1
|
Arshad M, Lynch C, Katipally RR, Pitroda SP, Weichselbaum RR. No disease left behind. Oncotarget 2025; 16:163-166. [PMID: 40079896 PMCID: PMC11906142 DOI: 10.18632/oncotarget.28700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
|
2
|
Venkatesulu B, Adams W, Joel R, Ross D, Yoo R, Quick C, Baldea KG, Barkan G, Block A, Bova D, Farooq A, Garant A, Gupta G, Shea SM, Showalter TN, Small W, Welsh JS, Harkenrider MM, Solanki AA. The Importance of Multiparametric Magnetic Resonance Imaging, Positron Emission Tomography/Computed Tomography, and Biopsy for Identifying and Delineating the Extent of Intraprostatic Radiorecurrent Prostate Cancer: A Secondary Analysis of the F-SHARP Clinical Trial. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00193-2. [PMID: 40057285 DOI: 10.1016/j.ijrobp.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 04/09/2025]
Abstract
PURPOSE Up to 50% of clinical recurrences after curative-intent prostate cancer radiation are intraprostatic radiorecurrences (IPRRs). Salvage local therapy (SLT) is increasingly offered, particularly as focal SLT, to reduce toxicity due to prior radiation. Limited data exist on the relative value of magnetic resonance imaging (MRI), positron emission tomography/computed tomography (PET/CT), and biopsy on SLT target delineation. We compared MRI, PET/CT, and biopsy in patients with IPRRs and the impact each modality has on identifying IPRRs and defining the extent of prostatic involvement. METHODS AND MATERIALS We performed a secondary analysis of 62 patients enrolled in a phase 1/2 clinical trial of salvage high-dose-rate brachytherapy. The IPRR was delineated using each imaging modality and by defining the involved regions of the prostate on biopsy. The exact binomial distribution was used to estimate the sensitivity of MRI and PET/CT to detect the IPRR. Exact conditional logistic regression was used to compare the tumor identified by MRI and PET/CT with the areas of biopsy involvement (gold standard) and estimate the proportion of patients with prostatic involvement outside of the image-defined targets. RESULTS The sensitivity for detecting the IPRR was 91.8% for MRI and 85.5% for PET/CT. Most patients had biopsy-proven cancer outside of the MRI-defined (70.5%) and PET/CT-defined (73.8%) target. Delineating the brachytherapy target using imaging only would have missed the full extent of recurrence in 63.9%. CONCLUSIONS Although MRI and PET/CT are valuable, a thorough biopsy is a mandatory tool to avoid missing areas of imaging-occult prostatic involvement when delivering focal SLT.
Collapse
Affiliation(s)
- BhanuPrasad Venkatesulu
- Department of Radiation Oncology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois; Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William Adams
- Department of Medicine, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Rebecca Joel
- Department of Radiation Oncology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Dylan Ross
- Department of Radiation Oncology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Ryan Yoo
- Department of Radiation Oncology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Carly Quick
- Department of Radiation Oncology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Kristin G Baldea
- Department of Urology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Guliz Barkan
- Department of Pathology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Alec Block
- Department of Radiation Oncology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Davide Bova
- Department of Radiology and Medical Imaging, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Ahmer Farooq
- Department of Urology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Aurelie Garant
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gopal Gupta
- Department of Urology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Steven M Shea
- Department of Radiology and Medical Imaging, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Timothy N Showalter
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - William Small
- Department of Radiation Oncology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - James S Welsh
- Department of Radiation Oncology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Matthew M Harkenrider
- Department of Radiation Oncology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois
| | - Abhishek A Solanki
- Department of Radiation Oncology, Loyola University Chicago, Loyola University Medical Center, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood, Illinois.
| |
Collapse
|
3
|
Le Guévelou J, Murthy V, Zilli T, Nicosia L, Bossi A, Bokhorst LP, Barret E, Ouzaid I, Nguyen PL, Ferrario F, Chargari C, Arcangeli S, Magne N, Sargos P. « Augmented radiotherapy » in the management of high-risk prostate cancer (PCa): A systematic review. Crit Rev Oncol Hematol 2025; 207:104623. [PMID: 39827978 DOI: 10.1016/j.critrevonc.2025.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND In patients with high-risk (HR) prostate cancer (PCa) treated with radiotherapy and androgen deprivation therapy (ADT), intensification with androgen receptor pathway inhibitor (ARPI) improves overall survival (OS), at the cost of significant side-effects. We hypothesized that "augmented RT" schedules (defined as either dose-escalation on the prostate gland over 78 Gy and/or addition of whole pelvic radiotherapy (WPRT)), combined with long-term ADT can reach excellent prostate cancer specific survival (PCSS) in this population with little detrimental impact on quality of life. METHODS We searched Pubmed database until February 8, 2024. Studies reporting both oncological and toxicity outcomes after "augmented RT" were deemed eligible. Studies without ADT or with ARPI intensification were deemed ineligible. RESULTS Dose-escalation within the prostate gland at doses over 78 Gy halved the risk of biochemical recurrence at 5 years, with however no impact on PCSS. The addition of WPRT provides a 5-year disease-free survival (DFS) reaching 89.5 % at 5 years, with no significant increase in late grade≥ 2 genito-urinary (GU) or gastrointestinal (GI) toxicity. Combined approaches result in 9-year PCSS ranging between 96.1 % and 100 %. Most approaches demonstrated excellent safety profiles. CONCLUSIONS "Augmented RT" reached excellent oncological outcomes, with minimal additional toxicity. The development of biomarkers might lead to further treatment personalization, in the rapidly evolving landscape of systemic therapies.
Collapse
Affiliation(s)
| | - Vedang Murthy
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Thomas Zilli
- Department of Radiation Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona, Switzerland
| | - Luca Nicosia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy
| | - Alberto Bossi
- Centre de Radiothérapie Charlebourg, La Défense, Groupe Amethyst, 65, avenue Foch, La Garenne-Colombes 92250, France
| | | | - Eric Barret
- Department of Urology, Institut Mutualiste Montsouris, Paris, France
| | - Idir Ouzaid
- Department of Urology, Bichat Claude Bernard Hospital, Paris Cité University, Paris, France
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana Farber Harvard Cancer Center, Boston, MA, USA
| | - Federica Ferrario
- Department of Radiation Oncology, School of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Cyrus Chargari
- Department of radiation oncology, Hopital Pitié Salpétrière, Paris, France
| | - Stefano Arcangeli
- Department of Radiation Oncology, School of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Nicolas Magne
- Department of radiation oncology, Institut Bergonié, Bordeaux, France
| | - Paul Sargos
- Centre de Radiothérapie Charlebourg, La Défense, Groupe Amethyst, 65, avenue Foch, La Garenne-Colombes 92250, France; Department of radiation oncology, Institut Bergonié, Bordeaux, France
| |
Collapse
|
4
|
Duque-Santana V, Fernandez J, Diaz-Gavela A, Recio M, Guerrero LL, Peña M, Sanchez S, López-Campos F, Thuissard IJ, Andreu-Vázquez C, Sanz-Rosa D, Achard V, Gómez-Iturriaga A, Díez V, Jereczek-Fossa BA, Del Cerro E, Couñago F. Apparent Diffusion Coefficient as an Early Predictive Factor of Local and Overall Response to Treatment with Androgen Deprivation Therapy and Radiotherapy in Patients with Prostate Cancer. Cancers (Basel) 2025; 17:762. [PMID: 40075610 PMCID: PMC11898613 DOI: 10.3390/cancers17050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: To analyze the predictive value of the apparent diffusion coefficient (ADC) in patients with prostate cancer (PCa) treated with radiotherapy (RT) and androgen deprivation therapy (ADT). Methods: Retrospective study of patients with high-risk, very high-risk, or unfavorable intermediate-risk PCa who received RT and ADT between 2008 and 2019 and underwent multiparametric magnetic resonance imaging mpMRI) at 6 months post-RT. Differences in ADC values were compared between patients with and without progression and/or local recurrence. Receiver operating characteristic (ROC) curves were used to obtain ADC cutoffs for predicting 10-year progression-free-survival (PFS) and local recurrence-free survival (LRFS). Results: We evaluated 98 patients (73 [74.5%] high-risk). Over a mean ± SD follow-up of 95.36 ± 30.54 months, 19 patients (19.4%) progressed; at 10 years, PFS was 75.6%, LRFS 93.8%, metastasis-free survival 85.5%, and overall survival 89.5%. Post-RT ADC was significantly lower in patients with local recurrence (1.09 ± 0.18 vs. 1.30 ± 0.20 × 10-3 mm2/s, p = 0.020) and progression (1.23 ± 0.20 vs. 1.30 ± 0.21 × 10-3 mm2/s, p = 0.004). ROC analysis identified a post-RT ADC cutoff of 1.11 × 10-3 mm2/s for local recurrence (area under curve [AUC] 0.843, sensitivity 89.4%, positive predictive value [PPV] 98.8%). The cutoff for progression was 1.24 × 10-3 mm2/s (AUC0.705, sensitivity 72.2%, PPV87.7%). Patients with a post-RT ADC value below and above 1.11 × 10-3 mm2/shad a 10-year LRFS of 66.8% and 97.7%, respectively (HR: 25.04 [2.58-242.92], p < 0.001). The corresponding rates for 10-year PFS were 58.6% and 85.6% in patients with post-RT ADC values below and above 1.24 × 10-3 mm2/s (HR: 2.916 [1.113-7.644], p = 0.015). In the multivariate analysis, a post-treatment ADC value ≤ 1.24 × 10-3 mm2/s was a significant prognostic factor for a lower PFS (HR: 3823 [1371-10,657], p = 0.010). Conclusions: This is the first study to show that post-RT ADC can be a predictive factor of local recurrence in PCa treated with RT and ADT. Moreover, this long-term study demonstrates its value as a predictive factor of progression in PCa treated with RT and ADT.
Collapse
Affiliation(s)
- Victor Duque-Santana
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid y Hospital La Luz, 28223 Madrid, Spain; (A.D.-G.); (L.L.G.); (M.P.); (S.S.); (E.D.C.)
- Department of Medicine, Faculty of Medicine, Health and Sports, European University of Madrid, 28108 Madrid, Spain; (M.R.); (I.J.T.); (D.S.-R.); (F.C.)
| | - Julio Fernandez
- Department of Radiology, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain;
| | - Ana Diaz-Gavela
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid y Hospital La Luz, 28223 Madrid, Spain; (A.D.-G.); (L.L.G.); (M.P.); (S.S.); (E.D.C.)
- Department of Medicine, Faculty of Medicine, Health and Sports, European University of Madrid, 28108 Madrid, Spain; (M.R.); (I.J.T.); (D.S.-R.); (F.C.)
| | - Manuel Recio
- Department of Medicine, Faculty of Medicine, Health and Sports, European University of Madrid, 28108 Madrid, Spain; (M.R.); (I.J.T.); (D.S.-R.); (F.C.)
- Department of Radiology, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain;
| | - Luis L. Guerrero
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid y Hospital La Luz, 28223 Madrid, Spain; (A.D.-G.); (L.L.G.); (M.P.); (S.S.); (E.D.C.)
| | - Marina Peña
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid y Hospital La Luz, 28223 Madrid, Spain; (A.D.-G.); (L.L.G.); (M.P.); (S.S.); (E.D.C.)
- Department of Medicine, Faculty of Medicine, Health and Sports, European University of Madrid, 28108 Madrid, Spain; (M.R.); (I.J.T.); (D.S.-R.); (F.C.)
| | - Sofia Sanchez
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid y Hospital La Luz, 28223 Madrid, Spain; (A.D.-G.); (L.L.G.); (M.P.); (S.S.); (E.D.C.)
| | - Fernando López-Campos
- Department of Radiation Oncology, Hospital Universitario Ramon y Cajal, 28034 Madrid, Spain;
| | - Israel J. Thuissard
- Department of Medicine, Faculty of Medicine, Health and Sports, European University of Madrid, 28108 Madrid, Spain; (M.R.); (I.J.T.); (D.S.-R.); (F.C.)
| | - Cristina Andreu-Vázquez
- Department of Veterinary Medicine, Faculty of Biomedical and Health Sciences, European University of Madrid, 28108 Madrid, Spain;
| | - David Sanz-Rosa
- Department of Medicine, Faculty of Medicine, Health and Sports, European University of Madrid, 28108 Madrid, Spain; (M.R.); (I.J.T.); (D.S.-R.); (F.C.)
| | - Vérane Achard
- Department of Radiation Oncology, Institut Bergonié, 33000 Bordeaux, France;
| | | | - Víctor Díez
- Department of Urology, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain;
| | - Barbara A. Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Elia Del Cerro
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid y Hospital La Luz, 28223 Madrid, Spain; (A.D.-G.); (L.L.G.); (M.P.); (S.S.); (E.D.C.)
- Department of Medicine, Faculty of Medicine, Health and Sports, European University of Madrid, 28108 Madrid, Spain; (M.R.); (I.J.T.); (D.S.-R.); (F.C.)
| | - Felipe Couñago
- Department of Medicine, Faculty of Medicine, Health and Sports, European University of Madrid, 28108 Madrid, Spain; (M.R.); (I.J.T.); (D.S.-R.); (F.C.)
- Department of Radiation Oncology, Hospital San Francisco de Asís y La Milagrosa, GenesisCare, 28002 Madrid, Spain
| |
Collapse
|
5
|
Gillessen S, Turco F, Davis ID, Efstathiou JA, Fizazi K, James ND, Shore N, Small E, Smith M, Sweeney CJ, Tombal B, Zilli T, Agarwal N, Antonarakis ES, Aparicio A, Armstrong AJ, Bastos DA, Attard G, Axcrona K, Ayadi M, Beltran H, Bjartell A, Blanchard P, Bourlon MT, Briganti A, Bulbul M, Buttigliero C, Caffo O, Castellano D, Castro E, Cheng HH, Chi KN, Clarke CS, Clarke N, de Bono JS, De Santis M, Duran I, Efstathiou E, Ekeke ON, El Nahas TIH, Emmett L, Fanti S, Fatiregun OA, Feng FY, Fong PCC, Fonteyne V, Fossati N, George DJ, Gleave ME, Gravis G, Halabi S, Heinrich D, Herrmann K, Hofman MS, Hope TA, Horvath LG, Hussain MHA, Jereczek-Fossa BA, Jones RJ, Joshua AM, Kanesvaran R, Keizman D, Khauli RB, Kramer G, Loeb S, Mahal BA, Maluf FC, Mateo J, Matheson D, Matikainen MP, McDermott R, McKay RR, Mehra N, Merseburger AS, Morgans AK, Morris MJ, Mrabti H, Mukherji D, Murphy DG, Murthy V, Mutambirwa SBA, Nguyen PL, Oh WK, Ost P, O'Sullivan JM, Padhani AR, Parker C, Poon DMC, Pritchard CC, Rabah DM, Rathkopf D, Reiter RE, Renard-Penna R, Ryan CJ, Saad F, Sade JP, Sandhu S, Sartor OA, Schaeffer E, Scher HI, et alGillessen S, Turco F, Davis ID, Efstathiou JA, Fizazi K, James ND, Shore N, Small E, Smith M, Sweeney CJ, Tombal B, Zilli T, Agarwal N, Antonarakis ES, Aparicio A, Armstrong AJ, Bastos DA, Attard G, Axcrona K, Ayadi M, Beltran H, Bjartell A, Blanchard P, Bourlon MT, Briganti A, Bulbul M, Buttigliero C, Caffo O, Castellano D, Castro E, Cheng HH, Chi KN, Clarke CS, Clarke N, de Bono JS, De Santis M, Duran I, Efstathiou E, Ekeke ON, El Nahas TIH, Emmett L, Fanti S, Fatiregun OA, Feng FY, Fong PCC, Fonteyne V, Fossati N, George DJ, Gleave ME, Gravis G, Halabi S, Heinrich D, Herrmann K, Hofman MS, Hope TA, Horvath LG, Hussain MHA, Jereczek-Fossa BA, Jones RJ, Joshua AM, Kanesvaran R, Keizman D, Khauli RB, Kramer G, Loeb S, Mahal BA, Maluf FC, Mateo J, Matheson D, Matikainen MP, McDermott R, McKay RR, Mehra N, Merseburger AS, Morgans AK, Morris MJ, Mrabti H, Mukherji D, Murphy DG, Murthy V, Mutambirwa SBA, Nguyen PL, Oh WK, Ost P, O'Sullivan JM, Padhani AR, Parker C, Poon DMC, Pritchard CC, Rabah DM, Rathkopf D, Reiter RE, Renard-Penna R, Ryan CJ, Saad F, Sade JP, Sandhu S, Sartor OA, Schaeffer E, Scher HI, Sharifi N, Skoneczna IA, Soule HR, Spratt DE, Srinivas S, Sternberg CN, Suzuki H, Taplin ME, Thellenberg-Karlsson C, Tilki D, Türkeri LN, Uemura H, Ürün Y, Vale CL, Vapiwala N, Walz J, Yamoah K, Ye D, Yu EY, Zapatero A, Omlin A. Management of Patients with Advanced Prostate Cancer. Report from the 2024 Advanced Prostate Cancer Consensus Conference (APCCC). Eur Urol 2025; 87:157-216. [PMID: 39394013 DOI: 10.1016/j.eururo.2024.09.017] [Show More Authors] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Innovations have improved outcomes in advanced prostate cancer (PC). Nonetheless, we continue to lack high-level evidence on a variety of topics that greatly impact daily practice. The 2024 Advanced Prostate Cancer Consensus Conference (APCCC) surveyed experts on key questions in clinical management in order to supplement evidence-based guidelines. Here we present voting results for questions from APCCC 2024. METHODS Before the conference, a panel of 120 international PC experts used a modified Delphi process to develop 183 multiple-choice consensus questions on eight different topics. Before the conference, these questions were administered via a web-based survey to the voting panel members ("panellists"). KEY FINDINGS AND LIMITATIONS Consensus was a priori defined as ≥75% agreement, with strong consensus defined as ≥90% agreement. The voting results show varying degrees of consensus, as discussed in this article and detailed in the Supplementary material. These findings do not include a formal literature review or meta-analysis. CONCLUSIONS AND CLINICAL IMPLICATIONS The voting results can help physicians and patients navigate controversial areas of clinical management for which high-level evidence is scant or conflicting. The findings can also help funders and policymakers in prioritising areas for future research. Diagnostic and treatment decisions should always be individualised on the basis of patient and cancer characteristics, and should incorporate current and emerging clinical evidence, guidelines, and logistic and economic factors. Enrolment in clinical trials is always strongly encouraged. Importantly, APCCC 2024 once again identified important gaps (areas of nonconsensus) that merit evaluation in specifically designed trials.
Collapse
Affiliation(s)
- Silke Gillessen
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biosciences, Università della Svizzera Italiana, Lugano, Switzerland.
| | - Fabio Turco
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Ian D Davis
- Monash University, Melbourne, Australia; Eastern Health, Melbourne, Australia
| | | | - Karim Fizazi
- Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| | | | - Neal Shore
- Carolina Urologic Research Center and GenesisCare, Myrtle Beach, SC, USA
| | - Eric Small
- Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, USA
| | - Matthew Smith
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christopher J Sweeney
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Bertrand Tombal
- Division of Urology, Clinique Universitaire St. Luc, Brussels, Belgium
| | - Thomas Zilli
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biosciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Armstrong
- Center for Prostate and Urologic Cancer, Duke Cancer Institute, Duke University, Durham, NC, USA
| | | | | | - Karol Axcrona
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Urology, Akershus University Hospital, Lørenskog, Norway
| | - Mouna Ayadi
- Salah Azaiz Institute, Medical School of Tunis, Tunis, Tunisia
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Pierre Blanchard
- Department of Radiation Oncology, Oncostat U1018 INSERM, Université Paris-Saclay, Gustave-Roussy, Villejuif, France
| | - Maria T Bourlon
- Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alberto Briganti
- Unit of Urology/Division of Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Muhammad Bulbul
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Consuelo Buttigliero
- Department of Oncology, San Luigi Hospital, University of Turin, Orbassano, Italy
| | - Orazio Caffo
- Medical Oncology Department, Santa Chiara Hospital, APSS, Trento, Italy
| | - Daniel Castellano
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Heather H Cheng
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Kim N Chi
- BC Cancer and University of British Columbia, Vancouver, Canada
| | - Caroline S Clarke
- Research Department of Primary Care and Population Health, University College London, London, UK
| | - Noel Clarke
- The Christie and Salford Royal Hospitals, Manchester, UK
| | - Johann S de Bono
- Institute of Cancer Research, London, UK; Royal Marsden Hospital, London, UK
| | - Maria De Santis
- Department of Urology, Charité Universitätsmedizin Berlin, Berlin, Germany; Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Ignacio Duran
- Medical Oncology Department, Hospital Universitario Marques de Valdecilla, IDIVAL, Santander, Spain
| | | | - Onyeanunam N Ekeke
- Urology Division, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria
| | | | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia; Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Stefano Fanti
- Department of Nuclear Medicine, IRCCS AOU Bologna, Bologna, Italy
| | | | - Felix Y Feng
- University of California-San Francisco, San Francisco, CA, USA
| | - Peter C C Fong
- Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | | | - Nicola Fossati
- Department of Surgery (Urology Service), Ente Ospedaliero Cantonale, Università della Svizzera Italiana Lugano, Switzerland
| | - Daniel J George
- Departments of Medicine and Surgery, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Martin E Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Gwenaelle Gravis
- Department of Medical Oncology, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France
| | - Susan Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Daniel Heinrich
- Department of Oncology and Radiotherapy, Innlandet Hospital Trust, Gjøvik, Norway
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium, University Hospital Essen, Essen, Germany
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Lisa G Horvath
- Chris O'Brien Lifehouse, University of Sydney, Sydney, Australia
| | - Maha H A Hussain
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Department of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Robert J Jones
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anthony M Joshua
- Department of Medical Oncology, Kinghorn Cancer Centre, St. Vincent's Hospital, Sydney, Australia
| | | | - Daniel Keizman
- Genitourinary Unit, Division of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Raja B Khauli
- Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon; Division of Urology, Carle-Illinois College of Medicine, Urbana, IL, USA
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Stacy Loeb
- Department of Urology and Population Health, New York University Langone Health, New York, NY, USA; Department of Surgery/Urology, Manhattan Veterans Affairs, New York, NY, USA
| | - Brandon A Mahal
- Department of Radiation Oncology, University of Miami Sylvester Cancer Center, Miami, FL, USA
| | - Fernando C Maluf
- Beneficiência Portuguesa de São Paulo, São Paulo, Brazil; Departamento de Oncologia, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - David Matheson
- Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, UK
| | - Mika P Matikainen
- Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Ray McDermott
- Department of Medical Oncology, St. Vincent's University Hospital and Cancer Trials, Dublin, Ireland
| | - Rana R McKay
- University of California-San Diego, Palo Alto, CA, USA
| | - Niven Mehra
- Department of Medical Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alicia K Morgans
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hind Mrabti
- Institut National d'Oncologie, Mohamed V University, Rabat, Morocco
| | - Deborah Mukherji
- Clemenceau Medical Center, Dubai, United Arab Emirates; Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Vedang Murthy
- Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr. George Mukhari Academic Hospital, Medunsa, South Africa
| | - Paul L Nguyen
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - William K Oh
- Division of Hematology and Medical Oncology, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Network, Antwerp, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Joe M O'Sullivan
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, UK
| | - Chris Parker
- Institute of Cancer Research, London, UK; Royal Marsden Hospital, London, UK
| | - Darren M C Poon
- Hong Kong Sanatorium and Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Danny M Rabah
- Cancer Research Chair and Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Urology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dana Rathkopf
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Raphaele Renard-Penna
- Department of Imagery, GRC 5 Predictive Onco-Uro, Pitie-Salpetriere Hospital, AP-HP, Sorbonne University, Paris, France
| | - Charles J Ryan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Fred Saad
- Centre Hospitalier de Université de Montréal, Montreal, Canada
| | | | - Shahneen Sandhu
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Oliver A Sartor
- Department of Medical Oncology, Mayo Clinic Comprehensive Cancer Center, Rochester, MN, USA
| | - Edward Schaeffer
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nima Sharifi
- Desai Sethi Urology Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Iwona A Skoneczna
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Sandy Srinivas
- Division of Medical Oncology, Stanford University Medical Center, Stanford, CA, USA
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, Division of Hematology and Oncology, Meyer Cancer Center, New York Presbyterian Hospital, New York, NY, USA
| | - Hiroyoshi Suzuki
- Department of Urology, Toho University Sakura Medical Center, Sakura, Japan
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Derya Tilki
- Martini-Klinik Prostate Cancer Center and Department of Urology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Levent N Türkeri
- Department of Urology, M.A. Aydınlar Acıbadem University, Altunizade Hospital, Istanbul, Turkey
| | - Hiroji Uemura
- Yokohama City University Medical Center, Yokohama, Japan
| | - Yüksel Ürün
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey
| | - Claire L Vale
- MRC Clinical Trials Unit, University College London, London, UK
| | - Neha Vapiwala
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jochen Walz
- Institut Paoli-Calmettes Cancer Center, Marseille, France
| | - Kosj Yamoah
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Evan Y Yu
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Almudena Zapatero
- University Hospital La Princesa, Health Research Institute, Madrid, Spain
| | - Aurelius Omlin
- Onkozentrum Zurich, University of Zurich and Tumorzentrum Hirslanden Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Vaugier L, Morvan C, Pasquier D, Buthaud X, Magné N, Beckendorf V, Sargos P, Crehange G, Pommier P, Loos G, Hasbini A, Latorzeff I, Silva M, Paul J, Blanc-Lapierre A, Supiot S. Long-term Outcomes and Patterns of Relapse Following High-dose Elective Salvage Radiotherapy and Hormone Therapy in Oligorecurrent Pelvic Nodes in Prostate Cancer: OLIGOPELVIS (GETUG-P07). Eur Urol 2025; 87:73-76. [PMID: 38490854 DOI: 10.1016/j.eururo.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND AND OBJECTIVE Androgen deprivation therapy (ADT) is a mainstay in metastatic prostate cancer, while additional salvage radiotherapy may offer prolonged remission for patients with regional node relapses. We performed an open-label, phase II trial to assess the long-term outcomes and patterns of relapse of 6-months ADT and elective pelvic radiotherapy in men with oligorecurrent (<6) pelvic nodes in prostate cancer (Oligopelvis GETUG-P07). METHODS We analyzed the 5-yr outcomes. Progression was defined as two consecutive prostate-specific antigen levels above the level at inclusion and/or clinical progression as per RECIST 1.1 and/or death from any cause. KEY FINDINGS AND LIMITATIONS Sixty-seven patients were recruited. The median follow-up was 6.1 yr (95%CI: 5.9-6.3). Grade 2+ 3-yr, 4-yr and 5-yr genito-urinary and gastro-intestinal toxicities affected 15%, 9%, 4% and 2%, 3%, 4% of non-progressive patients, respectively. 5-yr progression-free, biochemical relapse-free and ADT-free survivals were 39%, 31% and 64%, respectively. In total, 45 patients had progression and 38 had the following clinical progression: local (18%), N1 (29%), M1a (50%), M1b (32%) and M1c (11%). CONCLUSIONS AND CLINICAL IMPLICATIONS Finally, combined elective pelvic radiotherapy and ADT appeared to prolong tumor control with limited toxicity. At 5 years, one third of patients had not relapsed biochemically. The major site of relapse was para-aortic lymph nodes.
Collapse
Affiliation(s)
- Loig Vaugier
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Cyrille Morvan
- Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - David Pasquier
- Academic Radiation Oncology Department, Centre Oscar Lambret, Lille, France; Centre de Recherche en Informatique, Signal et Automatique de Lille, CRIStAL UMR CNRS 9189, Université de Lille, Lille, France
| | - Xavier Buthaud
- Department of Radiation Oncology, Centre Catherine de Sienne, Nantes, France
| | - Nicolas Magné
- Department of Radiation Oncology, Institut de Cancérologie de la Loire, St. Priest en Jarez, France
| | - Veronique Beckendorf
- Department of Radiation Oncology, Centre Alexis Vautrin, Vandoeuvre-lès-Nancy, France
| | - Paul Sargos
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | - Gilles Crehange
- Department of Radiation Oncology, Georges-Francois Leclerc Cancer Center, Dijon, France
| | - Pascal Pommier
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Genevieve Loos
- Department of Radiation Oncology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Ali Hasbini
- Department of Radiation Oncology, Clinique Pasteur, Brest, France
| | - Igor Latorzeff
- Department of Radiation Oncology, Oncorad Clinique Pasteur, Toulouse, France
| | - Marlon Silva
- Department of Radiation Oncology, Centre Francois Baclesse, Caen, France
| | - Julie Paul
- Department of Biostatistics, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Audrey Blanc-Lapierre
- Department of Biostatistics, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Stéphane Supiot
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Saint-Herblain, France; Laboratoire US2B, Unité en Sciences Biologiques et Biotechnologies, UMR CNRS 6286, UFR Sciences et Techniques, Nantes, France.
| |
Collapse
|
7
|
Anttinen M, Mäkelä P, Nurminen P, Pärssinen H, Malaspina S, Sainio T, Högerman M, Taimen P, Blanco Sequeiros R, Boström PJ. Salvage Magnetic Resonance Imaging-guided Transurethral Ultrasound Ablation for Localized Radiorecurrent Prostate Cancer. EUR UROL SUPPL 2025; 71:69-77. [PMID: 39703741 PMCID: PMC11656090 DOI: 10.1016/j.euros.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2024] [Indexed: 12/21/2024] Open
Abstract
Background and objective Toxicity from local salvage therapy for radiorecurrent prostate cancer (PCa) remains a concern. This phase 2 study evaluates the outcomes of salvage magnetic resonance imaging (MRI)-guided transurethral ultrasound ablation (sTULSA). Methods Men with biochemically relapsed, biopsy-proven PCa following definitive radiotherapy underwent whole- or partial-gland sTULSA (NCT03350529). Prostate-confined recurrence was confirmed by MRI and prostate-specific membrane antigen (PSMA) positron emission tomography (PET) computed tomography (CT). The primary endpoints were safety (Clavien-Dindo classification) and efficacy (prostate-specific antigen [PSA], PSMA PET-CT, and MRI-targeted biopsy at 12 mo). The secondary endpoints included functional and survival outcomes. Key findings and limitations Thirty-nine patients underwent sTULSA (64% whole gland), with a median age of 73 yr (interquartile range [IQR]: 69-77) and PSA of 3.3 ng/ml (IQR: 2-6.2). Three patients had undergone prior salvage therapy, 16 were receiving hormonal therapy at enrollment, and 12 had a history of transurethral interventions. Eighteen patients had incidental urethral strictures on baseline cystoscopy. Over a median follow-up of 40 mo (IQR: 24-55), 56% experienced adverse events. Severe genitourinary toxicity (Clavien-Dindo ≥3 or hospitalization) occurred in 28%, including three patients with puboprostatic fistulas and two patients requiring cystectomy. Leak-free continence was maintained in 53%. At 12 mo, 89% showed no cancer in the targeted area, with a median PSA reduction of 95% (p < 0.001). Five-year metastasis-free, failure-free, and biochemical recurrence-free survival probabilities (95% confidence interval) were 97% (0.93-1.00), 70% (0.54-0.91), and 54% (0.31-0.93), respectively. Limitations included single-arm design and moderate sample size. Conclusions and clinical implications It has been observed that sTULSA is effective for radiorecurrent PCa, although genitourinary toxicity remains a concern. Further studies should refine patient selection and treatment parameters to improve safety and tolerability. Patient summary In this study, we examined a new treatment called magnetic resonance imaging-guided transurethral ultrasound ablation for prostate cancer that has returned after radiation therapy. We found that the treatment provided effective and lasting cancer control for most patients. However, a notable number of patients experienced significant genitourinary toxicity, including severe adverse effects affecting urinary function. Careful patient selection is crucial to minimize these adverse effects and ensure the best results.
Collapse
Affiliation(s)
- Mikael Anttinen
- Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| | - Pietari Mäkelä
- Department of Diagnostic Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Pertti Nurminen
- Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| | - Heikki Pärssinen
- Department of Diagnostic Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Simona Malaspina
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Teija Sainio
- Department of Medical Physics, University of Turku and Turku University Hospital, Turku, Finland
| | - Mikael Högerman
- Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| | - Pekka Taimen
- Institute of Biomedicine, University of Turku and Department of Pathology, Turku University Hospital, Turku, Finland
| | - Roberto Blanco Sequeiros
- Department of Diagnostic Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Peter J. Boström
- Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
8
|
Saripalli AL, Venkatesulu BP, Nickols NG, Valle LF, Harkenrider MM, Kishan AU, Solanki AA. Systematic review and recommendations for re-irradiation for intraprostatic radiorecurrent prostate cancer after definitive radiation therapy. World J Urol 2024; 42:520. [PMID: 39264453 DOI: 10.1007/s00345-024-05205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/17/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE Intraprostatic recurrence (IRR) of prostate cancer after radiation therapy is increasingly identified. Our objective was to review the literature to determine the optimal workup for identifying IRR, the management options, and practical considerations for the delivery of re-irradiation as salvage local therapy. METHODS We performed a systematic review of available publications and ongoing studies on the topics of IRR, with a focus on salvage re-irradiation. RESULTS Work up of biochemically recurrent prostate cancer includes PSMA PET/CT and multiparametric MRI, followed by biopsy to confirm IRR. Management options include continued surveillance, palliative hormonal therapy, and salvage local therapy. Salvage local therapy can be delivered using re-irradiation with low dose rate brachytherapy, high dose rate (HDR) brachytherapy, and stereotactic body radiotherapy (SBRT), as well as non-radiation modalities, such as cryotherapy, high-intensity focused ultrasound, irreversible electroporation and radical prostatectomy. Data demonstrate that HDR brachytherapy and SBRT have similar efficacy compared to the other salvage local therapy modalities, while having more favorable side effect profiles. Recommendations for radiation therapy planning and delivery using HDR and SBRT based on the available literature are discussed. CONCLUSION Salvage re-irradiation is safe and effective and should be considered in patients with IRR.
Collapse
Affiliation(s)
- Anjali L Saripalli
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - Bhanu Prasad Venkatesulu
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - Nicholas G Nickols
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiation Oncology, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Luca F Valle
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiation Oncology, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Matthew M Harkenrider
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Abhishek A Solanki
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
9
|
Wang H, Gong L, Huang X, White SD, Chung HT, Vesprini D, Petchiny TN, Fokas E, He H, Kerbel RS, Liu SK. Potentiating Salvage Radiotherapy in Radiorecurrent Prostate Cancer Through Anti-CTLA4 Therapy: Implications from a Syngeneic Model. Cancers (Basel) 2024; 16:2839. [PMID: 39199612 PMCID: PMC11352774 DOI: 10.3390/cancers16162839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
High-risk prostate cancer (PCa) is a leading cause in cancer death and can elicit significant morbidity and mortality. Currently, the salvage of local disease recurrence after radiation therapy (RT) is a major clinical problem. Immune checkpoint inhibitors (ICIs), which enhance immune activation, have demonstrated clinical therapeutic promise in combination with ionizing radiation (IR) in certain advanced cancers. We generated the TRAMP-C2 HF radiorecurrent syngeneic mouse model to evaluate the therapeutic efficacy of ICIs in combination with RT. The administration of anti-PDL1 and/or anti-CTLA4 did not achieve a significant tumor growth delay compared to the control. The combination of IR and anti-PDL1 did not yield additional a growth delay compared to IR and the isotype control. Strikingly, a significant tumor growth delay and complete cure in one-third of the mice were seen with the combination of IR and anti-CTLA4. Immune cells in tumor-draining lymph nodes and tumor-infiltrating lymphocytes from mice treated with IR and anti-CTLA4 demonstrated an upregulation of genes in T-cell functions and enrichment in both CD4+ and CD8+ T-cell populations compared to mice given IR and the isotype control. Taken together, these results indicate enhancement of T-cell response in radiorecurrent PCa by IR and anti-CTLA4.
Collapse
Affiliation(s)
- Hanzhi Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Linsey Gong
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
| | - Xiaoyong Huang
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Stephanie D. White
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Hans T. Chung
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1P5, Canada
| | - Danny Vesprini
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1P5, Canada
| | - Tera N. Petchiny
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Emmanouil Fokas
- Department of Radiation Oncology, CyberKnife and Radiation Therapy, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Robert S. Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Stanley K. Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1P5, Canada
| |
Collapse
|
10
|
Slevin F, Zattoni F, Checcucci E, Cumberbatch MGK, Nacchia A, Cornford P, Briers E, De Meerleer G, De Santis M, Eberli D, Gandaglia G, Gillessen S, Grivas N, Liew M, Linares Espinós EE, Oldenburg J, Oprea-Lager DE, Ploussard G, Rouvière O, Schoots IG, Smith EJ, Stranne J, Tilki D, Smith CT, Van Den Bergh RCN, Van Oort IM, Wiegel T, Yuan CY, Van den Broeck T, Henry AM. A Systematic Review of the Efficacy and Toxicity of Brachytherapy Boost Combined with External Beam Radiotherapy for Nonmetastatic Prostate Cancer. Eur Urol Oncol 2024; 7:677-696. [PMID: 38151440 DOI: 10.1016/j.euo.2023.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
CONTEXT The optimum use of brachytherapy (BT) combined with external beam radiotherapy (EBRT) for localised/locally advanced prostate cancer (PCa) remains uncertain. OBJECTIVE To perform a systematic review to determine the benefits and harms of EBRT-BT. EVIDENCE ACQUISITION Ovid MEDLINE, Embase, and EBM Reviews-Cochrane Central Register of Controlled Trials databases were systematically searched for studies published between January 1, 2000 and June 7, 2022, according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Eligible studies compared low- or high-dose-rate EBRT-BT against EBRT ± androgen deprivation therapy (ADT) and/or radical prostatectomy (RP) ± postoperative radiotherapy (RP ± EBRT). The main outcomes were biochemical progression-free survival (bPFS), severe late genitourinary (GU)/gastrointestinal toxicity, metastasis-free survival (MFS), cancer-specific survival (CSS), and overall survival (OS), at/beyond 5 yr. Risk of bias was assessed and confounding assessment was performed. A meta-analysis was performed for randomised controlled trials (RCTs). EVIDENCE SYNTHESIS Seventy-three studies were included (two RCTs, seven prospective studies, and 64 retrospective studies). Most studies included participants with intermediate-or high-risk PCa. Most studies, including both RCTs, used ADT with EBRT-BT. Generally, EBRT-BT was associated with improved bPFS compared with EBRT, but similar MFS, CSS, and OS. A meta-analysis of the two RCTs showed superior bPFS with EBRT-BT (estimated fixed-effect hazard ratio [HR] 0.54 [95% confidence interval {CI} 0.40-0.72], p < 0.001), with absolute improvements in bPFS at 5-6 yr of 4.9-16%. However, no difference was seen for MFS (HR 0.84 [95% CI 0.53-1.28], p = 0.4) or OS (HR 0.87 [95% CI 0.63-1.19], p = 0.4). Fewer studies examined RP ± EBRT. There is an increased risk of severe late GU toxicity, especially with low-dose-rate EBRT-BT, with some evidence of increased prevalence of severe GU toxicity at 5-6 yr of 6.4-7% across the two RCTs. CONCLUSIONS EBRT-BT can be considered for unfavourable intermediate/high-risk localised/locally advanced PCa in patients with good urinary function, although the strength of this recommendation based on the European Association of Urology guideline methodology is weak given that it is based on improvements in biochemical control. PATIENT SUMMARY We found good evidence that radiotherapy combined with brachytherapy keeps prostate cancer controlled for longer, but it could lead to worse urinary side effects than radiotherapy without brachytherapy, and its impact on cancer spread and patient survival is less clear.
Collapse
Affiliation(s)
- Finbar Slevin
- University of Leeds, Leeds, UK; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Fabio Zattoni
- Department Surgery, Oncology and Gastroenterology, Urologic Unit, University of Padova, Padova, Italy
| | - Enrico Checcucci
- Division of Urology, Department of Oncology, School of Medicine, San Luigi Hospital, University of Turin, Turin, Italy
| | | | | | - Philip Cornford
- Department of Urology, Liverpool University Hospitals NHS Trust, Liverpool, UK
| | | | - Gert De Meerleer
- Department of Radiotherapy, University Hospitals Leuven, Leuven, Belgium
| | - Maria De Santis
- Department of Urology, Charité Universitätsmedizin, Berlin, Germany; Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Silke Gillessen
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Nikolaos Grivas
- Department of Urology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Matthew Liew
- Department of Urology, Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, UK
| | | | - Jan Oldenburg
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniela E Oprea-Lager
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Olivier Rouvière
- Hospices Civils de Lyon, Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Lyon, France
| | - Ivo G Schoots
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Emma Jane Smith
- European Association of Urology Guidelines Office, Arnhem, The Netherlands
| | - Johan Stranne
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Urology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, Koc University Hospital, Istanbul, Turkey
| | - Catrin Tudur Smith
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | | | - Inge M Van Oort
- Radboud University Medical Center, Department of Urology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | - Cathy Y Yuan
- Department of Medicine, Health Science Centre, McMaster University, Hamilton, Ontario, Canada
| | | | - Ann M Henry
- University of Leeds, Leeds, UK; Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
11
|
Thakker PU, Sandberg M, Hemal AK, Rodriguez AR. A Comprehensive Review of the Current State of Robot-assisted Laparoscopic Salvage Prostatectomy. Int Braz J Urol 2024; 50:398-414. [PMID: 38701186 PMCID: PMC11262726 DOI: 10.1590/s1677-5538.ibju.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Salvage robot assisted radical prostatectomy (sRARP) is performed for patients with biochemical or biopsy proven, localized prostate cancer recurrences after radiation or ablative therapies. Traditionally, sRARP has been avoided by lower volume surgeons due to technical demand and high complication rates. Post-radiation sRARP outcomes studies exist but remain few in number. With increasing use of whole gland and focal ablative therapies, updates on sRARP in this setting are needed. The aim of this narrative review is to provide an overview of recently reviewed studies on the oncologic outcomes, functional outcomes, and complications after post-radiation and post-ablative sRARP. Tips and tricks are provided to guide surgeons who may perform sRARP. MATERIALS AND METHODS We performed a non-systematic literature search of PubMed and MEDLINE for the most relevant articles pertaining to the outlined topics from 2010-2022 without limitation on study design. Only case reports, editorial comments, letters, and manuscripts in non-English languages were excluded. Key Content and Findings: Salvage robotic radical prostatectomy is performed in cases of biochemical recurrence after radiation or ablative therapies. Oncologic outcomes after sRARP are worse compared to primary surgery (pRARP) though improvements have been made with the robotic approach when compared to open salvage prostatectomy. Higher pre-sRARP PSA levels and more advanced pathologic stage portend worse oncologic outcomes. Patients meeting low-risk, EAU-biochemical recurrence criteria have improved oncologic outcomes compared to those with high-risk BCR. While complication rates in sRARP are higher compared to pRARP, Retzius sparing approaches may reduce complication rates, particularly rectal injuries. In comparison to the traditional open approach, sRARP is associated with a lower rate of bladder neck contracture. In terms of functional outcomes, potency rates after sRARP are poor and continence rates are low, though Retzius sparing approaches demonstrate acceptable recovery of urinary continence by 1 year, post-operatively. CONCLUSIONS Advances in the robotic platform and improvement in robotic experience have resulted in acceptable complication rates after sRARP. However, oncologic and functional outcomes after sRARP in both the post-radiation and post-ablation settings are worse compared to pRARP. Thus, when engaging in shared decision making with patients regarding the initial management of localized prostate cancer, patients should be educated regarding oncologic and functional outcomes and complications in the case of biochemically recurrent prostate cancer that may require sRARP.
Collapse
Affiliation(s)
- Parth U Thakker
- Department of Urology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Maxwell Sandberg
- Department of Urology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Ashok K Hemal
- Department of Urology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Alejandro R Rodriguez
- Department of Urology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
12
|
Solanki AA, Yoo RK, Adams W, Davicioni E, Mysz ML, Shea S, Gupta GN, Showalter T, Garant A, Hentz C, Farooq A, Baldea K, Small W, Harkenrider MM. F-SHARP: a Phase I/II trial of focal salvage high-dose-rate brachytherapy for Radiorecurrent prostate cancer. BJU Int 2024; 133:188-196. [PMID: 37562825 DOI: 10.1111/bju.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
BACKGROUND Intraprostatic local radiorecurrence (LRR) after definitive radiation is being increasingly identified due to the implementation of molecular positron emission tomography (PET)/computed tomography (CT) imaging for the evaluation of biochemical recurrence. Salvage high-dose rate (HDR) brachytherapy offers a promising local therapy option, with encouraging toxicity and efficacy based on early series. Furthermore, the incorporation of advanced imaging allows for focal HDR to further reduce toxicity to maximise the therapeutic ratio. The objectives of the 'focal salvage HDR brachytherapy for locally recurrent prostate cancer in patients treated with prior radiotherapy' (F-SHARP) trial are to determine the acute and late toxicity and efficacy outcomes of focal salvage HDR brachytherapy for LRR prostate cancer. STUDY DESIGN The F-SHARP is a multi-institutional two-stage Phase I/II clinical trial of salvage focal HDR brachytherapy for LRR prostate cancer enrolling patients at three centres. ENDPOINTS The primary endpoint is the acute radiation-related Grade ≥3 Common Terminology Criteria for Adverse Events (CTCAE, version 4.03) genitourinary (GU) and gastrointestinal (GI) toxicity rate, defined as within 3 months of brachytherapy. Secondary endpoints include acute and late CTCAE toxicity, biochemical failure, patterns of clinical progression, disease-specific and overall survival, and health-related quality of life, as measured by the International Prostate Symptom Score and 26-item Expanded Prostate Cancer Index Composite instruments. PATIENTS AND METHODS Key eligibility criteria include: biopsy confirmed LRR prostate adenocarcinoma after prior definitive radiation therapy using any radiotherapeutic modality, no evidence of regional or distant metastasis, and cT1-3a Nx or N0 prostate cancer at initial treatment. All patients will have multiparametric magnetic resonance imaging and molecular PET/CT imaging if possible. In Stage 1, seven patients will be accrued. If there are two or more GI or GU Grade ≥3 toxicities, the study will be stopped. Otherwise, 17 additional patients will be accrued (total of 24 patients). For Stage 2, the cohort will expand to 62 subjects to study the efficacy outcomes, long-term toxicity profile, quality of life, and compare single- vs multi-fraction HDR. Transcriptomic analysis of recurrence biopsies will be performed to identify potential prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Abhishek A Solanki
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, USA
| | - Ryan K Yoo
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, USA
| | - William Adams
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL, USA
| | | | - Michael L Mysz
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, USA
| | - Steven Shea
- Department of Radiology, Stritch School of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL, USA
| | - Gopal N Gupta
- Department of Urology, Stritch School of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL, USA
| | - Timothy Showalter
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Aurelie Garant
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA
| | | | - Ahmer Farooq
- Department of Urology, Stritch School of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL, USA
| | - Kristin Baldea
- Department of Urology, Stritch School of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL, USA
| | - William Small
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, USA
| | - Matthew M Harkenrider
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
13
|
Massie C, Gnanapragasam VJ, Barrett T, Warren A, Anand S, Keates A, Pacey S. Implementation and yield of upfront genomic profiling in a clinical prostate cancer diagnostic pathway. BJU Int 2023; 132:499-501. [PMID: 37431085 PMCID: PMC7615268 DOI: 10.1111/bju.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Affiliation(s)
- Charlie Massie
- Cambridge Prostate Cancer Research Collaborative, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Early Detection Programme, CRUK Cambridge Cancer Centre, Cambridge, UK
| | - Vincent J Gnanapragasam
- Cambridge Prostate Cancer Research Collaborative, University of Cambridge, Cambridge, UK
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| | - Tristan Barrett
- Cambridge Prostate Cancer Research Collaborative, University of Cambridge, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Anne Warren
- Cambridge Prostate Cancer Research Collaborative, University of Cambridge, Cambridge, UK
- Department of Pathology, Addenbrookes Hospital, Cambridge, UK
| | - Shubha Anand
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Molecular Diagnostics Laboratory, CRUK Cambridge Cancer Centre, Cambridge, UK
| | - Alexandra Keates
- Cambridge Prostate Cancer Research Collaborative, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| | - Simon Pacey
- Cambridge Prostate Cancer Research Collaborative, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Drobner J, Kaldany A, Shah MS, Ghodoussipour S. The Role of Salvage Radical Prostatectomy in Patients with Radiation-Resistant Prostate Cancer. Cancers (Basel) 2023; 15:3734. [PMID: 37509395 PMCID: PMC10378204 DOI: 10.3390/cancers15143734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
There are multiple treatment strategies for patients with localized prostate adenocarcinoma. In intermediate- and high-risk patients, external beam radiation therapy demonstrates effective long-term cancer control rates comparable to radical prostatectomy. In patients who opt for initial radiotherapy but have a local recurrence of their cancer, there is no unanimity on the optimal salvage approach. The lack of randomized trials comparing surgery to other local salvage therapy or observation makes it difficult to ascertain the ideal management. A narrative review of existing prospective and retrospective data related to salvage radical prostatectomy after radiation therapy was undertaken. Based on retrospective and prospective data, post-radiation salvage radical prostatectomy confers oncologic benefits, with overall survival ranging from 84 to 95% at 5 years and from 52 to 77% at 10 years. Functional morbidity after salvage prostatectomy remains high, with rates of post-surgical incontinence and erectile dysfunction ranging from 21 to 93% and 28 to 100%, respectively. Factors associated with poor outcomes after post-radiation salvage prostatectomy include preoperative PSA, the Gleason score, post-prostatectomy staging, and nodal involvement. Salvage radical prostatectomy represents an effective treatment option for patients with biochemical recurrence after radiotherapy, although careful patient selection is important to optimize oncologic and functional outcomes.
Collapse
Affiliation(s)
- Jake Drobner
- Division of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Alain Kaldany
- Division of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Mihir S Shah
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Saum Ghodoussipour
- Division of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
15
|
Heesterman BL, Aben KKH, de Jong IJ, Pos FJ, van der Hel OL. Radical prostatectomy versus external beam radiotherapy with androgen deprivation therapy for high-risk prostate cancer: a systematic review. BMC Cancer 2023; 23:398. [PMID: 37142955 PMCID: PMC10157926 DOI: 10.1186/s12885-023-10842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/13/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND To summarize recent evidence in terms of health-related quality of life (HRQoL), functional and oncological outcomes following radical prostatectomy (RP) compared to external beam radiotherapy (EBRT) and androgen deprivation therapy (ADT) for high-risk prostate cancer (PCa). METHODS We searched Medline, Embase, Cochrane Database of Systematic Reviews, Cochrane Controlled Trial Register and the International Standard Randomized Controlled Trial Number registry on 29 march 2021. Comparative studies, published since 2016, that reported on treatment with RP versus dose-escalated EBRT and ADT for high-risk non-metastatic PCa were included. The Newcastle-Ottawa Scale was used to appraise quality and risk of bias. A qualitative synthesis was performed. RESULTS Nineteen studies, all non-randomized, met the inclusion criteria. Risk of bias assessment indicated low (n = 14) to moderate/high (n = 5) risk of bias. Only three studies reported functional outcomes and/or HRQoL using different measurement instruments and methods. A clinically meaningful difference in HRQoL was not observed. All studies reported oncological outcomes and survival was generally good (5-year survival rates > 90%). In the majority of studies, a statistically significant difference between both treatment groups was not observed, or only differences in biochemical recurrence-free survival were reported. CONCLUSIONS Evidence clearly demonstrating superiority in terms of oncological outcomes of either RP or EBRT combined with ADT is lacking. Studies reporting functional outcomes and HRQoL are very scarce and the magnitude of the effect of RP versus dose-escalated EBRT with ADT on HRQoL and functional outcomes remains largely unknown.
Collapse
Affiliation(s)
- Berdine L Heesterman
- Netherlands Comprehensive Cancer Organisation, Godebaldkwartier 419, 3511 DT, Utrecht, The Netherlands
| | - Katja K H Aben
- Netherlands Comprehensive Cancer Organisation, Godebaldkwartier 419, 3511 DT, Utrecht, The Netherlands.
- Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Igle Jan de Jong
- Department of Urology, University Medical Center Groningen, Groningen, the Netherlands
| | - Floris J Pos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Olga L van der Hel
- Netherlands Comprehensive Cancer Organisation, Godebaldkwartier 419, 3511 DT, Utrecht, The Netherlands
| |
Collapse
|
16
|
Patel SA, Ma TM, Wong JK, Stish BJ, Dess RT, Pilar A, Reddy C, Wedde TB, Lilleby WA, Fiano R, Merrick GS, Stock RG, Demanes DJ, Moran BJ, Tran PT, Krauss DJ, Abu-Isa EI, Pisansky TM, Choo CR, Song DY, Greco S, Deville C, DeWeese TL, Tilki D, Ciezki JP, Karnes RJ, Nickols NG, Rettig MB, Feng FY, Berlin A, Tward JD, Davis BJ, Reiter RE, Boutros PC, Romero T, Horwitz EM, Tendulkar RD, Steinberg ML, Spratt DE, Xiang M, Kishan AU. External Beam Radiation Therapy With or Without Brachytherapy Boost in Men With Very-High-Risk Prostate Cancer: A Large Multicenter International Consortium Analysis. Int J Radiat Oncol Biol Phys 2023; 115:645-653. [PMID: 36179990 DOI: 10.1016/j.ijrobp.2022.09.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Very-high-risk (VHR) prostate cancer (PC) is an aggressive subgroup with high risk of distant disease progression. Systemic treatment intensification with abiraterone or docetaxel reduces PC-specific mortality (PCSM) and distant metastasis (DM) in men receiving external beam radiation therapy (EBRT) with androgen deprivation therapy (ADT). Whether prostate-directed treatment intensification with the addition of brachytherapy (BT) boost to EBRT with ADT improves outcomes in this group is unclear. METHODS AND MATERIALS This cohort study from 16 centers across 4 countries included men with VHR PC treated with either dose-escalated EBRT with ≥24 months of ADT or EBRT + BT boost with ≥12 months of ADT. VHR was defined by National Comprehensive Cancer Network (NCCN) criteria (clinical T3b-4, primary Gleason pattern 5, or ≥2 NCCN high-risk features), and results were corroborated in a subgroup of men who met Systemic Therapy in Advancing or Metastatic Prostate Cancer: Evaluation of Drug Efficacy (STAMPEDE) trials inclusion criteria (≥2 of the following: clinical T3-4, Gleason 8-10, or PSA ≥40 ng/mL). PCSM and DM between EBRT and EBRT + BT were compared using inverse probability of treatment weight-adjusted Fine-Gray competing risk regression. RESULTS Among the entire cohort, 270 underwent EBRT and 101 EBRT + BT. After a median follow-up of 7.8 years, 6.7% and 5.9% of men died of PC and 16.3% and 9.9% had DM after EBRT and EBRT + BT, respectively. There was no significant difference in PCSM (sHR, 1.47 [95% CI, 0.57-3.75]; P = .42) or DM (sHR, 0.72, [95% CI, 0.30-1.71]; P = .45) between EBRT + BT and EBRT. Results were similar within the STAMPEDE-defined VHR subgroup (PCSM: sHR, 1.67 [95% CI, 0.48-5.81]; P = .42; DM: sHR, 0.56 [95% CI, 0.15-2.04]; P = .38). CONCLUSIONS In this VHR PC cohort, no difference in clinically meaningful outcomes was observed between EBRT alone with ≥24 months of ADT compared with EBRT + BT with ≥12 months of ADT. Comparative analyses in men treated with intensified systemic therapy are warranted.
Collapse
Affiliation(s)
- Sagar A Patel
- Department of Radiation Oncology, Emory University, Atlanta, Georgia.
| | - Ting Martin Ma
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Jessica K Wong
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Bradley J Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Robert T Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Avinash Pilar
- Radiation Medicine Program, Princess Margaret Cancer Centre, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Ontario, Canada
| | - Chandana Reddy
- Department of Radiation Oncology, Cleveland Clinic, Cleveland Ohio
| | | | | | - Ryan Fiano
- Urologic Research Institute, Ohio University School of Medicine, Athens Ohio
| | - Gregory S Merrick
- Urologic Research Institute, Ohio University School of Medicine, Athens Ohio
| | - Richard G Stock
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - D Jeffrey Demanes
- Department of Radiation Oncology, University of California, Los Angeles, California
| | | | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland, Baltimore Maryland
| | | | - Eyad I Abu-Isa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - C Richard Choo
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Daniel Y Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen Greco
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Jay P Ciezki
- Department of Radiation Oncology, Cleveland Clinic, Cleveland Ohio
| | | | - Nicholas G Nickols
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Matthew B Rettig
- Division of Medical Oncology, Ronald Reagan UCLA Medical Center, University of California, Los Angeles, California
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Alejandro Berlin
- Radiation Medicine Program, Princess Margaret Cancer Centre, Ontario, Canada
| | - Jonathan D Tward
- Department of Radiation Therapy Oncology, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - Brian J Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Robert E Reiter
- Department of Urology, University of California, Los Angeles, California
| | - Paul C Boutros
- Department of Urology, University of California, Los Angeles, California
| | - Tahmineh Romero
- Division of General Internal Medicine and Health Services Research, University of California, Los Angeles, California
| | - Eric M Horwitz
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Michael L Steinberg
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Daniel E Spratt
- Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Michael Xiang
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, California
| |
Collapse
|
17
|
Blazevski A, Geboers B, Scheltema MJ, Gondoputro W, Doan P, Katelaris A, Agrawal S, Baretto D, Matthews J, Haynes AM, Delprado W, Shnier R, van den Bos W, Thompson JE, Lawrentschuk N, Stricker PD. Salvage irreversible electroporation for radio-recurrent prostate cancer - the prospective FIRE trial. BJU Int 2022. [PMID: 36495482 DOI: 10.1111/bju.15947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To prospectively assess the safety, functional- and oncological-outcomes of irreversible electroporation (IRE) as salvage therapy for radio-recurrent focal prostate cancer in a multicenter setting. PATIENTS AND METHODS Men with focal recurrent PCa after external beam radiation or brachytherapy without metastatic disease on staging imaging and co-registration between mpMRI and biopsies were prospectively included in this multicenter trial. Adverse events were reported following the Clavien-Dindo classification. Validated questionnaires were used for patient-reported functional outcomes. Follow-up consisted of 3 monthly prostate specific antigen (PSA) levels, a 6-month mpMRI and standardised transperineal template mapping biopsies at 12-months. Thereafter follow-up was guided by MRI and/or PSMA-PET/CT and PSA. Local recurrence was defined as any ISUP score ≥2 on biopsies. RESULTS 37 patients were analysed with a median (interquartile range (IQR)) follow up of 29 (22-43) months. Median age was 71 (53-83), median PSA was 3.5 ng/mL (2.7-6.1). 28 (75.5%) patients harboured intermediate risk and 9 patients (24.5%) high risk PCa. Seven patients (19%) reported self-limiting urgency, frequency, or hematuria (grade 1-2). Seven patients (19%) developed a grade 3 AE; urethral sludge requiring transurethral resection. At 12 months post treatment 93% of patients remained continent and erectile function sufficient for intercourse deteriorated from 35% to 15% (4/27). Local control was achieved in 29 patients (78%) and 27 patients (73%) were clear of local and systemic disease. Four (11%) patients had local recurrence only. Six (16%) patients developed metastatic disease with a median time to metastasis of 8 months. CONCLUSION The FIRE trial shows that salvage IRE after failed radiation therapy for localised PCa is safe with minimal toxicity, and promising functional and oncological outcomes. Salvage IRE can offer a possible solution for notoriously difficult to manage radio recurrent prostate tumours.
Collapse
Affiliation(s)
- Alexandar Blazevski
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Department of Urology, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Bart Geboers
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Department of Urology, Darlinghurst, Sydney, New South Wales, Australia
| | - Matthijs J Scheltema
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Department of Urology, Darlinghurst, Sydney, New South Wales, Australia
| | - William Gondoputro
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Department of Urology, Darlinghurst, Sydney, New South Wales, Australia
| | - Paul Doan
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Department of Urology, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Athos Katelaris
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Department of Urology, Darlinghurst, Sydney, New South Wales, Australia
| | - Shikha Agrawal
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Department of Urology, Darlinghurst, Sydney, New South Wales, Australia
| | - Daniela Baretto
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Department of Urology, Darlinghurst, Sydney, New South Wales, Australia
| | - Jayne Matthews
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Department of Urology, Darlinghurst, Sydney, New South Wales, Australia
| | - Anne-Maree Haynes
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Department of Urology, Darlinghurst, Sydney, New South Wales, Australia
| | - Warick Delprado
- Douglass Hanly Moir Pathology, Sydney, New South Wales, Australia
| | - Ron Shnier
- I-MED Radiology, Sydney, New South Wales, Australia
| | - Willemien van den Bos
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - James E Thompson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Department of Urology, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Nathan Lawrentschuk
- University of Melbourne, Melbourne, Victoria, Australia
- EJ Whitten Prostate Cancer Research Centre at Epworth, Melbourne, Victoria, Australia
| | - Phillip D Stricker
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Prostate Cancer Research Centre, Department of Urology, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Ma TM, Chu FI, Sandler H, Feng FY, Efstathiou JA, Jones CU, Roach M, Rosenthal SA, Pisansky T, Michalski JM, Bolla M, de Reijke TM, Maingon P, Neven A, Denham J, Steigler A, Joseph D, Nabid A, Souhami L, Carrier N, Incrocci L, Heemsbergen W, Pos FJ, Sydes MR, Dearnaley DP, Tree AC, Syndikus I, Hall E, Cruickshank C, Malone S, Roy S, Sun Y, Zaorsky NG, Nickols NG, Reiter RE, Rettig MB, Steinberg ML, Reddy VK, Xiang M, Romero T, Spratt DE, Kishan AU. Local Failure Events in Prostate Cancer Treated with Radiotherapy: A Pooled Analysis of 18 Randomized Trials from the Meta-analysis of Randomized Trials in Cancer of the Prostate Consortium (LEVIATHAN). Eur Urol 2022; 82:487-498. [PMID: 35934601 DOI: 10.1016/j.eururo.2022.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
CONTEXT The prognostic importance of local failure after definitive radiotherapy (RT) in National Comprehensive Cancer Network intermediate- and high-risk prostate cancer (PCa) patients remains unclear. OBJECTIVE To evaluate the prognostic impact of local failure and the kinetics of distant metastasis following RT. EVIDENCE ACQUISITION A pooled analysis was performed on individual patient data of 12 533 PCa (6288 high-risk and 6245 intermediate-risk) patients enrolled in 18 randomized trials (conducted between 1985 and 2015) within the Meta-analysis of Randomized Trials in Cancer of the Prostate Consortium. Multivariable Cox proportional hazard (PH) models were developed to evaluate the relationship between overall survival (OS), PCa-specific survival (PCSS), distant metastasis-free survival (DMFS), and local failure as a time-dependent covariate. Markov PH models were developed to evaluate the impact of specific transition states. EVIDENCE SYNTHESIS The median follow-up was 11 yr. There were 795 (13%) local failure events and 1288 (21%) distant metastases for high-risk patients and 449 (7.2%) and 451 (7.2%) for intermediate-risk patients, respectively. For both groups, 81% of distant metastases developed from a clinically relapse-free state (cRF state). Local failure was significantly associated with OS (hazard ratio [HR] 1.17, 95% confidence interval [CI] 1.06-1.30), PCSS (HR 2.02, 95% CI 1.75-2.33), and DMFS (HR 1.94, 95% CI 1.75-2.15, p < 0.01 for all) in high-risk patients. Local failure was also significantly associated with DMFS (HR 1.57, 95% CI 1.36-1.81) but not with OS in intermediate-risk patients. Patients without local failure had a significantly lower HR of transitioning to a PCa-specific death state than those who had local failure (HR 0.32, 95% CI 0.21-0.50, p < 0.001). At later time points, more distant metastases emerged after a local failure event for both groups. CONCLUSIONS Local failure is an independent prognosticator of OS, PCSS, and DMFS in high-risk and of DMFS in intermediate-risk PCa. Distant metastasis predominantly developed from the cRF state, underscoring the importance of addressing occult microscopic disease. However a "second wave" of distant metastases occurs subsequent to local failure events, and optimization of local control may reduce the risk of distant metastasis. PATIENT SUMMARY Among men receiving definitive radiation therapy for high- and intermediate-risk prostate cancer, about 10% experience local recurrence, and they are at significantly increased risks of further disease progression. About 80% of patients who develop distant metastasis do not have a detectable local recurrence preceding it.
Collapse
Affiliation(s)
- Ting Martin Ma
- Depart of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Fang-I Chu
- Depart of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Howard Sandler
- Department of Radiation Oncology, Cedars Sinai, Los Angeles, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mack Roach
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Seth A Rosenthal
- Department of Radiation Oncology, Sutter Medical Group, Roseville, CA, USA
| | - Thomas Pisansky
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jeff M Michalski
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Michel Bolla
- Department of Radiation Therapy, CHU Grenoble, Grenoble, France
| | - Theo M de Reijke
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Philippe Maingon
- Department of Radiation Oncology, Centre Georges François Leclerc, University of Burgundy, Dijon, Burgundy, France
| | - Anouk Neven
- Luxembourg Institute of Health, Competence Center for Methodology and Statistics, Strassen, Luxembourg
| | - James Denham
- School of Medicine and Public Health, Faculty of Health and Medicine University of Newcastle, Newcastle, NSW, Australia
| | - Allison Steigler
- School of Medicine and Public Health, Faculty of Health and Medicine University of Newcastle, Newcastle, NSW, Australia
| | - David Joseph
- Department of Surgery, University of Western Australia
| | - Abdenour Nabid
- Department of Radiation Oncology, Centre Hospitaler Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Luis Souhami
- Department of Radiation Oncology, McGill University Health Centre, Montreal, QC, Canada
| | - Nathalie Carrier
- Centre de recherche clinique, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Luca Incrocci
- Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wilma Heemsbergen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Floris J Pos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Matthew R Sydes
- MRC Clinical Trials Unit at UCL, University College London, London, UK
| | - David P Dearnaley
- Academic Urology Unit, Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | - Alison C Tree
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Emma Hall
- The Institute of Cancer Research, London, UK
| | | | - Shawn Malone
- The Ottawa Hospital Cancer Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Soumyajit Roy
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL, USA
| | - Yilun Sun
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nicholas G Nickols
- Depart of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert E Reiter
- Department of Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew B Rettig
- Department of Urology, University of California Los Angeles, Los Angeles, CA, USA; Division of Hematology/Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael L Steinberg
- Depart of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Vishruth K Reddy
- Depart of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Xiang
- Depart of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Tahmineh Romero
- Department of Medicine Statistics Core, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Amar U Kishan
- Depart of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Tang T, Gulstene S, McArthur E, Warner A, Boldt G, Velker V, D'Souza D, Bauman G, Mendez LC. Does brachytherapy boost improve survival outcomes in Gleason Grade Group 5 patients treated with external beam radiotherapy and androgen deprivation therapy? A systematic review and meta-analysis. Clin Transl Radiat Oncol 2022; 38:21-27. [PMID: 36353652 PMCID: PMC9637706 DOI: 10.1016/j.ctro.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Adding a BT boost to external beam radiation can be used to intensify treatment. BT boost improves DMFS but not PCSS or OS in Gleason GG5 prostate cancer. There is no prospective data evaluating BT boost in Gleason GG5 disease.
Background Localized Gleason Grade Group 5 (GG5) prostate cancer has a poor prognosis and is associated with a higher risk of treatment failure, metastases, and death. Treatment intensification with the addition of a brachytherapy (BT) boost to external beam radiation (EBRT) maximizes local control, which may translate into improved survival outcomes. Methods A systematic review and meta-analysis was performed to compare survival outcomes for Gleason GG5 patients treated with androgen deprivation therapy (ADT) and either EBRT or EBRT + BT. The MEDLINE (PubMed), EMBASE and Cochrane databases were searched to identify relevant studies. Survival probabilities for distant metastasis-free survival (DMFS), prostate cancer-specific survival (PCSS), and overall survival (OS) were extracted and pooled to create a summary survival curve for each treatment modality, which were then compared at fixed points in time. An additional analysis was performed among studies directly comparing EBRT and EBRT + BT using a random-effects model. Results Eight retrospective studies were selected for inclusion, representing a total of 1393 EBRT patients and 877 EBRT + BT patients. EBRT + BT was associated with higher DMFS starting at 6 years (86.8 % vs 78.8 %; p = 0.018) and extending out to 10 years (81.8 % vs 66.1 %; p < 0.001), with an overall hazard ratio of 0.53 (p = 0.02). There was no difference in PCSS or OS between treatment modalities. Differences in toxicity were not assessed. There was a wide range of heterogeneity between studies. Conclusion The addition of BT boost is associated with improved long-term DMFS in Gleason GG5 prostate cancer, but its impact on PCSS and OS remains unclear. These results may be confounded by the heterogeneity across study populations with concern for a risk of bias. Therefore, prospective studies are necessary to further elucidate the survival advantage associated with BT boost, which must ultimately be weighed against the toxicity-related implications of this treatment strategy.
Collapse
|
20
|
Lu YC, Huang CY, Cheng CH, Huang KH, Lu YC, Chow PM, Chang YK, Pu YS, Chen CH, Lu SL, Lan KH, Jaw FS, Chen PL, Hong JH. Propensity score matching analysis comparing radical prostatectomy and radiotherapy with androgen deprivation therapy in locally advanced prostate cancer. Sci Rep 2022; 12:12480. [PMID: 35864293 PMCID: PMC9304348 DOI: 10.1038/s41598-022-16700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
To compare clinical outcomes between the use of robotic-assisted laparoscopic radical prostatectomy (RP) and radiotherapy (RT) with long-term androgen deprivation therapy (ADT) in locally advanced prostate cancer (PC), 315 patients with locally advanced PC (clinical T-stage 3/4) were considered for analysis retrospectively. Propensity score-matching at a 1:1 ratio was performed. The median follow-up period was 59.2 months (IQR 39.8–87.4). There were 117 (37.1%) patients in the RP group and 198 (62.9%) patients in the RT group. RT patients were older and had higher PSA at diagnosis, higher Gleason score grade group and more advanced T-stage (all p < 0.001). After propensity score-matching, there were 68 patients in each group. Among locally advanced PC patients, treatment with RP had a higher risk of biochemical recurrence compared to the RT group. In multivariate Cox regression analysis, treatment with RT plus ADT significantly decreased the risk of biochemical failure (HR 0.162, p < 0.001), but there was no significant difference in local recurrence, distant metastasis and overall survival (p = 0.470, p = 0.268 and p = 0.509, respectively). This information supported a clinical benefit in BCR control for patients undergoing RT plus long-term ADT compared to RP.
Collapse
Affiliation(s)
- Yu-Cheng Lu
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsien Cheng
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chuan Lu
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Changde St., Zhongzheng Dist., Taipei City, 10048, Taiwan.,Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Ming Chow
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Kai Chang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Hsin Chen
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Lun Lu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Keng-Hsueh Lan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Shan Jaw
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Changde St., Zhongzheng Dist., Taipei City, 10048, Taiwan
| | - Pei-Ling Chen
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jian-Hua Hong
- Institute of Biomedical Engineering, National Taiwan University, No. 1, Changde St., Zhongzheng Dist., Taipei City, 10048, Taiwan. .,Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
21
|
Introduction of salvage prostatectomy in Denmark: the initial experience. BMC Res Notes 2022; 15:185. [PMID: 35597969 PMCID: PMC9123700 DOI: 10.1186/s13104-022-06076-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To introduce salvage prostatectomy in Denmark. Prior to this, no national curative treatment for recurrent prostate cancer following radiation therapy existed in Denmark. This pilot study represent our initial experiences and the feasibility of performing salvage robot-assisted radical prostatectomy for true local, high-risk recurrence after initial therapy with external beam radiation for high-risk prostate cancer. RESULTS Five patients underwent sRARP between April 2020 and July 2021. All patients were discharged within 48 h and no major complications were observed within 3 months. All patients had unmeasurable PSA (< 0.1 ng/ml) at follow-up 6 months after surgery. One patient with longer follow-up than 6 months experienced biochemical recurrence. At 3-months follow-up all patients reported considerable incontinence, at 6-month follow-up, pad usage decreased to 1 or 2 pads daily. Based on our initial results, the idea to introduce sRARP as a nationwide option remains and further patients will be included to establish the true role of sRARP in patients with recurrence after primary radiotherapy for PCa.
Collapse
|
22
|
Radiation therapy dose and androgen deprivation therapy in localized prostate cancer: a meta-regression of 5-year outcomes in phase III randomized controlled trials. Prostate Cancer Prostatic Dis 2022; 25:126-128. [PMID: 34400799 PMCID: PMC9018418 DOI: 10.1038/s41391-021-00432-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND While multiple randomized trials have evaluated the benefit of radiation therapy (RT) dose escalation and the use and prolongation of androgen deprivation therapy (ADT) in the treatment of prostate cancer, few studies have evaluated the relative benefit of either form of treatment intensification with each other. Many trials have included treatment strategies that incorporate either high or low dose RT, or short-term or long-term ADT (STADT or LTADT), in one or more trial arms. We sought to compare different forms of treatment intensification of RT in the context of localized prostate cancer. METHODS Using preferred reporting items for systemic reviews and meta-analyses (PRISMA) guidelines, we collected over 40 phases III clinical trials comparing different forms of RT for localized prostate cancer. We performed a meta-regression of 40 individual trials with 21,429 total patients to allow a comparison of the rates and cumulative proportions of 5-year overall survival (OS), prostate cancer-specific mortality (PCSM), and distant metastasis (DM) for each treatment arm of every trial. RESULTS Dose-escalation either in the absence or presence of STADT failed to significantly improve any 5-year outcome. In contrast, adding LTADT to low dose RT significantly improved 5-year PCSM (Odds ratio [OR] 0.34, 95% confidence interval [CI] 0.22-0.54, p < 0.001) and DM (OR 0.35, 95% CI 0.20-0.63. p < 0.001) over low dose RT alone. Adding STADT also significantly improved 5-year PCSM over low dose RT alone (OR 0.55, 95% CI 0.41-0.75, p < 0.001). CONCLUSION While limited by between-study heterogeneity and a lack of individual patient data, this meta-analysis suggests that adding ADT, versus increasing RT dose alone, offers a more consistent improvement in clinical endpoints.
Collapse
|
23
|
Xiang M, Ma TM, Savjani R, Pollom EL, Karnes RJ, Grogan T, Wong JK, Motterle G, Tosoian JJ, Trock BJ, Klein EA, Stish BJ, Dess RT, Spratt DE, Pilar A, Reddy C, Levin-Epstein R, Wedde TB, Lilleby WA, Fiano R, Merrick GS, Stock RG, Demanes DJ, Moran BJ, Huland H, Tran PT, Martin S, Martinez-Monge R, Krauss DJ, Abu-Isa EI, Alam R, Schwen Z, Pisansky TM, Choo CR, Song DY, Greco S, Deville C, McNutt T, DeWeese TL, Ross AE, Ciezki JP, Boutros PC, Nickols NG, Bhat P, Shabsovich D, Juarez JE, Chong N, Kupelian PA, Rettig MB, Zaorsky NG, Berlin A, Tward JD, Davis BJ, Reiter RE, Steinberg ML, Elashoff D, Horwitz EM, Tendulkar RD, Tilki D, Czernin J, Gafita A, Romero T, Calais J, Kishan AU. Performance of a Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography-Derived Risk-Stratification Tool for High-risk and Very High-risk Prostate Cancer. JAMA Netw Open 2021; 4:e2138550. [PMID: 34902034 PMCID: PMC8669522 DOI: 10.1001/jamanetworkopen.2021.38550] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
IMPORTANCE Prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) can detect low-volume, nonlocalized (ie, regional or metastatic) prostate cancer that was occult on conventional imaging. However, the long-term clinical implications of PSMA PET/CT upstaging remain unclear. OBJECTIVES To evaluate the prognostic significance of a nomogram that models an individual's risk of nonlocalized upstaging on PSMA PET/CT and to compare its performance with existing risk-stratification tools. DESIGN, SETTING, AND PARTICIPANTS This cohort study included patients diagnosed with high-risk or very high-risk prostate cancer (ie, prostate-specific antigen [PSA] level >20 ng/mL, Gleason score 8-10, and/or clinical stage T3-T4, without evidence of nodal or metastatic disease by conventional workup) from April 1995 to August 2018. This multinational study was conducted at 15 centers. Data were analyzed from December 2020 to March 2021. EXPOSURES Curative-intent radical prostatectomy (RP), external beam radiotherapy (EBRT), or EBRT plus brachytherapy (BT), with or without androgen deprivation therapy. MAIN OUTCOMES AND MEASURES PSMA upstage probability was calculated from a nomogram using the biopsy Gleason score, percentage positive systematic biopsy cores, clinical T category, and PSA level. Biochemical recurrence (BCR), distant metastasis (DM), prostate cancer-specific mortality (PCSM), and overall survival (OS) were analyzed using Fine-Gray and Cox regressions. Model performance was quantified with the concordance (C) index. RESULTS Of 5275 patients, the median (IQR) age was 66 (60-72) years; 2883 (55%) were treated with RP, 1669 (32%) with EBRT, and 723 (14%) with EBRT plus BT; median (IQR) PSA level was 10.5 (5.9-23.2) ng/mL; 3987 (76%) had Gleason grade 8 to 10 disease; and 750 (14%) had stage T3 to T4 disease. Median (IQR) follow-up was 5.1 (3.1-7.9) years; 1221 (23%) were followed up for at least 8 years. Overall, 1895 (36%) had BCR, 851 (16%) developed DM, and 242 (5%) died of prostate cancer. PSMA upstage probability was significantly prognostic of all clinical end points, with 8-year C indices of 0.63 (95% CI, 0.61-0.65) for BCR, 0.69 (95% CI, 0.66-0.71) for DM, 0.71 (95% CI, 0.67-0.75) for PCSM, and 0.60 (95% CI, 0.57-0.62) for PCSM (P < .001). The PSMA nomogram outperformed existing risk-stratification tools, except for similar performance to Staging Collaboration for Cancer of the Prostate (STAR-CAP) for PCSM (eg, DM: PSMA, 0.69 [95% CI, 0.66-0.71] vs STAR-CAP, 0.65 [95% CI, 0.62-0.68]; P < .001; Memorial Sloan Kettering Cancer Center nomogram, 0.57 [95% CI, 0.54-0.60]; P < .001; Cancer of the Prostate Risk Assessment groups, 0.53 [95% CI, 0.51-0.56]; P < .001). Results were validated in secondary cohorts from the Surveillance, Epidemiology, and End Results database and the National Cancer Database. CONCLUSIONS AND RELEVANCE These findings suggest that PSMA upstage probability is associated with long-term, clinically meaningful end points. Furthermore, PSMA upstaging had superior risk discrimination compared with existing tools. Formerly occult, PSMA PET/CT-detectable nonlocalized disease may be the main driver of outcomes in high-risk patients.
Collapse
Affiliation(s)
- Michael Xiang
- Department of Radiation Oncology, University of California, Los Angeles
| | - Ting Martin Ma
- Department of Radiation Oncology, University of California, Los Angeles
| | - Ricky Savjani
- Department of Radiation Oncology, University of California, Los Angeles
| | - Erqi L. Pollom
- Department of Radiation Oncology, Stanford University, Stanford, California
| | | | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jessica K. Wong
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - Bruce J. Trock
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Eric A. Klein
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Bradley J. Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Robert T. Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Daniel E. Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Avinash Pilar
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Chandana Reddy
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Trude B. Wedde
- Department of Oncology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Wolfgang A. Lilleby
- Department of Oncology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Ryan Fiano
- Schiffler Cancer Center, Wheeling Hospital, Wheeling Jesuit University, Wheeling, West Virginia
| | - Gregory S. Merrick
- Schiffler Cancer Center, Wheeling Hospital, Wheeling Jesuit University, Wheeling, West Virginia
| | - Richard G. Stock
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York City, New York
| | | | - Brian J. Moran
- Prostate Cancer Foundation of Chicago, Westmont, Illinois
| | - Hartwig Huland
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Phuoc T. Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Santiago Martin
- Department of Oncology, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
| | - Rafael Martinez-Monge
- Department of Oncology, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
| | - Daniel J. Krauss
- Oakland University William Beaumont School of Medicine, Royal Oak, Michigan
| | - Eyad I. Abu-Isa
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Ridwan Alam
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Zeyad Schwen
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | | | - C. Richard Choo
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Daniel Y. Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen Greco
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Todd McNutt
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theodore L. DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley E. Ross
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jay P. Ciezki
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles
| | - Nicholas G. Nickols
- Department of Radiation Oncology, University of California, Los Angeles
- Department of Radiation Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, California
| | - Prashant Bhat
- Department of Radiation Oncology, University of California, Los Angeles
| | - David Shabsovich
- Department of Radiation Oncology, University of California, Los Angeles
| | - Jesus E. Juarez
- Department of Radiation Oncology, University of California, Los Angeles
| | - Natalie Chong
- Department of Radiation Oncology, University of California, Los Angeles
| | | | - Matthew B. Rettig
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles
- Department of Hematology and Oncology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, California
| | - Nicholas G. Zaorsky
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, Pennsylvania
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan D. Tward
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City
| | - Brian J. Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | | | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Eric M. Horwitz
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Rahul D. Tendulkar
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
- Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA Medical Center, Los Angeles, California
| | - Andrei Gafita
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA Medical Center, Los Angeles, California
| | - Tahmineh Romero
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA Medical Center, Los Angeles, California
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles
| |
Collapse
|
24
|
Kurganovs N, Wang H, Huang X, Ignatchenko V, Macklin A, Khan S, Downes MR, Boutros PC, Liu SK, Kislinger T. A proteomic investigation of isogenic radiation resistant prostate cancer cell lines. Proteomics Clin Appl 2021; 15:e2100037. [PMID: 34152685 PMCID: PMC8448965 DOI: 10.1002/prca.202100037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 11/09/2022]
Abstract
To model the problem of radiation resistance in prostate cancer, cell lines mimicking a clinical course of conventionally fractionated or hypofractionated radiotherapy have been generated. Proteomic analysis of radiation resistant and radiosensitive DU145 prostate cancer cells detected 4410 proteins. Over 400 proteins were differentially expressed across both radiation resistant cell lines and pathway analysis revealed enrichment in epithelial to mesenchymal transition, glycolysis and hypoxia. From the radiation resistant protein candidates, the cell surface protein CD44 was identified in the glycolysis and epithelial to mesenchymal transition pathways and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Natalie Kurganovs
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Hanzhi Wang
- Sunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Xiaoyong Huang
- Sunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
| | | | - Andrew Macklin
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Shahbaz Khan
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Michelle R. Downes
- Division of Anatomic PathologyLaboratory Medicine and Molecular DiagnosticsSunnybrook Health Sciences CentreTorontoCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
| | - Paul C. Boutros
- Departments of Human Genetics & UrologyJonsson Comprehensive Cancer CenterLos AngelesUSA
- Institute for Precision HealthUniversity of CaliforniaLos AngelesUSA
| | - Stanley K. Liu
- Sunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
| | - Thomas Kislinger
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| |
Collapse
|
25
|
Kishan AU, Karnes RJ, Romero T, Wong JK, Motterle G, Tosoian JJ, Trock BJ, Klein EA, Stish BJ, Dess RT, Spratt DE, Pilar A, Reddy C, Levin-Epstein R, Wedde TB, Lilleby WA, Fiano R, Merrick GS, Stock RG, Demanes DJ, Moran BJ, Braccioforte M, Huland H, Tran PT, Martin S, Martínez-Monge R, Krauss DJ, Abu-Isa EI, Alam R, Schwen Z, Chang AJ, Pisansky TM, Choo R, Song DY, Greco S, Deville C, McNutt T, DeWeese TL, Ross AE, Ciezki JP, Boutros PC, Nickols NG, Bhat P, Shabsovich D, Juarez JE, Chong N, Kupelian PA, D’Amico AV, Rettig MB, Berlin A, Tward JD, Davis BJ, Reiter RE, Steinberg ML, Elashoff D, Horwitz EM, Tendulkar RD, Tilki D. Comparison of Multimodal Therapies and Outcomes Among Patients With High-Risk Prostate Cancer With Adverse Clinicopathologic Features. JAMA Netw Open 2021; 4:e2115312. [PMID: 34196715 PMCID: PMC8251338 DOI: 10.1001/jamanetworkopen.2021.15312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
IMPORTANCE The optimal management strategy for high-risk prostate cancer and additional adverse clinicopathologic features remains unknown. OBJECTIVE To compare clinical outcomes among patients with high-risk prostate cancer after definitive treatment. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included patients with high-risk prostate cancer (as defined by the National Comprehensive Cancer Network [NCCN]) and at least 1 adverse clinicopathologic feature (defined as any primary Gleason pattern 5 on biopsy, clinical T3b-4 disease, ≥50% cores with biopsy results positive for prostate cancer, or NCCN ≥2 high-risk features) treated between 2000 and 2014 at 16 tertiary centers. Data were analyzed in November 2020. EXPOSURES Radical prostatectomy (RP), external beam radiotherapy (EBRT) with androgen deprivation therapy (ADT), or EBRT plus brachytherapy boost (BT) with ADT. Guideline-concordant multimodal treatment was defined as RP with appropriate use of multimodal therapy (optimal RP), EBRT with at least 2 years of ADT (optimal EBRT), or EBRT with BT with at least 1 year ADT (optimal EBRT with BT). MAIN OUTCOMES AND MEASURES The primary outcome was prostate cancer-specific mortality; distant metastasis was a secondary outcome. Differences were evaluated using inverse probability of treatment weight-adjusted Fine-Gray competing risk regression models. RESULTS A total of 6004 men (median [interquartile range] age, 66.4 [60.9-71.8] years) with high-risk prostate cancer were analyzed, including 3175 patients (52.9%) who underwent RP, 1830 patients (30.5%) who underwent EBRT alone, and 999 patients (16.6%) who underwent EBRT with BT. Compared with RP, treatment with EBRT with BT (subdistribution hazard ratio [sHR] 0.78, [95% CI, 0.63-0.97]; P = .03) or with EBRT alone (sHR, 0.70 [95% CI, 0.53-0.92]; P = .01) was associated with significantly improved prostate cancer-specific mortality; there was no difference in prostate cancer-specific mortality between EBRT with BT and EBRT alone (sHR, 0.89 [95% CI, 0.67-1.18]; P = .43). No significant differences in prostate cancer-specific mortality were found across treatment cohorts among 2940 patients who received guideline-concordant multimodality treatment (eg, optimal EBRT alone vs optimal RP: sHR, 0.76 [95% CI, 0.52-1.09]; P = .14). However, treatment with EBRT alone or EBRT with BT was consistently associated with lower rates of distant metastasis compared with treatment with RP (eg, EBRT vs RP: sHR, 0.50 [95% CI, 0.44-0.58]; P < .001). CONCLUSIONS AND RELEVANCE These findings suggest that among patients with high-risk prostate cancer and additional unfavorable clinicopathologic features receiving guideline-concordant multimodal therapy, prostate cancer-specific mortality outcomes were equivalent among those treated with RP, EBRT, and EBRT with BT, although distant metastasis outcomes were more favorable among patients treated with EBRT and EBRT with BT. Optimal multimodality treatment is critical for improving outcomes in patients with high-risk prostate cancer.
Collapse
Affiliation(s)
- Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles
- Department of Urology, University of California, Los Angeles
| | | | - Tahmineh Romero
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jessica K. Wong
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - Bruce J. Trock
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Eric A. Klein
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Bradley J. Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Robert T. Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Daniel E. Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Avinash Pilar
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Chandana Reddy
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Trude B. Wedde
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Wolfgang A. Lilleby
- Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Ryan Fiano
- Schiffler Cancer Center, Wheeling Hospital, Wheeling Jesuit University, Wheeling, West Virginia
| | - Gregory S. Merrick
- Schiffler Cancer Center, Wheeling Hospital, Wheeling Jesuit University, Wheeling, West Virginia
| | - Richard G. Stock
- Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Brian J. Moran
- Prostate Cancer Foundation of Chicago, Westmont, Illinois
| | | | - Hartwig Huland
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Phuoc T. Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Santiago Martin
- Department of Oncology, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
| | | | - Daniel J. Krauss
- William Beaumont School of Medicine, Oakland University, Royal Oak, Michigan
| | - Eyad I. Abu-Isa
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Ridwan Alam
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Zeyad Schwen
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Albert J. Chang
- Department of Radiation Oncology, University of California, Los Angeles
| | | | - Richard Choo
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Daniel Y. Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen Greco
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Todd McNutt
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theodore L. DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley E. Ross
- Texas Oncology, Dallas
- Now with Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jay P. Ciezki
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Paul C. Boutros
- Department of Urology, University of California, Los Angeles
- Department of Human Genetics, University of California, Los Angeles
| | - Nicholas G. Nickols
- Department of Radiation Oncology, University of California, Los Angeles
- Department of Radiation Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Prashant Bhat
- Department of Radiation Oncology, University of California, Los Angeles
| | - David Shabsovich
- Department of Radiation Oncology, University of California, Los Angeles
| | - Jesus E. Juarez
- Department of Radiation Oncology, University of California, Los Angeles
| | - Natalie Chong
- Department of Radiation Oncology, University of California, Los Angeles
| | | | - Anthony V. D’Amico
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Matthew B. Rettig
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles
- Department of Hematology and Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Alejandro Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jonathan D. Tward
- Department of Radiation Oncology, Huntsman Cancer Institute, The University of Utah, Salt Lake City
| | - Brian J. Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | | | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles
| | - Eric M. Horwitz
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Rahul D. Tendulkar
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
- Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Wu SY, Wong AC, Shinohara K, Roach M, Cunha JAM, Valdes G, Hsu IC. Salvage High-Dose-Rate Brachytherapy for Recurrent Prostate Cancer After Definitive Radiation. Pract Radiat Oncol 2021; 11:515-526. [PMID: 34077809 DOI: 10.1016/j.prro.2021.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Salvage high-dose-rate brachytherapy (sHDRBT) for locally recurrent prostate cancer after definitive radiation is associated with biochemical control in approximately half of patients at 3 to 5 years. Given potential toxicity, patient selection is critical. We present our institutional experience with sHDRBT and validate a recursive partitioning machines model for biochemical control. MATERIALS AND METHODS We performed a retrospective analysis of 129 patients who underwent whole-gland sHDRBT between 1998 and 2016. We evaluated clinical factors associated with biochemical control as well as toxicity. RESULTS At diagnosis the median prostate-specific antigen (PSA) was 7.77 ng/mL. A majority of patients had T1-2 (73%) and Gleason 6-7 (82%) disease; 71% received external beam radiation therapy (RT) alone, and 22% received permanent prostate implants. The median disease-free interval (DFI) was 56 months, and median presalvage PSA was 4.95 ng/mL. At sHDRBT, 46% had T3 disease and 51% had Gleason 8 to 10 disease. At a median of 68 months after sHDRBT, 3- and 5-year disease-free survival were 85% (95% CI, 79-91) and 71% (95% CI, 62-79), respectively. Median PSA nadir was 0.18 ng/mL, achieved a median of 10 months after sHDRBT. Patients with ≥35%+ cores and a DFI <4.1 years had worse biochemical control (19% vs 50%, P = .02). Local failure (with or without regional/distant failure) was seen in 11% of patients (14/129), and 14 patients (11%) developed acute urinary obstruction requiring Foley placement and 19 patients (15%) developed strictures requiring dilation. CONCLUSIONS sHDRBT is a reasonable option for patients with locally recurrent prostate cancer after definitive RT. Those with <35%+ cores or an initial DFI of ≥4.1 years may be more likely to achieve long-term disease control after sHDRBT.
Collapse
Affiliation(s)
- Susan Y Wu
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Anthony C Wong
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Katsuto Shinohara
- Department of Urology, University of California, San Francisco, California
| | - Mack Roach
- Department of Radiation Oncology, University of California, San Francisco, California
| | - J Adam M Cunha
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Gilmer Valdes
- Department of Radiation Oncology, University of California, San Francisco, California
| | - I-Chow Hsu
- Department of Radiation Oncology, University of California, San Francisco, California.
| |
Collapse
|
27
|
David J, Luu M, Lu D, Zumsteg ZS, Sandler H, Kamrava M. Outcomes with brachytherapy based dose escalation for gleason 8 versus 9-10 prostate cancer: An NCDB analysis. Urol Oncol 2021; 39:829.e19-829.e26. [PMID: 34049784 DOI: 10.1016/j.urolonc.2021.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/01/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The addition of brachytherapy (BT) in high risk prostate cancer is supported by Level 1 evidence. Whether all high risk patients benefit from BT to the same extent is unknown. The National Cancer Database (NCDB) was used to investigate overall survival (OS) differences between GS 8 and 9-10 treated with external beam radiation (EBRT) only or BT +/- EBRT. MATERIALS AND METHODS We included localized prostate adenocarcinoma definitively treated with radiation between 2004-2014. Patients were stratified into various radiation treatment groups: EBRT 7560 - 8640 cGy, EBRT 5940 - 7540 cGy, and BT +/- EBRT. All EBRT only and BT +/- EBRT patients received ADT. A multivariable Cox proportional hazard model was used to assess OS. Propensity score matching was used to account for differences between groups. Median survival was determined based on Kaplan-Meier survival curves. RESULTS 30,698 patients were included. On multivariable analysis among GS 8 patients, BT was associated with improved OS compared to 7560 - 8640 cGy (HR-0.80 (95% CI 0.70-0.92, P = 0.002). In Gleason 9-10 BT did not result in improved OS compared to 7560 - 8640 cGy (HR- 0.91 (95% CI 0.79 - 1.05, P = 0.212). Results remained significant with propensity score matching and removing patients with medical comorbidities. CONCLUSION BT was associated with improved OS when compared to 7560 - 8640 cGy in GS 8, but not in Gleason 9-10 disease. This hypothesis generating study suggests there may be variable benefit with BT in high risk prostate cancer patients on OS. Future prospective studies are needed to investigate whether the benefit of BT is similar across all high risk prostate cancer patients.
Collapse
Affiliation(s)
- John David
- Department of Radiation Oncology, Cedars Sinai Samuel Oschin Comprehensive Cancer Center, 8700 Beverly Blvd AC 1031, Los Angeles, CA
| | - Michael Luu
- Department of Radiation Oncology, Cedars Sinai Samuel Oschin Comprehensive Cancer Center, 8700 Beverly Blvd AC 1031, Los Angeles, CA; Department of Biostatistics and Bioinformatics, Cedars Sinai Samuel Oschin Comprehensive Cancer Center, 8687 Melrose Ave Suite G-593, Los Angeles, CA
| | - Diana Lu
- Department of Radiation Oncology, Cedars Sinai Samuel Oschin Comprehensive Cancer Center, 8700 Beverly Blvd AC 1031, Los Angeles, CA
| | - Zachary S Zumsteg
- Department of Radiation Oncology, Cedars Sinai Samuel Oschin Comprehensive Cancer Center, 8700 Beverly Blvd AC 1031, Los Angeles, CA
| | - Howard Sandler
- Department of Radiation Oncology, Cedars Sinai Samuel Oschin Comprehensive Cancer Center, 8700 Beverly Blvd AC 1031, Los Angeles, CA
| | - Mitchell Kamrava
- Department of Radiation Oncology, Cedars Sinai Samuel Oschin Comprehensive Cancer Center, 8700 Beverly Blvd AC 1031, Los Angeles, CA.
| |
Collapse
|
28
|
King MT, Chen MH, Collette L, Neven A, Bolla M, D’Amico AV. Association of Increased Prostate-Specific Antigen Levels After Treatment and Mortality in Men With Locally Advanced vs Localized Prostate Cancer: A Secondary Analysis of 2 Randomized Clinical Trials. JAMA Netw Open 2021; 4:e2111092. [PMID: 33999161 PMCID: PMC8129819 DOI: 10.1001/jamanetworkopen.2021.11092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IMPORTANCE Increased prostate-specific antigen (PSA) levels after treatment (PSA failure) may have different associations with outcomes for men with locally advanced vs localized prostate cancer. OBJECTIVE To evaluate whether the association between PSA failure and death may be different in locally advanced vs localized prostate cancer. DESIGN, SETTING, AND PARTICIPANTS This multicenter cohort study included patients from 2 randomized clinical trials. The Dana-Farber Cancer Institute (DFCI) 95-096 trial randomized 206 men with localized prostate cancer from December 1, 1995, to April 15, 2001, whereas the European Organisation for Research and Treatment of Cancer (EORTC) 22961 trial randomized 970 men with locally advanced prostate cancer from October 30, 1997, to May 1, 2002. Data were analyzed from January 1, 2020, to October 31, 2020. INTERVENTIONS The DFCI 95-096 trial randomized men to 0 vs 6 months of androgen deprivation therapy (ADT) with external beam radiotherapy; the EORTC 22961 trial randomized men to 6 vs 36 months of ADT with external beam radiotherapy. MAIN OUTCOMES AND MEASURES For each trial, the PSA doubling time (time to doubling of PSA levels) associated with PSA failure was evaluated. The risk of all-cause mortality associated with PSA failure (nadir plus 2 definition) was evaluated after adjustment of baseline covariates and treatment. RESULTS This analysis included a total of 1173 men (206 from DFCI 95-096 and 967 with available tumor stage from EORTC 22961; median age, 70.0 [interquartile range (IQR), 65.0-74.0 years). For DFCI 95-096, 161 men died (30 [18.6%] due to prostate cancer) at a median follow-up of 18.2 (IQR, 17.3-18.8) years. Among the 108 men with PSA failure, the median PSA doubling time was 13.0 (IQR, 7.4-31.1) months. For EORTC 22961, 230 men died (75 [32.6%] due to prostate cancer) at a median follow-up of 6.4 (IQR, 6.3-6.6) years. Among 290 men who experienced PSA failure, the median PSA doubling time was 5.0 (IQR, 2.9-8.9) months. Compared with DFCI 95-096, PSA failure was associated with a higher risk of all-cause mortality in EORTC 22961 (adjusted hazard ratios, 3.98 [95% CI, 2.92-5.44]; P < .001 vs 1.51 [95% CI, 1.03-2.23]; P = .04). CONCLUSIONS AND RELEVANCE The association of PSA failure with outcomes may differ between locally advanced and localized prostate cancer. This finding supports the study of treatment intensification with the use of novel antiandrogen agents in addition to ADT at the time of PSA failure after treatment for locally advanced disease. TRIAL REGISTRATION ClinicalTrials.gov Identifiers: NCT00116220 and NCT00003026.
Collapse
Affiliation(s)
- Martin T. King
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs
| | - Laurence Collette
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Anouk Neven
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Michel Bolla
- Department of Radiation Oncology, Grenoble University Hospital, Grenoble, France
| | - Anthony V. D’Amico
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
29
|
Hernes E, Revheim ME, Hole KH, Tulipan AJ, Strømme H, Lilleby W, Seierstad T. Prostate-Specific Membrane Antigen PET for Assessment of Primary and Recurrent Prostate Cancer with Histopathology as Reference Standard: A Systematic Review and Meta-Analysis. PET Clin 2021; 16:147-165. [PMID: 33648661 DOI: 10.1016/j.cpet.2020.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate-specific membrane antigen PET is a promising diagnostic tool in prostate cancer. The gold standard for the detection of prostate tumor and lymph node metastases is histopathology. The aim of the present review was to investigate accuracy measures of 68Ga/18F-labeled prostate-specific membrane antigen PET tracers in primary and recurrent prostate cancer with systematic sector-based histopathology as the reference standard. A systematic literature search was performed and 34 studies were included. Overall, prostate-specific membrane antigen PET showed high specificity, but variable sensitivity to localize known prostate cancer and detect pelvic lymph node metastases.
Collapse
Affiliation(s)
- Eivor Hernes
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway.
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway
| | - Knut Håkon Hole
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway
| | - Andreas Julius Tulipan
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway
| | - Hilde Strømme
- Library of Medicine and Science, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Wolfgang Lilleby
- Department of Oncology, Oslo University Hospital, P.O. Box 4953 Nydalen, 0424 Oslo, Norway
| | - Therese Seierstad
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
30
|
Seierstad T, Hole KH, Tulipan AJ, Strømme H, Lilleby W, Revheim ME, Hernes E. 18F-Fluciclovine PET for Assessment of Prostate Cancer with Histopathology as Reference Standard: A Systematic Review. PET Clin 2021; 16:167-176. [PMID: 33648662 DOI: 10.1016/j.cpet.2020.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The PET tracer 18F-fluciclovine (Axumin) was recently approved in the United States and Europe for men with suspected prostate cancer recurrence following prior treatment. This article summarizes studies where systematic sector-based histopathology was used as reference standard to assess the diagnostic accuracy of the tracer 18F-fluciclovine PET in patients with prostate cancer.
Collapse
Affiliation(s)
- Therese Seierstad
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway.
| | - Knut Håkon Hole
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway
| | - Andreas Julius Tulipan
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway
| | - Hilde Strømme
- Library of Medicine and Science, University of Oslo, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Wolfgang Lilleby
- Department of Oncology, Oslo University Hospital, P.O. Box 4953 Nydalen, 0424 Oslo, Norway
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway
| | - Eivor Hernes
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
31
|
Ma TM, Gafita A, Shabsovich D, Juarez J, Grogan TR, Thin P, Armstrong W, Sonni I, Nguyen K, Lok V, Reiter RE, Rettig MB, Steinberg ML, Kupelian PA, Yang DD, Muralidhar V, Chu C, Feng F, Savjani R, Deng J, Parikh NR, Nickols NG, Elashoff D, Czernin J, Calais J, Kishan AU. Identifying the Best Candidates for Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography as the Primary Staging Approach Among Men with High-risk Prostate Cancer and Negative Conventional Imaging. Eur Urol Oncol 2021; 5:100-103. [PMID: 33602654 DOI: 10.1016/j.euo.2021.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 01/25/2023]
Abstract
Prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/computed tomography (CT) is an emerging imaging modality with greater sensitivity and specificity over conventional imaging for prostate cancer (PCa) staging. Using data from two prospective trials (NCT03368547 and NCT04050215), we explored predictors of overall upstaging (nodal and metastatic) by PSMA PET/CT among patients with cN0M0 National Comprehensive Cancer Network high-risk PCa on conventional imaging (n = 213). Overall, 21.1%, 8.9%, and 23.9% of patients experienced nodal, metastatic, and overall upstaging, respectively, without histologic confirmation. On multivariable analysis, Gleason grade group (GG) and percent positive core (PPC) on systematic biopsy significantly predict overall upstaging (odds ratio [OR] 2.15, 95% confidence interval [CI] 1.33-3.45; p = 0.002; and OR 1.03, 95% CI 1.01-1.04; p < 0.001). Overall upstaging was significantly more frequent among men with GG 5 disease (33.0% vs. 17.6%; p = 0.0097) and PPC ≥50% (33.0% vs 15.0%; p = 0.0020). We constructed a nomogram that predicts overall upstaging using initial prostate-specific antigen, PPC, GG, and cT stage, with coefficients estimated from a standard logistic regression model (using maximum likelihood estimation). It is internally validated with a tenfold cross-validated area under the receiver operating characteristic curve estimated at 0.74 (95% CI 0.67-0.82). In our cohort, 90% of patients who had a nomogram-estimated risk below the cutoff of 22% for overall upstaging could have been spared PSMA PET/CT as our model correctly predicted no upstaging. In other words, the predictive model only missed 10% of patients who would otherwise have benefitted from PSMA PET/CT. PATIENT SUMMARY: We analyzed predictors of overall upstaging (lymph node or/and metastasis) by prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) from conventional imaging in men with high-risk prostate cancer undergoing initial staging deemed free of disease in the lymph nodes and distant metastasis by conventional imaging techniques. We found that the pathologic grade and disease burden in a prostate biopsy are associated with upstaging. We also developed a tool that predicts the probability of upstaging according to an individual patient's characteristics. Our study may help in defining patient groups who are most likely to benefit from the addition of a PSMA PET/CT scan.
Collapse
Affiliation(s)
- Ting Martin Ma
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA, USA
| | - Andrei Gafita
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA Medical Center, Los Angeles, CA, USA
| | - David Shabsovich
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA, USA
| | - Jesus Juarez
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA, USA
| | - Tristan R Grogan
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pan Thin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA Medical Center, Los Angeles, CA, USA
| | - Wesley Armstrong
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA Medical Center, Los Angeles, CA, USA
| | - Ida Sonni
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA Medical Center, Los Angeles, CA, USA
| | - Kathleen Nguyen
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA Medical Center, Los Angeles, CA, USA
| | - Vincent Lok
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA Medical Center, Los Angeles, CA, USA
| | - Robert E Reiter
- Department of Urology, UCLA Medical Center, Los Angeles, CA, USA
| | - Matthew B Rettig
- Department of Urology, UCLA Medical Center, Los Angeles, CA, USA; Department of Medicine, Division of Hematology-Oncology, UCLA Medical Center, Los Angeles, CA, USA
| | | | - Patrick A Kupelian
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA, USA
| | - David D Yang
- Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA, USA
| | - Vinayak Muralidhar
- Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA, USA
| | - Carissa Chu
- Department of Urology, UCSF Medical Center, San Francisco, CA, USA
| | - Felix Feng
- Department of Urology, UCSF Medical Center, San Francisco, CA, USA; Department of Radiation Oncology, UCSF Medical Center, San Francisco, CA, USA
| | - Ricky Savjani
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA, USA
| | - Jie Deng
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA, USA
| | - Neil R Parikh
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA, USA
| | - Nicholas G Nickols
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA, USA
| | - David Elashoff
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA Medical Center, Los Angeles, CA, USA
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA Medical Center, Los Angeles, CA, USA
| | - Amar U Kishan
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Valle LF, Lehrer EJ, Markovic D, Elashoff D, Levin-Epstein R, Karnes RJ, Reiter RE, Rettig M, Calais J, Nickols NG, Dess RT, Spratt DE, Steinberg ML, Nguyen PL, Davis BJ, Zaorsky NG, Kishan AU. A Systematic Review and Meta-analysis of Local Salvage Therapies After Radiotherapy for Prostate Cancer (MASTER). Eur Urol 2020; 80:280-292. [PMID: 33309278 DOI: 10.1016/j.eururo.2020.11.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
CONTEXT Management of locally recurrent prostate cancer after definitive radiotherapy remains controversial due to the perceived high rates of severe genitourinary (GU) and gastrointestinal (GI) toxicity associated with any local salvage modality. OBJECTIVE To quantitatively compare the efficacy and toxicity of salvage radical prostatectomy (RP), high-intensity focused ultrasound (HIFU), cryotherapy, stereotactic body radiotherapy (SBRT), low-dose-rate (LDR) brachytherapy, and high-dose-rate (HDR) brachytherapy. EVIDENCE ACQUISITION We performed a systematic review of PubMed, EMBASE, and MEDLINE. Two- and 5-yr recurrence-free survival (RFS) rates and crude incidences of severe GU and GI toxicity were extracted as endpoints of interest. Random-effect meta-analyses were conducted to characterize summary effect sizes and quantify heterogeneity. Estimates for each modality were then compared with RP after adjusting for individual study-level covariates using mixed-effect regression models, while allowing for differences in between-study variance across treatment modalities. EVIDENCE SYNTHESIS A total of 150 studies were included for analysis. There was significant heterogeneity between studies within each modality, and covariates differed between modalities, necessitating adjustment. Adjusted 5-yr RFS ranged from 50% after cryotherapy to 60% after HDR brachytherapy and SBRT, with no significant differences between any modality and RP. Severe GU toxicity was significantly lower with all three forms of radiotherapeutic salvage than with RP (adjusted rates of 20% after RP vs 5.6%, 9.6%, and 9.1% after SBRT, HDR brachytherapy, and LDR brachytherapy, respectively; p ≤ 0.001 for all). Severe GI toxicity was significantly lower with HDR salvage than with RP (adjusted rates 1.8% vs 0.0%, p < 0.01), with no other differences identified. CONCLUSIONS Large differences in 5-yr outcomes were not uncovered when comparing all salvage treatment modalities against RP. Reirradiation with SBRT, HDR brachytherapy, or LDR brachytherapy appears to result in less severe GU toxicity than RP, and reirradiation with HDR brachytherapy yields less severe GI toxicity than RP. Prospective studies of local salvage for radiorecurrent disease are warranted. PATIENT SUMMARY In a large study-level meta-analysis, we looked at treatment outcomes and toxicity for men treated with a number of salvage treatments for radiorecurrent prostate cancer. We conclude that relapse-free survival at 5 years is equivalent among salvage modalities, but reirradiation may lead to lower toxicity.
Collapse
Affiliation(s)
- Luca F Valle
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Daniela Markovic
- Department of Medicine, Statistics Core, University of California, Los Angeles, CA, USA
| | - David Elashoff
- Department of Medicine, Statistics Core, University of California, Los Angeles, CA, USA
| | | | | | - Robert E Reiter
- Department of Urology, University of California, Los Angeles, CA, USA
| | - Matthew Rettig
- Division of Hematology and Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Hematology and Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Nicholas G Nickols
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA; Department of Radiation Oncology, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Robert T Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Michael L Steinberg
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Paul L Nguyen
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Brian J Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Ablative Radiotherapy in Prostate Cancer: Stereotactic Body Radiotherapy and High Dose Rate Brachytherapy. Cancers (Basel) 2020; 12:cancers12123606. [PMID: 33276562 PMCID: PMC7761604 DOI: 10.3390/cancers12123606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Radiation therapy is a standard of care treatment option for men with localized prostate cancer. Over the years, various radiation delivery modalities have contributed to the increased precision of radiation, employing radiobiological insights to shorten the overall treatment time with hypofractionation, while improving oncological control without increasing toxicities. Here, we discuss and compare two ablative radiation modalities, stereotactic body radiation therapy (SBRT) and high-dose-rate brachytherapy (HDRBT), in terms of oncological control, dose/fractionation and toxicities in men with localized prostate cancer. This review will highlight the levels of evidence available to support either modality as a monotherapy, will summarize safety and efficacy, help clinicians gain a deeper understanding of the safety and efficacy profiles of these two modalities, and highlight ongoing research efforts to address many unanswered questions regarding ablative prostate radiation. Abstract Prostate cancer (PCa) is the most common noncutaneous solid organ malignancy among men worldwide. Radiation therapy is a standard of care treatment option that has historically been delivered in the form of small daily doses of radiation over the span of multiple weeks. PCa appears to have a unique sensitivity to higher doses of radiation per fraction, rendering it susceptible to abbreviated forms of treatment. Stereotactic body radiation therapy (SBRT) and high-dose-rate brachytherapy (HDRBT) are both modern radiation modalities that allow the precise delivery of ablative doses of radiation to the prostate while maximally sparing sensitive surrounding normal structures. In this review, we highlight the evidence regarding the radiobiology, oncological outcomes, toxicity and dose/fractionation schemes of SBRT and HDRBT monotherapy in men with low-and intermediate-risk PCa.
Collapse
|
34
|
Deek M, Lilleby W, Vaage V, Hole KH, DeWeese T, Stensvold A, Tran P, Seierstad T. Impact of radiation dose on recurrence in high-risk prostate cancer patients. Prostate 2020; 80:1322-1327. [PMID: 33258482 DOI: 10.1002/pros.24059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Dose escalated radiation therapy (RT) combined with long-term androgen deprivation therapy (ADT) is a standard of care option for men with high-risk and locally advanced prostate cancer (PCa). However, the optimal dose of escalated RT and ADT is not known. Here we assessed the impact of radiation dose and length of ADT on biochemical recurrence in a multi-institutional cohort stratified by the Cambridge prognostic group (CPG). We hypothesized that radiation dose and length of ADT would impact outcome in similar risk groups of our patients. METHODS Two-hundred and forty-four patients were included, 132 from Oslo University Hospital, Department of Oncology and 112 from Johns Hopkins Hospital, Department of Radiation Oncology. Biochemical recurrence was defined as prostate-specific antigen (PSA) nadir +2 ng/mL. Time to recurrence was estimated using Kaplan-Meier analysis and when stratified by CPG the log-rank test was used. Cox regression analysis was performed to identify factors associated with risk of recurrence. Site of recurrence was investigated. RESULTS The median follow-up time was 7.4 years. The vast majority (71%) of patients were classified as high-risk (CPG 4) or very high-risk features (CPG 5). Significantly more PSA recurrences occurred in CPG 5 (41%) compared with CPG 4 (25%) (P = .04) and five-year cumulative recurrence-free survival was lower for CPG 4 and 5 (89% and 68%) compared with CPG 1, 2, and 3 (100%, 100%, and 93%). The recurrence-free survival for CPG 5 was significantly higher for prostate irradiation of 80 Gy as compared with 74 Gy (P = .011). For CPG 4 and 5 no local recurrences were detected in patients receiving 80 Gy. On stepwise Cox regression analysis neither age nor length of ADT were independent prognostic factors for recurrence free survival. CONCLUSION Prostate dose escalation from 74 to 80 Gy decreases risk of recurrence in high-risk PCa. Further studies are needed to identify the optimal combination of ADT and RT.
Collapse
Affiliation(s)
- Matthew Deek
- Department of Radiation Oncology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Wolfgang Lilleby
- Department of Oncology, Oslo University Hospital-Radium Hospital, Oslo, Norway
| | - Victoria Vaage
- Department of Oncology, Oslo University Hospital-Radium Hospital, Oslo, Norway
| | - Knut H Hole
- Department of Radiology, Oslo University Hospital-Radium Hospital, Oslo, Norway
- Faculty of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Theodore DeWeese
- Department of Radiation Oncology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Andreas Stensvold
- Department of Oncology, Østfold Hospital Trust, Kalnes, Østfold, Norway
| | - Phuoc Tran
- Department of Radiation Oncology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Therese Seierstad
- Division for Radiology and Nuclear Medicine, Department of Research and Development, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
35
|
Aghdam N, Pepin AN, Creswell M, Hsieh K, Smith C, Drescher N, Danner M, Ayoob M, Yung T, Lei S, Kumar D, Collins BT, Lischalk JW, Krishnan P, Suy S, Lynch J, Bandi G, Hankins RA, Collins SP. Management of Isolated Local Failures Following Stereotactic Body Radiation Therapy for Low to Intermediate Risk Prostate Cancer. Front Oncol 2020; 10:551491. [PMID: 33251131 PMCID: PMC7673419 DOI: 10.3389/fonc.2020.551491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/31/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Stereotactic body radiation therapy (SBRT) is a safe and effective treatment option for patients with low to intermediate risk prostate cancer (1). SBRT results in very low PSA nadirs secondary to the delivery of high biologically effective doses. Studies reporting on the diagnosis, confirmation, and management of salvageable isolated local failures (ILF) are limited. This study aims to determine the incidence and management approach of ILF after SBRT in a large single institution cohort. Method: All patients with low or intermediate risk localized prostate cancer treated with SBRT at Georgetown University Hospital were eligible for this study. Treatment was delivered using robotic SBRT with doses of 35-36.25 Gy in five fractions. ILF were diagnosed using multiparametric MRI and/or biopsy prompted by rising PSA levels after achieving long-term nadir. Patient's characteristics were extracted from a prospective institutional quality of life trial (IRB 2009-510). Type of salvage therapy and post-salvage PSA were determined on subsequent follow-up and chart review. Results: Between December 2008 to August 2018, 998 men with low to intermediate risk prostate cancer were eligible for inclusion in this analysis. Twenty-four patients (low risk, n = 5; intermediate risk, n = 19) were found to have ILF within the prostate on either MRI (n = 19) and/or biopsy (n = 20). Median pre-treatment PSA was 7.55 ng/ml. Median time to diagnosis of ILF was 72 months (24-110 months) with median PSA at the time of ILF of 2.8 ng/ml (0.7-33 ng/ml). Median PSA doubling time was 17 months (5-47 months). Thirteen patients with biopsy proven ILF proceeded with salvage therapy (cryotherapy n = 12, HIFU n = 1). Of 12 patients who underwent cryotherapy, 7 had a post-treatment PSA of <0.1 ng/ml. One patient experienced a urethral-cutaneous fistula (grade 3 toxicity). Conclusion: The incidence of isolated local recurrence is rare in our cohort. Diagnosis and management of isolated local failures post-SBRT continues to evolve. Our report highlights the importance of early utilization of MRI and confirmatory biopsy at relatively low PSA levels and long PSA doubling time (1). Additionally, undetectable PSA levels after salvage therapy supports the role of early treatment in ILF (1). Further research is needed to determine appropriate patient selection and salvage modality in this population.
Collapse
Affiliation(s)
- Nima Aghdam
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Abigail N. Pepin
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
- George Washington School of Medicine and Health Sciences, Washington, DC, United States
| | - Michael Creswell
- Georgetown University School of Medicine, Washington, DC, United States
| | - Kristin Hsieh
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
- Columbia University Valegos College of Physicians and Surgeons, New York, NY, United States
| | - Clayton Smith
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicolette Drescher
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Malika Danner
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Marilyn Ayoob
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Thomas Yung
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Siyuan Lei
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Deepak Kumar
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, United States
| | - Brian Timothy Collins
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Jonathan W. Lischalk
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Pranay Krishnan
- Department of Radiology, Georgetown University Hospital, Washington, DC, United States
| | - Simeng Suy
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - John Lynch
- Department of Urology, Georgetown University Hospital, Washington, DC, United States
| | - Guarav Bandi
- Department of Urology, Georgetown University Hospital, Washington, DC, United States
| | - Ryan Andrew Hankins
- Department of Urology, Georgetown University Hospital, Washington, DC, United States
| | - Sean P. Collins
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| |
Collapse
|
36
|
King MT, Muralidhar V, Yang DD, Mouw KW, Martin NE, D'Amico AV, Nguyen PL, Orio PF. Utilization of multimodality therapy with primary radical prostatectomy versus radiation therapy for Gleason 8-10 prostate cancer. Brachytherapy 2020; 20:1-9. [PMID: 33129714 DOI: 10.1016/j.brachy.2020.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The role of multimodality therapy (MMT) in the treatment of Gleason 8-10 prostate cancer remains controversial. We sought to evaluate factors associated with MMT utilization for primary radical prostatectomy (RP) and primary radiation therapy (RT). METHODS AND MATERIALS From the National Cancer Database, we conducted a retrospective review of 81,528 men with National Cancer Center Network Gleason 8-10 prostate cancer diagnosed between 2004 and 2015, who underwent (1) primary RP with or without early postoperative external beam RT (EBRT) or (2) primary RT (androgen deprivation therapy + EBRT) with or without brachytherapy (BT) boost. Using multivariable logistic regression models, we evaluated factors associated with the utilization of MMT, defined as early postoperative EBRT for primary RP or BT boost for primary RT. RESULTS For primary RP, the percentages of men who underwent MMT for Gleason 8 and 9-10 disease were 12.2% and 24.1%, respectively. On multivariable logistic regression, men with Gleason 9-10 were more likely to undergo MMT (odds ratio 1.03 [1.02, 1.04]), although adverse pathologic features such as T3b-4 (1.24 [1.23, 1.25]) disease demonstrated the strongest associations. For primary RT, the percentages of men who underwent BT boost for Gleason 8 and 9-10 disease were 11.8% and 9.8%, respectively. On multivariable logistic regression, men with Gleason 9-10 disease were less likely to receive BT boost (0.99 [0.98, 0.99]). CONCLUSIONS Men with more aggressive Gleason 9 disease were more likely to undergo MMT if they underwent primary RP but not primary RT. Further blood-based or imaging biomarkers may aid in identifying optimal candidates for MMT, especially for primary RT.
Collapse
Affiliation(s)
- Martin T King
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Vinayak Muralidhar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - David D Yang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Neil E Martin
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Anthony V D'Amico
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Peter F Orio
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
Tumor-targeted dose escalation for localized prostate cancer using MR-guided HDR brachytherapy (HDR) or integrated VMAT (IB-VMAT) boost: Dosimetry, toxicity and health related quality of life. Radiother Oncol 2020; 149:240-245. [PMID: 32447033 DOI: 10.1016/j.radonc.2020.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To report dosimetry, preliminary toxicity and health-related quality of life (HRQoL) outcomes of tumor-targeted dose-escalation delivered by integrated boost volumetric arc therapy (IB-VMAT) or MR-guided HDR brachytherapy (HDR) boost for prostate cancer. MATERIALS AND METHODS Patients diagnosed with localized prostate cancer, with at least 1 identifiable intraprostatic lesion on multiparametric MRI (mpMRI) were enrolled in a prospective non-randomized phase II study. All patients received VMAT to the prostate alone (76 Gy in 38 fractions) plus a GTV boost: IB-VMAT (95 Gy in 38 fractions) or MR-guided HDR (10 Gy single fraction). GTV was delineated on mpMRI and deformably registered to planning CT scans. Comparative dosimetry using EQD2 assuming α/β 3 Gy was performed. Toxicity and health-related quality of life data (HRQoL) data were collected using CTCAE v.4.0, International Prostate Symptom Score (IPSS) and the Expanded Prostate Index Composite (EPIC). RESULTS Forty patients received IB-VMAT and 40 HDR boost. Organs at risk and target minimal doses were comparable between the two arms. HDR achieved higher mean and maximal tumor doses (p < 0.05). Median follow-up was 31 months (range 25-48); Acute grade G2 genitourinary (GU) toxicity was 30% and 37.5% in IB-VMAT and HDR boost, while gastrointestinal (GI) toxicity was 7.5% and 10%, respectively. Three patients developed acute G3 events, two GU toxicity (one IB-VMAT and one HDR boost) and one GI (IB-VMAT). Late G2 GU toxicity was 25% and 17.5% in the IB-VMAT and HDR boost arm and G2 GI was 5% and 7.5%, respectively. Two patients, both on the IB-VMAT arm, developed late G3 toxicity: one GI and one GU. No statistically significant difference was found in HRQoL between radiotherapy techniques (p > 0.2). Urinary and bowel HRQoL domains in both groups declined significantly by week 6 of treatment in both arms (p < 0.05) and recovered baseline scores at 6 months. CONCLUSION Intraprostatic tumor dose escalation using IB-VMAT or MR-guided HDR boost achieved comparable OAR dosimetry, toxicity and HRQOL outcomes, but higher mean and maximal tumor dose were achieved with the HDR technique. Further follow-up will determine long-term outcomes including disease control.
Collapse
|
38
|
Shankar E, Pandey M, Verma S, Abbas A, Candamo M, Kanwal R, Shukla S, MacLennan GT, Gupta S. Role of class I histone deacetylases in the regulation of maspin expression in prostate cancer. Mol Carcinog 2020; 59:955-966. [PMID: 32391971 DOI: 10.1002/mc.23214] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
Maspin repression is frequently observed in prostate cancer; however, the molecular mechanism(s) causing the loss is not completely understood. Here, we demonstrate that inhibition of class I histone deacetylases (HDACs) mediates re-expression of maspin which plays an essential role in suppressing proliferation and migration capability in prostate cancer cells. Human prostate cancer LNCaP and DU145 cells treated with HDAC inhibitors, sodium butyrate, and trichostatin A, resulted in maspin re-expression. Interestingly, an exploration into the molecular mechanisms demonstrates that maspin repression in prostate tumor and human prostate cancer cell lines occurs via epigenetic silencing through an increase in HDAC activity/expression, independent of promoter DNA hypermethylation. Furthermore, transcriptional activation of maspin was accompanied with the suppression of HDAC1 and HDAC8 with significant p53 enrichment at the maspin promoter associated with an increase in histone H3/H4 acetylation. Our results provide evidence of maspin induction as a critical epigenetic event altered by class I HDACs in the restoration of balance to delay proliferation and migration ability of prostate cancer cells.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mitali Pandey
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Ata Abbas
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mario Candamo
- College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Rajnee Kanwal
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, Ohio.,The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio.,Department of Nutrition, Case Western Reserve University, Cleveland, Ohio.,Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio.,Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
39
|
Stone NN, Skouteris V, Stock RG. Long-term biochemical control and cause-specific survival in men with Gleason grade Group 4 and 5 prostate cancer treated with brachytherapy and external beam irradiation. Brachytherapy 2020; 19:275-281. [PMID: 32217039 DOI: 10.1016/j.brachy.2020.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Men with Gleason grade Group (GG) 4 and 5 prostate cancer have high failure rates when treated by conventional therapy. We investigated the effect of higher radiation doses on freedom from biochemical failure (FBF) and prostate cancer mortality (cause-specific survival [CSS]) in men treated with a combination of permanent implant and external beam irradiation (EBRT). METHODS AND MATERIALS Three hundred twenty men with GG4 (n = 186) and 5 (n = 134) prostate cancer were treated with I-125 or Pd-103 implant followed by 45 Gy of EBRT. Radiation doses were converted to the biological equivalent dose (BED). The median age, prostate-specific antigen (PSA), time on hormone therapy, BED, and followup were 69 years, 9.0 ng/mL, 9 months, 210 Gy, and 6.5 years, respectively. FBF and CSS were calculated by Kaplan-Meier method with associations determined by log rank and Cox regression. RESULTS Ten-year FBF for GG4 vs. 5 was 77.8 vs. 61.3% (p = 0.015), and CSS was 94 vs. 79.3% (p = 0.001). Men with lower PSA had improved FBF and CSS (p < 0.001). Thirty-one of 320 died of prostate cancer of which 10/186 (5.4%) had GG4 and 21/134 (15.7%) GG5 (OR 3.3, p = 0.002). BED <200 Gy was associated with a 2.2× greater BF (p = 0.004) and 2.4× prostate cancer mortality (p = 0.020). Significant covariates on regression analysis for FBF and CSS were PSA (p = 0.014), GG (p = 0.007), BED (p = 0.009), and GG (p = 0.001). CONCLUSIONS Survival rates for high-grade prostate cancer are favorable when diagnosed in men with lower PSA and treated with doses of BED > 200 Gy. Higher BED is achieved with a combination of I-125 (110 Gy) or Pd-103 (100 Gy) and 45 Gy EBRT.
Collapse
Affiliation(s)
- Nelson N Stone
- Departments of Urology, Icahn School of Medicine at Mount Sinai, New York, NY; Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | | | - Richard G Stock
- Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
40
|
Alibhai SM, Warde P. Local Failure in High-grade Prostate Cancer: An Elusive but Important Outcome and Target for Clinical Trials. Eur Urol 2020; 77:209-210. [DOI: 10.1016/j.eururo.2019.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
|