1
|
Klemens CA, Chulkov EG, Wu J, Hye Khan MA, Levchenko V, Flister MJ, Imig JD, Kriegel AJ, Palygin O, Staruschenko A. Loss of Chloride Channel 6 (CLC-6) Affects Vascular Smooth Muscle Contractility and Arterial Stiffness via Alterations to Golgi Calcium Stores. Hypertension 2021; 77:582-593. [PMID: 33390052 DOI: 10.1161/hypertensionaha.120.16589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genome-wide association studies have found a number of potential genes involved in blood pressure regulation; however, the functional role of many of these candidates has yet to be established. One such candidate gene is CLCN6, which encodes the transmembrane protein, chloride channel 6 (ClC-6). Although the CLCN6 locus has been widely associated with human blood pressure regulation, the mechanistic role of ClC-6 in blood pressure homeostasis at the molecular, cellular, and physiological levels is completely unknown. In this study, we demonstrate that rats with a functional knockout of ClC-6 on the Dahl Salt-Sensitive rat background (SS-Clcn6) have lower diastolic but not systolic blood pressures. The effect of diastolic blood pressure attenuation was independent of dietary salt exposure in knockout animals. Moreover, SS-Clcn6 rats are protected from hypertension-induced cardiac hypertrophy and arterial stiffening; however, they have impaired vasodilation and dysregulated intracellular calcium handling. ClC-6 is highly expressed in vascular smooth muscle cells where it is targeted to the Golgi apparatus. Using bilayer electrophysiology, we provide evidence that recombinant human ClC-6 protein can function as a channel. Last, we demonstrate that loss of ClC-6 function reduces Golgi calcium stores, which may play a previously unidentified role in vascular contraction and relaxation signaling in vascular smooth muscle cells. Collectively, these data indicate that ClC-6 may modulate blood pressure by regulating Golgi calcium reserves, which in turn contribute to vascular smooth muscle function.
Collapse
Affiliation(s)
- Christine A Klemens
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin
| | - Evgeny G Chulkov
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Department of Cell Biology, Neurobiology and Anatomy (E.G.C.), Medical College of Wisconsin
| | - Jing Wu
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin
| | - Md Abdul Hye Khan
- Department of Pharmacology (M.A.H.K., J.D.I.), Medical College of Wisconsin
| | - Vladislav Levchenko
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin
| | - Michael J Flister
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin
| | - John D Imig
- Department of Pharmacology (M.A.H.K., J.D.I.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin
| | - Alison J Kriegel
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin
| | - Oleg Palygin
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin
| | - Alexander Staruschenko
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin.,Clement J. Zablocki VA Medical Center, Milwaukee (A.S.)
| |
Collapse
|
2
|
Xie L, Mao M, Wang C, Zhang L, Pan Z, Shi J, Duan X, Jia S, Jiang B. Potential Biomarkers for Primary Open-Angle Glaucoma Identified by Long Noncoding RNA Profiling in the Aqueous Humor. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:739-752. [DOI: 10.1016/j.ajpath.2018.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022]
|
3
|
Yarishkin O, Phuong TTT, Bretz CA, Olsen KW, Baumann JM, Lakk M, Crandall A, Heurteaux C, Hartnett ME, Križaj D. TREK-1 channels regulate pressure sensitivity and calcium signaling in trabecular meshwork cells. J Gen Physiol 2018; 150:1660-1675. [PMID: 30446509 PMCID: PMC6279358 DOI: 10.1085/jgp.201812179] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
The trabecular meshwork (TM) plays a fundamental role in intraocular pressure regulation, but its mechanotransduction pathway is poorly understood. Yarishkin et al. show that the mechanosensing channel TREK-1 regulates TM membrane potential, pressure sensitivity, calcium homeostasis, and impedance. Mechanotransduction by the trabecular meshwork (TM) is an essential component of intraocular pressure regulation in the vertebrate eye. This process is compromised in glaucoma but is poorly understood. In this study, we identify transient receptor potential vanilloid isoform 4 (TRPV4) and TWIK-related potassium channel-1 (TREK-1) as key molecular determinants of TM membrane potential, pressure sensitivity, calcium homeostasis, and transcellular permeability. We show that resting membrane potential in human TM cells is unaffected by “classical” inhibitors of voltage-activated, calcium-activated, and inwardly rectifying potassium channels but is depolarized by blockers of tandem-pore K+ channels. Using gene profiling, we reveal the presence of TREK-1, TASK-1, TWIK-2, and THIK transcripts in TM cells. Pressure stimuli, arachidonic acid, and TREK-1 activators hyperpolarize these cells, effects that are antagonized by quinine, amlodipine, spadin, and short-hairpin RNA–mediated knockdown of TREK-1 but not TASK-1. Activation and inhibition of TREK-1 modulates [Ca2+]TM and lowers the impedance of cell monolayers. Together, these results suggest that tensile homeostasis in the TM may be regulated by balanced, pressure-dependent activation of TRPV4 and TREK-1 mechanotransducers.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Tam T T Phuong
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Colin A Bretz
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Kenneth W Olsen
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Jackson M Baumann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT.,Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT.,Bioengineering Graduate Program, University of Utah School of Medicine, Salt Lake City, UT
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Alan Crandall
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Catherine Heurteaux
- Institute de Pharmacologie Moléculaire et Cellulaire, CNRS, Valbonne, France
| | - Mary E Hartnett
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT .,Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT.,Bioengineering Graduate Program, University of Utah School of Medicine, Salt Lake City, UT.,Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
4
|
Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W, Wang X. Research and progress on ClC‑2 (Review). Mol Med Rep 2017; 16:11-22. [PMID: 28534947 PMCID: PMC5482133 DOI: 10.3892/mmr.2017.6600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Chloride channel 2 (ClC-2) is one of the nine mammalian members of the ClC family. The present review discusses the molecular properties of ClC‑2, including CLCN2, ClC‑2 promoter and the structural properties of ClC‑2 protein; physiological properties; functional properties, including the regulation of cell volume. The effects of ClC‑2 on the digestive, respiratory, circulatory, nervous and optical systems are also discussed, in addition to the mechanisms involved in the regulation of ClC‑2. The review then discusses the diseases associated with ClC‑2, including degeneration of the retina, Sjögren's syndrome, age‑related cataracts, degeneration of the testes, azoospermia, lung cancer, constipation, repair of impaired intestinal mucosa barrier, leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and diabetes mellitus. It was concluded that future investigations of ClC‑2 are likely to be focused on developing specific drugs, activators and inhibitors regulating the expression of ClC‑2 to treat diseases associated with ClC‑2. The determination of CLCN2 is required to prevent and treat several diseases associated with ClC‑2.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Ophthalmology, People's Hospital of Jingjiang, Jingjiang, Jiangsu 214500, P.R. China
| | - Minghui Xu
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Qingjie Kong
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Fengyun Yan
- Assets Division, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, P.R. China
| | - Wenying Tian
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xin Wang
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
5
|
Giblin JP, Comes N, Strauss O, Gasull X. Ion Channels in the Eye: Involvement in Ocular Pathologies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:157-231. [PMID: 27038375 DOI: 10.1016/bs.apcsb.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The eye is the sensory organ of vision. There, the retina transforms photons into electrical signals that are sent to higher brain areas to produce visual sensations. In the light path to the retina, different types of cells and tissues are involved in maintaining the transparency of avascular structures like the cornea or lens, while others, like the retinal pigment epithelium, have a critical role in the maintenance of photoreceptor function by regenerating the visual pigment. Here, we have reviewed the roles of different ion channels expressed in ocular tissues (cornea, conjunctiva and neurons innervating the ocular surface, lens, retina, retinal pigment epithelium, and the inflow and outflow systems of the aqueous humor) that are involved in ocular disease pathophysiologies and those whose deletion or pharmacological modulation leads to specific diseases of the eye. These include pathologies such as retinitis pigmentosa, macular degeneration, achromatopsia, glaucoma, cataracts, dry eye, or keratoconjunctivitis among others. Several disease-associated ion channels are potential targets for pharmacological intervention or other therapeutic approaches, thus highlighting the importance of these channels in ocular physiology and pathophysiology.
Collapse
Affiliation(s)
- Jonathan P Giblin
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nuria Comes
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Xavier Gasull
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
6
|
Gaurav R, Bewtra AK, Agrawal DK. Novel CLC3 transcript variants in blood eosinophils and increased CLC3 expression in nasal lavage and blood eosinophils of asthmatics. IMMUNITY INFLAMMATION AND DISEASE 2014; 2:205-13. [PMID: 25866628 PMCID: PMC4386915 DOI: 10.1002/iid3.36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 01/21/2023]
Abstract
Eosinophilia is a characteristic feature of allergic airway inflammation and remodeling. Chloride channel-3 (CLC3) in eosinophils has been associated with superoxide generation and respiratory burst. The CLC3 gene may produce multiple transcript variants through alternative splicing. However, the presence of CLC3 variants in human eosinophils is unknown. We examined the expression of CLC3 transcript variants in peripheral blood eosinophils of allergic asthmatics and healthy individuals. Potential of these obligatory dimers to form homo- or hetero-dimers was examined in HEK293 cells co-transfected with CLC3b-GFP and CLC3e-RFP. Eosinophils were isolated from peripheral blood by negative selection. Expression of CLC3 and CLC3 transcript variants was examined by qPCR, Western blot, and immunofluorescence. Confocal micrographs were analyzed with Image J software. Higher levels of novel transcript variants of CLC3 (CLC3b and CLC3e) were found in peripheral blood eosinophils of asthmatics compared to healthy non-atopic subjects. We also found higher CLC3 protein expression in the blood and nasal lavage eosinophils of asthmatics than healthy subjects. Both membranous and intracellular CLC3 expression were observed. Also, we found the presence of both homodimers and heterodimers of CLC3b-GFP and CLC3e-RFP in HEK293 cells. Higher and differential expression of novel CLC3 transcript variants in mild-to-moderate and moderate-to-severe asthmatic eosinophils suggest their critical role in allergic asthma. Membranous and intracellular (granular) expression of CLC3 in nasal lavage and peripheral blood eosinophils suggest their involvement in the activation and migration of eosinophils in allergic asthma. Moreover, homo- and hetero-dimerization of these transcript variants may change the channel properties to exhibit these states. Presence of CLC3 variants may serve as a biomarker in allergic asthma and additional knowledge of interaction between CLC3 transcript variants and their specific role in the activation and migration of eosinophils will allow to explore novel therapeutic approach in allergic asthma.
Collapse
Affiliation(s)
- Rohit Gaurav
- Center of Clinical and Translational Sciences and Department of Biomedical Sciences, Creighton University School of Medicine Omaha, Nebraska
| | - Againdra K Bewtra
- Center of Clinical and Translational Sciences and Department of Biomedical Sciences, Creighton University School of Medicine Omaha, Nebraska
| | - Devendra K Agrawal
- Center of Clinical and Translational Sciences and Department of Biomedical Sciences, Creighton University School of Medicine Omaha, Nebraska
| |
Collapse
|
7
|
Yan Y, Ding Y, Ming B, Du W, Kong X, Tian L, Zheng F, Fang M, Tan Z, Gong F. Increase in hypotonic stress-induced endocytic activity in macrophages via ClC-3. Mol Cells 2014; 37:418-25. [PMID: 24850147 PMCID: PMC4044314 DOI: 10.14348/molcells.2014.0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/01/2014] [Indexed: 12/26/2022] Open
Abstract
Extracellular hypotonic stress can affect cellular function. Whether and how hypotonicity affects immune cell function remains to be elucidated. Macrophages are immune cells that play key roles in adaptive and innate in immune reactions. The purpose of this study was to investigate the role and underlying mechanism of hypotonic stress in the function of bone marrow-derived macrophages (BMDMs). Hypotonic stress increased endocytic activity in BMDMs, but there was no significant change in the expression of CD80, CD86, and MHC class II molecules, nor in the secretion of TNF-α or IL-10 by BMDMs. Furthermore, the enhanced endocytic activity of BMDMs triggered by hypotonic stress was significantly inhibited by chloride channel-3 (ClC-3) siRNA. Our findings suggest that hypotonic stress can induce endocytosis in BMDMs and that ClC-3 plays a central role in the endocytic process.
Collapse
Affiliation(s)
- Yutao Yan
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Yu Ding
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Bingxia Ming
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Wenjiao Du
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Xiaoling Kong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Li Tian
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Fang Zheng
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Min Fang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Zheng Tan
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| | - Feili Gong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4340030,
China
| |
Collapse
|
8
|
Bozeat ND, Xiang SY, Ye LL, Yao TY, Duan ML, Burkin DJ, Lamb FS, Duan DD. Activation of volume regulated chloride channels protects myocardium from ischemia/reperfusion damage in second-window ischemic preconditioning. Cell Physiol Biochem 2011; 28:1265-78. [PMID: 22179014 DOI: 10.1159/000335858] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2011] [Indexed: 02/03/2023] Open
Abstract
Activation of volume regulated chloride channels (VRCCs) has been shown to be cardioprotective in ischemic preconditioning (IPC) of isolated hearts but the underlying molecular mechanisms remain unclear. Recent independent studies support that ClC-3, a ClC voltage-gated chloride channel, may function as a key component of the VRCCs. Thus, ClC-3 knockout (Clcn3(-/-)) mice and their age-matched heterozygous (Clcn3(+/-)) and wild-type (Clcn3(+/+)) littermates were used to test whether activation of VRCCs contributes to cardioprotection in early and/or second-window IPC. Targeted disruption of ClC-3 gene caused a decrease in the body weight but no changes in heart/body weight ratio. Telemetry ECG and echocardiography revealed no differences in ECG and cardiac function under resting conditions among all groups. Under treadmill stress (10 m/min for 10 min), the Clcn3(-/-) mice had significant slower heart rate (648±12 bpm) than Clcn3(+/+) littermates (737±19 bpm, n=6, P<0.05). Ex vivo IPC in the isolated working-heart preparations protected cardiac function during reperfusion and significantly decreased apoptosis and infarct size in all groups. In vivo early IPC significantly reduced infarct size in all groups including Clcn3(-/-) mice (22.7±3.7% vs control 40.1±4.3%, n=22, P=0.004). Second-window IPC significantly reduced apoptosis and infarction in Clcn3(+/+) (22.9±3.2% vs 45.7±5.4%, n=22, P<0.001) and Clcn3(+/-) mice (27.5±4.1% vs 42.2±5.7%, n=15, P<0.05) but not in Clcn3(-/-) littermates (39.8±4.9% vs 41.5±8.2%, n=13, P>0.05). Impaired cell volume regulation of the Clcn3(-/-) myocytes may contribute to the failure of cardioprotection by second-window IPC. These results strongly support that activation of VRCCs may play an important cardioprotective role in second-window IPC.
Collapse
Affiliation(s)
- Nathan D Bozeat
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557-0318, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Schreiner CM, Bell SM, Scott WJ. Microarray analysis of murine limb bud ectoderm and mesoderm after exposure to cadmium or acetazolamide. ACTA ACUST UNITED AC 2009; 85:588-98. [PMID: 19274763 DOI: 10.1002/bdra.20577] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A variety of drugs, environmental chemicals, and physical agents induce a common limb malformation in the offspring of pregnant mice exposed on day 9 of gestation. This malformation, postaxial, right-sided forelimb ectrodactyly, is thought to arise via an alteration of hedgehog signaling. METHODS We have studied two of these teratogens, acetazolamide and cadmium, using the technique of microarray analysis of limb bud ectoderm and mesoderm to search for changes in gene expression that could indicate a common pathway to postaxial limb reduction. RESULTS Results indicated a generalized up-regulation of gene expression after exposure to acetazolamide but a generalized down-regulation due to cadmium exposure. An intriguing observation was a cadmium-induced reduction of Mt1 and Mt2 expression in the limb bud mesoderm indicating a lowering of embryonic zinc. CONCLUSIONS We propose that these two teratogens and others (valproic acid and ethanol) lower sonic hedgehog signaling by perturbation of zinc function in the sonic hedgehog protein.
Collapse
Affiliation(s)
- Claire M Schreiner
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
10
|
Transcriptional profiling and inhibition of cholesterol biosynthesis in human T lymphocyte cells by the marine toxin azaspiracid. Genomics 2008; 91:289-300. [PMID: 18191373 DOI: 10.1016/j.ygeno.2007.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 08/23/2007] [Accepted: 10/20/2007] [Indexed: 11/21/2022]
Abstract
Azaspiracid-1 (AZA-1) is a marine biotoxin reported to accumulate in shellfish from several countries, including eastern Canada, Morocco, and much of western Europe, and is frequently associated with severe gastrointestinal human intoxication. As the mechanism of action of AZA-1 is currently unknown, human DNA microarrays and qPCR were used to profile gene expression patterns in human T lymphocyte cells following AZA-1 exposure. Some of the early (1 h) responding genes consisted of transcription factors, membrane proteins, receptors, and inflammatory genes. Four- and 24-h responding genes were dominated by genes involved in de novo lipid biosynthesis of which 17 of 18 involved in cholesterol biosynthesis were significantly up regulated. The up regulation of synthesis genes was likely in response to the ca. 50% reduction in cellular cholesterol, which correlated with up regulated protein expression levels of the low-density lipoprotein receptor. These data collectively detail the inhibition of de novo cholesterol synthesis, which is the likely cause of cytotoxicity and potentially a target pathway of the toxin.
Collapse
|
11
|
Borrás T. Chapter 11 What is Functional Genomics Teaching us about Intraocular Pressure Regulation and Glaucoma? CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00411-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Foley KF, Pantano C, Ciolino A, Mawe GM. IFN-gamma and TNF-alpha decrease serotonin transporter function and expression in Caco2 cells. Am J Physiol Gastrointest Liver Physiol 2007; 292:G779-84. [PMID: 17170025 DOI: 10.1152/ajpgi.00470.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have shown that mucosal serotonin (5-HT) transporter (SERT) expression is decreased in animal models of colitis, as well as in the colonic mucosa of humans with ulcerative colitis and irritable bowel syndrome. Altered SERT function or expression may underlie the altered motility, secretion, and sensation seen in these inflammatory gut disorders. In an effort to elucidate possible mediators of SERT downregulation, we treated cultured colonic epithelial cells (Caco2) with conditioned medium from activated human lymphocytes. Application of the conditioned medium caused a decrease in fluoxetine-sensitive [(3)H]5-HT uptake. Individual proinflammatory agents were then tested for their ability to affect uptake. Cells were treated for 48 or 72 h with PGE(2) (10 microM), IFN-gamma (500 ng/ml), TNF-alpha (50 ng/ml), IL-12 (50 ng/ml), or the nitric oxide-releasing agent S-nitrosoglutathione (GSNO; 100 microM). [(3)H]5-HT uptake was then measured. Neither PGE nor IL-12 had any effect on [(3)H]5-HT uptake, and GSNO increased uptake. However, after 3-day incubation, both TNF-alpha and IFN-gamma elicited significant decreases in SERT function. Neither TNF-alpha nor IFN-gamma were cytotoxic when used for this period of time and at these concentrations. These two cytokines also induced decreases in SERT mRNA and protein levels. By altering SERT expression, TNF-alpha and IFN-gamma could contribute to the altered motility and expression seen in vivo in ulcerative colitis or irritable bowel syndrome.
Collapse
Affiliation(s)
- Kevin F Foley
- Department of Medical Laboratory and Radiation Sciences, the University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
13
|
Comes N, Abad E, Morales M, Borrás T, Gual A, Gasull X. Identification and functional characterization of ClC-2 chloride channels in trabecular meshwork cells. Exp Eye Res 2006; 83:877-89. [PMID: 16769051 DOI: 10.1016/j.exer.2006.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/24/2022]
Abstract
In the eye, trabecular meshwork (TM) cell volume may be an important determinant of aqueous humor outflow. Among their functions, ClC-2 chloride channels are thought to be involved in regulation of cellular volume and intracellular [Cl(-)]. We characterized the properties and modulation of an inwardly rectifying chloride current activated in these cells. Patch-clamp recordings revealed inwardly rectifying chloride currents activated by membrane hyperpolarization in primary cultures of both bovine (BTM) and human (HTM) TM cells. Electrophysiological properties and anion permeability sequence (Cl(-)>Br(-)>I(-)>F(-)) were in agreement with previous data for ClC-2 in other cells. The currents were blocked by Cd(2+) and enhanced by extracellular acidification, 8Br-cAMP and cell swelling, while extracellular alkalinization decreased them. RT-PCR experiments using total RNA revealed the molecular expression of ClC-2 channels. Previously we reported the involvement of swelling-activated chloride channels (Cl(swell)) and Ca(2+)-activated K(+) channels (BK(Ca)) in cell volume and outflow facility regulation. However, in the present analysis, cell volume experiments in calcein-loaded cells and outflow facility studies performed in bovine anterior segments revealed that ClC-2 channels do not make a significant contribution to the recovery of cellular volume or to the regulation of the outflow facility. Nevertheless, ClC-2 modulation by different stimuli may contribute to intracellular [Cl(-)] regulation and other cellular functions yet to be determined in the TM.
Collapse
Affiliation(s)
- Núria Comes
- Laboratory of Neurophysiology, Department of Physiological Sciences I-Institute of Biomedical Investigations August Pi i Sunyer, IDIBAPS, School of Medicine, University of Barcelona, Casanova 143, E-08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Gabelt BT, Hu Y, Vittitow JL, Rasmussen CR, Grosheva I, Bershadsky AD, Geiger B, Borrás T, Kaufman PL. Caldesmon transgene expression disrupts focal adhesions in HTM cells and increases outflow facility in organ-cultured human and monkey anterior segments. Exp Eye Res 2006; 82:935-44. [PMID: 16442523 DOI: 10.1016/j.exer.2005.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 12/07/2005] [Accepted: 12/09/2005] [Indexed: 01/25/2023]
Abstract
Cytoskeleton modulating compounds have been shown to lower intraocular pressure (IOP) and increase outflow facility. Caldesmon is one protein that is involved in the regulation of actin stress fiber formation. The effects of rat non-muscle caldesmon (Cald) gene over-expression on focal adhesions in human trabecular meshwork (HTM) cells and on outflow facility in organ-cultured human and monkey anterior segments were determined. Treatment of HTM cells with adenovirus-delivered caldesmon (AdCaldGFP) resulted in characteristic changes in the actin cytoskeleton and matrix adhesions within 24-48 hr post-transduction. Stress fibers gradually disappeared and novel actin structures were formed (see manuscript by Grosheva et al., this issue). In cells with disrupted stress fibers, vinculin-containing focal adhesions were also disrupted. In organ-cultured anterior segments, baseline outflow facility (microl min-1 mmHg-1) for all anterior segments averaged (mean+/-sem): human, 0.19+/-0.03 (n=12); monkey, 0.36+/-0.02 (n=19). In human anterior segments, transduction with 10(7) plaque forming units of AdGFPCald increased outflow facility by 43+/-21% (p<or=0.11, n=6) at 66 hr compared to baseline and corrected for the changes in outflow facility of the contralateral vehicle treated segment. Using the same time point, i.e. 2-3 days after injection, outflow facility in monkey anterior segments, transduced with 1.5x10(7) plaque forming units of AdGFPCald was increased by 35+/-18%, p<0.2, n=10 compared to baseline and corrected for the change in outflow facility in the contralateral AdGFP treated segment. Combining human (66 hr) and monkey (2-3 days) data, outflow facility was increased by 38+/-13%, p<0.02, n=16. Additional analysis of maximum responses in monkey anterior segments from 1 to 6 days after transduction showed outflow facility was increased by 66+/-18%, p<0.01, n=10. Caldesmon over-expression, which relaxes cultured HTM cells and disrupts their actin cytoskeleton and cell-matrix adhesions, also appears to increase outflow facility in organ-cultured human and monkey anterior segments. This suggests that over-expression of the caldesmon gene in the TM may be an effective approach for the gene therapy of glaucoma.
Collapse
Affiliation(s)
- B'Ann True Gabelt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tan JCH, Kalapesi FB, Coroneo MT. Mechanosensitivity and the eye: cells coping with the pressure. Br J Ophthalmol 2006; 90:383-8. [PMID: 16488967 PMCID: PMC1856976 DOI: 10.1136/bjo.2005.079905] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The cells of the various organ systems in humans are subject to mechanical forces to which they must respond. Here the authors review what is known of the ways in which the cells of animals, ranging from the prokaryotic to humans, sense and transduce mechanical forces to respond to such stimuli. In what way this pertains to the eye, especially with respect to axial myopia and the pressure related disease of glaucoma, is then surveyed.
Collapse
Affiliation(s)
- J C H Tan
- Department of Ophthalmology, Prince of Wales Hospital, High Street, Randwick, NSW 2032, Australia
| | | | | |
Collapse
|