometry has proven useful and has been applied to a variety of questions in systems biology and clinical studies. Here, we survey the literature of studies using SRM-MS in systems biology and clinical proteomics. Systems biology studies frequently examine fundamental questions in network biology, whereas clinical studies frequently focus on biomarker discovery and validation in a variety of diseases including cardiovascular disease and cancer. Targeted proteomics promises to advance our understanding of biological networks and the phenotypic significance of specific network states and to advance biomarkers into clinical use.
Collapse
Affiliation(s)
- H Alexander Ebhardt
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Alex Root
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY, USA
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Zhao WJ, Song Q, Zhang ZJ, Mao L, Zheng WJ, Hu X, Lian HZ. The Kinetic Response of the Proteome in A549 Cells Exposed to ZnSO4 Stress. PLoS One 2015; 10:e0133451. [PMID: 26196515 PMCID: PMC4510299 DOI: 10.1371/journal.pone.0133451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/25/2015] [Indexed: 11/29/2022] Open
Abstract
Zinc, an essential trace element, is involved in many important physiological processes. Cell responses to zinc stress show time-dependent effects besides concentration-dependence and tissue-specificity. Herein, we investigated the time-dependent differential expression of the proteome in A549 cells after administered with ZnSO4 for both 9 and 24 h using 2DE. 123 differentially expressed protein spots were detected, most of which were up-regulated by Zn2+ treatment. Interestingly, 49 proteins exhibited significant differential expression repeatedly during these two treatment periods, and moreover showed a conserved change with different ratios and four time-dependent expression patterns. Pattern 1 (up-regulated with rapid initial induction and subsequent repression) and pattern 4 (down-regulated with steady repression) were the predominant expression patterns. The abundances of the proteins in patterns 1 and 4 after 24 h of zinc treatment are always lower than that after 9 h, indicating that exogenous zinc reduced the expression of proteins in cells after 24 h or longer. Importantly, these findings could also reflect the central challenge in detecting zinc homeostasis proteins by 2DE or other high throughput analytical methods resulting from slight variation in protein expression after certain durations of exogenous zinc treatment and/or low inherent protein content in cells. These time-dependent proteome expression patterns were further validated by measuring dynamic changes in protein content in cells and in expression of two proteins using the Bradford method and western blotting, respectively. The time-dependent changes in total zinc and free Zn2+ ion contents in cells were measured using ICP-MS and confocal microscopy, respectively. The kinetic process of zinc homeostasis regulated by muffling was further revealed. In addition, we identified 50 differentially expressed proteins which are predominantly involved in metabolic process, cellular process or developmental process, and function as binding, catalytic activity or structural molecule activity. This study further elucidates our understanding of dynamic nature of the cellular response to zinc stress and the mechanism of zinc homeostasis.
Collapse
Affiliation(s)
- Wen-jie Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, Jiangsu, PR China
| | - Qun Song
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zi-jin Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, Jiangsu, PR China
| | - Li Mao
- MOE Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wei-juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, Jiangsu, PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, Jiangsu, PR China
| | - Hong-zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, Jiangsu, PR China
| |
Collapse
|
30
|
Sajic T, Liu Y, Aebersold R. Using data-independent, high-resolution mass spectrometry in protein biomarker research: perspectives and clinical applications. Proteomics Clin Appl 2015; 9:307-21. [PMID: 25504613 DOI: 10.1002/prca.201400117] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/13/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
Abstract
In medicine, there is an urgent need for protein biomarkers in a range of applications that includes diagnostics, disease stratification, and therapeutic decisions. One of the main technologies to address this need is MS, used for protein biomarker discovery and, increasingly, also for protein biomarker validation. Currently, data-dependent analysis (also referred to as shotgun proteomics) and targeted MS, exemplified by SRM, are the most frequently used mass spectrometric methods. Recently developed data-independent acquisition techniques combine the strength of shotgun and targeted proteomics, while avoiding some of the limitations of the respective methods. They provide high-throughput, accurate quantification, and reproducible measurements within a single experimental setup. Here, we describe and review data-independent acquisition strategies and their recent use in clinically oriented studies. In addition, we also provide a detailed guide for the implementation of SWATH-MS (where SWATH is sequential window acquisition of all theoretical mass spectra)-one of the data-independent strategies that have gained wide application of late.
Collapse
Affiliation(s)
- Tatjana Sajic
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
31
|
Iliuk AB, Arrington JV, Tao WA. Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications. Electrophoresis 2014; 35:3430-40. [PMID: 24890697 PMCID: PMC4250476 DOI: 10.1002/elps.201400153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 12/21/2022]
Abstract
Phosphoproteomics is the systematic study of one of the most common protein modifications in high throughput with the aim of providing detailed information of the control, response, and communication of biological systems in health and disease. Advances in analytical technologies and strategies, in particular the contributions of high-resolution mass spectrometers, efficient enrichments of phosphopeptides, and fast data acquisition and annotation, have catalyzed dramatic expansion of signaling landscapes in multiple systems during the past decade. While phosphoproteomics is an essential inquiry to map high-resolution signaling networks and to find relevant events among the apparently ubiquitous and widespread modifications of proteome, it presents tremendous challenges in separation sciences to translate it from discovery to clinical practice. In this mini-review, we summarize the analytical tools currently utilized for phosphoproteomic analysis (with focus on MS), progresses made on deciphering clinically relevant kinase-substrate networks, MS uses for biomarker discovery and validation, and the potential of phosphoproteomics for disease diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Anton B. Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | | | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
32
|
Templeton AJ, Pezaro C, Omlin A, McNamara MG, Leibowitz-Amit R, Vera-Badillo FE, Attard G, de Bono JS, Tannock IF, Amir E. Simple prognostic score for metastatic castration-resistant prostate cancer with incorporation of neutrophil-to-lymphocyte ratio. Cancer 2014; 120:3346-52. [DOI: 10.1002/cncr.28890] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Arnoud J. Templeton
- Divisions of Medical Oncology and Hematology; Princess Margaret Cancer Centre, Department of Medicine, University of Toronto; Toronto Ontario Canada
| | - Carmel Pezaro
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research; Sutton Surrey United Kingdom
| | - Aurelius Omlin
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research; Sutton Surrey United Kingdom
| | - Mairéad G. McNamara
- Divisions of Medical Oncology and Hematology; Princess Margaret Cancer Centre, Department of Medicine, University of Toronto; Toronto Ontario Canada
| | - Raya Leibowitz-Amit
- Divisions of Medical Oncology and Hematology; Princess Margaret Cancer Centre, Department of Medicine, University of Toronto; Toronto Ontario Canada
| | - Francisco E. Vera-Badillo
- Divisions of Medical Oncology and Hematology; Princess Margaret Cancer Centre, Department of Medicine, University of Toronto; Toronto Ontario Canada
| | - Gerhardt Attard
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research; Sutton Surrey United Kingdom
| | - Johann S. de Bono
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research; Sutton Surrey United Kingdom
| | - Ian F. Tannock
- Divisions of Medical Oncology and Hematology; Princess Margaret Cancer Centre, Department of Medicine, University of Toronto; Toronto Ontario Canada
| | - Eitan Amir
- Divisions of Medical Oncology and Hematology; Princess Margaret Cancer Centre, Department of Medicine, University of Toronto; Toronto Ontario Canada
| |
Collapse
|
33
|
Liu Y, Chen J, Sethi A, Li QK, Chen L, Collins B, Gillet LCJ, Wollscheid B, Zhang H, Aebersold R. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics 2014; 13:1753-68. [PMID: 24741114 PMCID: PMC4083113 DOI: 10.1074/mcp.m114.038273] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/04/2014] [Indexed: 12/31/2022] Open
Abstract
The identification of biomarkers indicating the level of aggressiveness of prostate cancer (PCa) will address the urgent clinical need to minimize the general overtreatment of patients with non-aggressive PCa, who account for the majority of PCa cases. Here, we isolated formerly N-linked glycopeptides from normal prostate (n = 10) and from non-aggressive (n = 24), aggressive (n = 16), and metastatic (n = 25) PCa tumor tissues and analyzed the samples using SWATH mass spectrometry, an emerging data-independent acquisition method that generates a single file containing fragment ion spectra of all ionized species of a sample. The resulting datasets were searched using a targeted data analysis strategy in which an a priori spectral reference library representing known N-glycosites of the human proteome was used to identify groups of signals in the SWATH mass spectrometry data. On average we identified 1430 N-glycosites from each sample. Out of those, 220 glycoproteins showed significant quantitative changes associated with diverse biological processes involved in PCa aggressiveness and metastasis and indicated functional relationships. Two glycoproteins, N-acylethanolamine acid amidase and protein tyrosine kinase 7, that were significantly associated with aggressive PCa in the initial sample cohort were further validated in an independent set of patient tissues using tissue microarray analysis. The results suggest that N-acylethanolamine acid amidase and protein tyrosine kinase 7 may be used as potential tissue biomarkers to avoid overtreatment of non-aggressive PCa.
Collapse
Affiliation(s)
- Yansheng Liu
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jing Chen
- ¶Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231
| | - Atul Sethi
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Qing K Li
- ¶Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231
| | - Lijun Chen
- ¶Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231
| | - Ben Collins
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ludovic C J Gillet
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bernd Wollscheid
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Hui Zhang
- ¶Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231;
| | - Ruedi Aebersold
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; **Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
34
|
Mass spectrometry based biomarker discovery, verification, and validation--quality assurance and control of protein biomarker assays. Mol Oncol 2014; 8:840-58. [PMID: 24713096 DOI: 10.1016/j.molonc.2014.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/10/2014] [Indexed: 12/17/2022] Open
Abstract
In its early years, mass spectrometry (MS)-based proteomics focused on the cataloging of proteins found in different species or different tissues. By 2005, proteomics was being used for protein quantitation, typically based on "proteotypic" peptides which act as surrogates for the parent proteins. Biomarker discovery is usually done by non-targeted "shotgun" proteomics, using relative quantitation methods to determine protein expression changes that correlate with disease (output given as "up-or-down regulation" or "fold-increases"). MS-based techniques can also perform "absolute" quantitation which is required for clinical applications (output given as protein concentrations). Here we describe the differences between these methods, factors that affect the precision and accuracy of the results, and some examples of recent studies using MS-based proteomics to verify cancer-related biomarkers.
Collapse
|
35
|
Chambers AG, Percy AJ, Simon R, Borchers CH. MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum. Expert Rev Proteomics 2014; 11:137-48. [PMID: 24476379 DOI: 10.1586/14789450.2014.877346] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Accurate cancer biomarkers are needed for early detection, disease classification, prediction of therapeutic response and monitoring treatment. While there appears to be no shortage of candidate biomarker proteins, a major bottleneck in the biomarker pipeline continues to be their verification by enzyme linked immunosorbent assays. Multiple reaction monitoring (MRM), also known as selected reaction monitoring, is a targeted mass spectrometry approach to protein quantitation and is emerging to bridge the gap between biomarker discovery and clinical validation. Highly multiplexed MRM assays are readily configured and enable simultaneous verification of large numbers of candidates facilitating the development of biomarker panels which can increase specificity. This review focuses on recent applications of MRM to the analysis of plasma and serum from cancer patients for biomarker verification. The current status of this approach is discussed along with future directions for targeted mass spectrometry in clinical biomarker validation.
Collapse
Affiliation(s)
- Andrew G Chambers
- University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101 - 4464 Markham St, Victoria, BC V8Z 7X8, Canada
| | | | | | | |
Collapse
|
36
|
Liu Y, Hüttenhain R, Collins B, Aebersold R. Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Rev Mol Diagn 2013; 13:811-25. [PMID: 24138574 PMCID: PMC3833812 DOI: 10.1586/14737159.2013.845089] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Among the wide range of proteomic technologies, targeted mass spectrometry (MS) has shown great potential for biomarker studies. To extend the degree of multiplexing achieved by selected reaction monitoring (SRM), we recently developed SWATH MS. SWATH MS is a variant of the emerging class of data-independent acquisition (DIA) methods and essentially converts the molecules in a physical sample into perpetually re-usable digital maps. The thus generated SWATH maps are then mined using a targeted data extraction strategy, allowing us to profile disease-related proteomes at a high degree of reproducibility. The successful application of both SRM and SWATH MS requires the a priori generation of reference spectral maps that provide coordinates for quantification. Herein, we demonstrate that the application of the mass spectrometric reference maps and the acquisition of personalized SWATH maps hold a particular promise for accelerating the current process of biomarker discovery.
Collapse
Affiliation(s)
- Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli-Str.16, 8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
37
|
Templeton AJ, Dutoit V, Cathomas R, Rothermundt C, Bärtschi D, Dröge C, Gautschi O, Borner M, Fechter E, Stenner F, Winterhalder R, Müller B, Schiess R, Wild PJ, Rüschoff JH, Thalmann G, Dietrich PY, Aebersold R, Klingbiel D, Gillessen S. Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-resistant prostate cancer (SAKK 08/08). Eur Urol 2013; 64:150-8. [PMID: 23582881 DOI: 10.1016/j.eururo.2013.03.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/24/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND The phosphatase and tensin homolog (PTEN) tumor suppressor gene is deregulated in many advanced prostate cancers, leading to activation of the phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway and thus increased cell survival. OBJECTIVE To evaluate everolimus, an inhibitor of mTOR, in patients with metastatic castration-resistant prostate cancer (mCRPC), and to explore potentially predictive serum biomarkers by proteomics, the significance of PTEN status in tumor tissue, and the impact of everolimus on immune cell subpopulations and function. DESIGN, SETTING, AND PARTICIPANTS A total of 37 chemotherapy-naive patients with mCRPC and progressive disease were recruited to this single-arm phase 2 trial (ClinicalTrials.gov identifier NCT00976755). INTERVENTION Everolimus was administered continuously at a dose of 10mg daily. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary end point was progression-free survival (PFS) at 12 wk defined as the absence of prostate-specific antigen (PSA), radiographic progression, or clinical progression. Groups were compared using Wilcoxon rank-sum tests or Fisher exact tests for continuous and discrete variables, respectively. Time-to-event end points were analyzed using the Kaplan-Meier method and univariate Cox regression. RESULTS AND LIMITATIONS A total of 13 patients (35%; 95% confidence interval, 20-53) met the primary end point. Confirmed PSA response ≥50% was seen in two (5%), and four further patients (11%) had a PSA decline ≥30%. Higher serum levels of carboxypeptidase M and apolipoprotein B were predictive for reaching the primary end point. Deletion of PTEN was associated with longer PFS and response. Treatment was associated with a dose-dependent decrease of CD3, CD4, and CD8 T lymphocytes and CD8 proliferation and an increase in regulatory T cells. Small sample size was the major limitation of the study. CONCLUSIONS Everolimus activity in unselected patients with mCRPC is moderate, but PTEN deletion could be predictive for response. Several serum glycoproteins were able to predict PFS at 12 wk. Prospective validation of these potential biomarkers is warranted. TRIAL REGISTRATION This study is registered with ClinicalTrials.gov with the identifier NCT00976755. Results of this study were presented in part at the 47th Annual Meeting of the American Society of Clinical Oncology (June 3-7, 2011; Chicago, IL, USA) and the annual meeting of the German, Austrian, and Swiss Societies for Oncology and Hematology (September 30-October 4, 2011; Basel, Switzerland).
Collapse
Affiliation(s)
- Arnoud J Templeton
- Department of Medical Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu Y, Hüttenhain R, Surinova S, Gillet LCJ, Mouritsen J, Brunner R, Navarro P, Aebersold R. Quantitative measurements of N
-linked glycoproteins in human plasma by SWATH-MS. Proteomics 2013; 13:1247-56. [DOI: 10.1002/pmic.201200417] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/16/2012] [Accepted: 10/25/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology; Zurich Switzerland
| | - Ruth Hüttenhain
- Department of Biology, Institute of Molecular Systems Biology; Zurich Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases; Zurich Switzerland
| | - Silvia Surinova
- Department of Biology, Institute of Molecular Systems Biology; Zurich Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases; Zurich Switzerland
| | - Ludovic CJ Gillet
- Department of Biology, Institute of Molecular Systems Biology; Zurich Switzerland
| | - Jeppe Mouritsen
- Department of Biology, Institute of Molecular Systems Biology; Zurich Switzerland
| | - Roland Brunner
- Department of Biology, Institute of Molecular Systems Biology; Zurich Switzerland
| | - Pedro Navarro
- Department of Biology, Institute of Molecular Systems Biology; Zurich Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology; Zurich Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases; Zurich Switzerland
- Faculty of Science, University of Zurich; Zurich Switzerland
| |
Collapse
|
39
|
Eph receptors and their ligands: promising molecular biomarkers and therapeutic targets in prostate cancer. Biochim Biophys Acta Rev Cancer 2013; 1835:243-57. [PMID: 23396052 DOI: 10.1016/j.bbcan.2013.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/21/2013] [Accepted: 01/25/2013] [Indexed: 01/01/2023]
Abstract
Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed "low risk", as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.
Collapse
|
40
|
Pin E, Fredolini C, Petricoin EF. The role of proteomics in prostate cancer research: biomarker discovery and validation. Clin Biochem 2012; 46:524-38. [PMID: 23266295 DOI: 10.1016/j.clinbiochem.2012.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 01/06/2023]
Abstract
PURPOSE Prostate Cancer (PCa) represents the second most frequent type of tumor in men worldwide. Incidence increases with patient age and represents the most important risk factor. PCa is mostly characterized by indolence, however in a small percentage of cases (3%) the disease progresses to a metastatic state. To date, the most important issue concerning PCa research is the difficulty in distinguishing indolent from aggressive disease. This problem frequently results in low-grade PCa patient overtreatment and, in parallel; an effective treatment for distant and aggressive disease is not yet available. RESULT Proteomics represents a promising approach for the discovery of new biomarkers able to improve the management of PCa patients. Markers more specific and sensitive than PSA are needed for PCa diagnosis, prognosis and response to treatment. Moreover, proteomics could represent an important tool to identify new molecular targets for PCa tailored therapy. Several possible PCa biomarkers sources, each with advantages and limitations, are under investigation, including tissues, urine, serum, plasma and prostatic fluids. Innovative high-throughput proteomic platforms are now identifying and quantifying new specific and sensitive biomarkers for PCa detection, stratification and treatment. Nevertheless, many putative biomarkers are still far from being applied in clinical practice. CONCLUSIONS This review aims to discuss the recent advances in PCa proteomics, emphasizing biomarker discovery and their application to clinical utility for diagnosis and patient stratification.
Collapse
Affiliation(s)
- Elisa Pin
- George Mason University, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | | | | |
Collapse
|
41
|
Li CI, Mirus JE, Zhang Y, Ramirez AB, Ladd JJ, Prentice RL, McIntosh MW, Hanash SM, Lampe PD. Discovery and preliminary confirmation of novel early detection biomarkers for triple-negative breast cancer using preclinical plasma samples from the Women's Health Initiative observational study. Breast Cancer Res Treat 2012; 135:611-8. [PMID: 22903690 DOI: 10.1007/s10549-012-2204-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/08/2012] [Indexed: 12/25/2022]
Abstract
Triple-negative breast cancer is a particularly aggressive and lethal breast cancer subtype that is more likely to be interval-detected rather than screen-detected. The purpose of this study is to discover and initially validate novel early detection biomarkers for triple-negative breast cancer using preclinical samples. Plasma samples collected up to 17 months before diagnosis from 28 triple-negative cases and 28 matched controls from the Women's Health Initiative Observational Study were equally divided into a training set and a test set and interrogated by a customized antibody array. Data were available on 889 antibodies; in the training set, statistically significant differences in case versus control signals were observed for 93 (10.5 %) antibodies at p < 0.05. Of these 93 candidates, 29 were confirmed in the test set at p < 0.05. Areas under the curve for these candidates ranged from 0.58 to 0.79. With specificity set at 98 %, sensitivity ranged from 4 to 68 % with 20 candidates having a sensitivity ≥ 20 % and 6 having a sensitivity ≥ 40 %. In an analysis of KEGG gene sets, the pyrimidine metabolism gene set was upregulated in cases compared to controls (p = 0.004 in the testing set) and the JAK/Stat signaling pathway gene set was downregulated (p = 0.003 in the testing set). Numerous potential early detection biomarkers specific to triple-negative breast cancer in multiple pathways were identified. Further research is required to followup on promising candidates in larger sample sizes and to better understand their potential biologic importance as our understanding of the etiology of triple-negative breast cancer continues to grow.
Collapse
Affiliation(s)
- Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Castrate-resistant prostate cancer (CRPC) occurs when disease progresses in the presence of castrate levels of androgens and remains sensitive to further hormonal manipulation. For many years the treatment of CRPC was limited to the use of docetaxel for metastatic disease. However, this has recently changed with the approval of several new agents. Sipuleucel-T, an immunotherapeutic vaccine, is now available in the US for patients with non-metastatic CRPC and abiraterone, an oral enzyme inhibitor of androgen biosynthesis, as well as cabazitaxel, a cytotoxic chemotherapeutic, have been approved for the treatment of metastatic CRPC. Also, denosumab, a subcutaneous antibody, is now an option for the treatment of patients with CRPC with bone metastases, in addition to zoledronic acid, an intravenous bisphosphonate. Further treatment advances for metastatic CRPC therapeutics are in late stage phase III development. These include therapies affecting the androgen receptor (MDV3100) as well as additional immune-based therapeutics, PROSTVAC and ipilimumab. A broad range of agents is also emerging under the term targeted therapies. The endothelin-A receptor antagonist zibotentan, the tyrosine kinase inhibitors dasatinib, sorafenib and cabozantinib, the anti-angiogenic agent aflibercept, and the clusterin inhibitor custirsen, are all currently being tested for efficacy in metastatic CRPC. The mechanism of action of these and other promising agents are discussed alongside current therapeutic options and their potential place in the treatment landscape for CRPC is considered.
Collapse
Affiliation(s)
- N Shore
- Carolina Urologic Research Center, Atlantic Urology Clinics, Myrtle Beach, SC 29572, USA.
| | | | | |
Collapse
|
43
|
Escher C, Reiter L, MacLean B, Ossola R, Herzog F, Chilton J, MacCoss MJ, Rinner O. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 2012; 12:1111-21. [PMID: 22577012 PMCID: PMC3918884 DOI: 10.1002/pmic.201100463] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/16/2012] [Indexed: 01/17/2023]
Abstract
Multiple reaction monitoring (MRM) has recently become the method of choice for targeted quantitative measurement of proteins using mass spectrometry. The method, however, is limited in the number of peptides that can be measured in one run. This number can be markedly increased by scheduling the acquisition if the accurate retention time (RT) of each peptide is known. Here we present iRT, an empirically derived dimensionless peptide-specific value that allows for highly accurate RT prediction. The iRT of a peptide is a fixed number relative to a standard set of reference iRT-peptides that can be transferred across laboratories and chromatographic systems. We show that iRT facilitates the setup of multiplexed experiments with acquisition windows more than four times smaller compared to in silico RT predictions resulting in improved quantification accuracy. iRTs can be determined by any laboratory and shared transparently. The iRT concept has been implemented in Skyline, the most widely used software for MRM experiments.
Collapse
Affiliation(s)
- Claudia Escher
- Biognosys AG, Wagistrasse 25, 8952 Schlieren, Switzerland
| | - Lukas Reiter
- Biognosys AG, Wagistrasse 25, 8952 Schlieren, Switzerland
| | - Brendan MacLean
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States
| | - Reto Ossola
- Biognosys AG, Wagistrasse 25, 8952 Schlieren, Switzerland
| | - Franz Herzog
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - John Chilton
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States
| | - Oliver Rinner
- Biognosys AG, Wagistrasse 25, 8952 Schlieren, Switzerland
| |
Collapse
|