1
|
Wishart TFL, Flokis M, Shu DY, Das SJ, Lovicu FJ. Hallmarks of lens aging and cataractogenesis. Exp Eye Res 2021; 210:108709. [PMID: 34339681 DOI: 10.1016/j.exer.2021.108709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Lens homeostasis and transparency are dependent on the function and intercellular communication of its epithelia. While the lens epithelium is uniquely equipped with functional repair systems to withstand reactive oxygen species (ROS)-mediated oxidative insult, ROS are not necessarily detrimental to lens cells. Lens aging, and the onset of pathogenesis leading to cataract share an underlying theme; a progressive breakdown of oxidative stress repair systems driving a pro-oxidant shift in the intracellular environment, with cumulative ROS-induced damage to lens cell biomolecules leading to cellular dysfunction and pathology. Here we provide an overview of our current understanding of the sources and essential functions of lens ROS, antioxidative defenses, and changes in the major regulatory systems that serve to maintain the finely tuned balance of oxidative signaling vs. oxidative stress in lens cells. Age-related breakdown of these redox homeostasis systems in the lens leads to the onset of cataractogenesis. We propose eight candidate hallmarks that represent common denominators of aging and cataractogenesis in the mammalian lens: oxidative stress, altered cell signaling, loss of proteostasis, mitochondrial dysfunction, dysregulated ion homeostasis, cell senescence, genomic instability and intrinsic apoptotic cell death.
Collapse
Affiliation(s)
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia; Schepens Eye Research Institute of Mass Eye and Ear. Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shannon J Das
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
2
|
Orai1 Channel Regulates Human-Activated Pancreatic Stellate Cell Proliferation and TGF β1 Secretion through the AKT Signaling Pathway. Cancers (Basel) 2021; 13:cancers13102395. [PMID: 34063470 PMCID: PMC8156432 DOI: 10.3390/cancers13102395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Activated pancreatic stellate cells (aPSCs), the main source of cancer-associated fibroblasts in pancreatic ductal adenocarcinoma (PDAC), are well known as the key actor of the abundant fibrotic stroma development surrounding the tumor cells. In permanent communication with the tumor cells, they enhance PDAC early spreading and limit the drug delivery. However, the understanding of PSC activation mechanisms and the associated signaling pathways is still incomplete. In this study, we aimed to evaluate the role of Ca2+, and Orai1 Ca2+ channels, in two main PSC activation processes: cell proliferation and cytokine secretion. Indeed, Ca2+ is a versatile second messenger implicated in the regulation of numerous biological processes. We believe that a better comprehension of PSC Ca2+ -dependent activation mechanisms will bring up new crucial PDAC early prognostic markers or new targeting approaches in PDAC treatment. Abstract Activated pancreatic stellate cells (aPSCs), the crucial mediator of pancreatic desmoplasia, are characterized, among others, by high proliferative potential and abundant transforming growth factor β1 (TGFβ1) secretion. Over the past years, the involvement of Ca2+ channels in PSC pathophysiology has attracted great interest in pancreatic cancer research. We, thus, aimed to investigate the role of the Orai1 Ca2+ channel in these two PSC activation processes. Using the siRNA approach, we invalided Orai1 expression and assessed the channel functionality by Ca2+ imaging, the effect on aPSC proliferation, and TGFβ1 secretion. We demonstrated the functional expression of the Orai1 channel in human aPSCs and its implication in the store-operated Ca2+ entry (SOCE). Orai1 silencing led to a decrease in aPSC proliferation, TGFβ1 secretion, and AKT activation. Interestingly, TGFβ1 induced a higher SOCE response by increasing Orai1 mRNAs and proteins and promoted both AKT phosphorylation and cell proliferation, abolished by Orai1 silencing. Together, our results highlight the role of Orai1-mediated Ca2+ entry in human aPSC pathophysiology by controlling cell proliferation and TGFβ1 secretion through the AKT signaling pathway. Moreover, we showed a TGFβ1-induced autocrine positive feedback loop by promoting the Orai1/AKT-dependent proliferation via the stimulation of Orai1 expression and function.
Collapse
|
3
|
Brink PR, Valiunas V, White TW. Lens Connexin Channels Show Differential Permeability to Signaling Molecules. Int J Mol Sci 2020; 21:ijms21186943. [PMID: 32971763 PMCID: PMC7555617 DOI: 10.3390/ijms21186943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
Gap junction channels mediate the direct intercellular passage of small ions as well as larger solutes such as second messengers. A family of proteins called connexins make up the subunits of gap junction channels in chordate animals. Each individual connexin forms channels that exhibit distinct permeability to molecules that influence cellular signaling, such as calcium ions, cyclic nucleotides, or inositol phosphates. In this review, we examine the permeability of connexin channels containing Cx43, Cx46, and Cx50 to signaling molecules and attempt to relate the observed differences in permeability to possible in vivo consequences that were revealed by studies of transgenic animals where these connexin genes have been manipulated. Taken together, these data suggest that differences in the permeability of individual connexin channels to larger solutes like 3',5'-cyclic adenosine monophosphate (cAMP) and inositol 1,4,5-trisphosphate (IP3) could play a role in regulating epithelial cell division, differentiation, and homeostasis in organs like the ocular lens.
Collapse
|
4
|
Skrzycki M, Kaźmierczak B. The hidden role of the Sigma1 receptor in muscle cells. J Recept Signal Transduct Res 2020; 40:201-208. [PMID: 32054378 DOI: 10.1080/10799893.2020.1727924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
This review describes the very specific role of Sigma1 receptor in different types of muscle cells. Sigma1 receptor is a transmembrane protein residing in such structures like MAM. It has chaperoning activity supporting function of many proteins, particularly ion channels, including Ca2+ channels. This latter function is of particular meaning for muscle cells, due to their calcium-based/regulated metabolism. Here we discuss new reports pointing to participation of Sigma1 receptor in muscle specific processes like contraction, EC-coupling, calcium currents and in diseases like left ventricular hypertrophy, transverse aortic stenosis and hypertension-induced heart dysfunction.
Collapse
Affiliation(s)
- Michał Skrzycki
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Beata Kaźmierczak
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Valiunas V, White TW. Connexin43 and connexin50 channels exhibit different permeability to the second messenger inositol triphosphate. Sci Rep 2020; 10:8744. [PMID: 32457413 PMCID: PMC7251084 DOI: 10.1038/s41598-020-65761-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 11/12/2022] Open
Abstract
Gap junction channels made of different connexins have distinct permeability to second messengers, which could affect many cell processes, including lens epithelial cell division. Here, we have compared the permeability of IP3 and Ca2+ through channels made from two connexins, Cx43 and Cx50, that are highly expressed in vertebrate lens epithelial cells. Solute transfer was measured while simultaneously monitoring junctional conductance via dual whole-cell/perforated patch clamp. HeLa cells expressing Cx43 or Cx50 were loaded with Fluo-8, and IP3 or Ca2+ were delivered via patch pipette to one cell of a pair, or to a monolayer while fluorescence intensity changes were recorded. Cx43 channels were permeable to IP3 and Ca2+. Conversely, Cx50 channels were impermeable to IP3, while exhibiting high permeation of Ca2+. Reduced Cx50 permeability to IP3 could play a role in regulating cell division and homeostasis in the lens.
Collapse
Affiliation(s)
- Virginijus Valiunas
- The Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA
| | - Thomas W White
- The Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA.
| |
Collapse
|
6
|
Andrä I, Ulrich H, Dürr S, Soll D, Henkel L, Angerpointner C, Ritter J, Przibilla S, Stadler H, Effenberger M, Busch DH, Schiemann M. An Evaluation of T‐Cell Functionality After Flow Cytometry Sorting Revealed p38 MAPK Activation. Cytometry A 2020; 97:171-183. [DOI: 10.1002/cyto.a.23964] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Immanuel Andrä
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| | - Hanna Ulrich
- Institute for Systemic Inflammation ResearchUniversität zu Lübeck Lübeck Germany
| | - Susi Dürr
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| | - Dominik Soll
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| | - Lynette Henkel
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| | - Corinne Angerpointner
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| | - Julia Ritter
- Institute for Systemic Inflammation ResearchUniversität zu Lübeck Lübeck Germany
| | | | - Herbert Stadler
- Cell.Copedia GmbH Leipzig Germany
- IBA GmbH, IBA Lifesciences Göttingen Lower Saxony Germany
| | - Manuel Effenberger
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
- Focus Group 'Clinical Cell Processing and Purification'Institute for Advanced Study, TUM Munich Germany
- National Centre for Infection Research (DZIF) Munich Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and HygieneTechnische Universität München (TUM) Munich Germany
| |
Collapse
|
7
|
Regulation of Myelination by Exosome Associated Retinoic Acid Release from NG2-Positive Cells. J Neurosci 2019; 39:3013-3027. [PMID: 30760627 PMCID: PMC6468108 DOI: 10.1523/jneurosci.2922-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 02/03/2019] [Indexed: 02/07/2023] Open
Abstract
In the CNS, oligodendrocytes are responsible for myelin formation and maintenance. Following spinal cord injury, oligodendrocyte loss and an inhibitory milieu compromise remyelination and recovery. Here, we explored the role of retinoic acid receptor-beta (RARβ) signaling in remyelination. Using a male Sprague Dawley rat model of PNS-CNS injury, we show that oral treatment with a novel drug like RARβ agonist, C286, induces neuronal expression of the proteoglycan decorin and promotes myelination and differentiation of oligodendrocyte precursor cells (NG2+ cells) in a decorin-mediated neuron–glia cross talk. Decorin promoted the activation of RARα in NG2+ cells by increasing the availability of the endogenous ligand RA. NG2+ cells synthesize RA, which is released in association with exosomes. We found that decorin prevents this secretion through regulation of the EGFR–calcium pathway. Using functional and pharmacological studies, we further show that RARα signaling is both required and sufficient for oligodendrocyte differentiation. These findings illustrate that RARβ and RARα are important regulators of oligodendrocyte differentiation, providing new targets for myelination. SIGNIFICANCE STATEMENT This study identifies novel therapeutic targets for remyelination after PNS-CNS injury. Pharmacological and knock-down experiments show that the retinoic acid (RA) signaling promotes differentiation of oligodendrocyte precursor cells (OPCs) and remyelination in a cross talk between neuronal RA receptor-beta (RARβ) and RARα in NG2+ cells. We show that stimulation of RARα is required for the differentiation of OPCs and we describe for the first time how oral treatment with a RARβ agonist (C286, currently being tested in a Phase 1 trial, ISRCTN12424734) leads to the endogenous synthesis of RA through retinaldehyde dehydrogenase 2 (Raldh2) in NG2 cells and controls exosome-associated-RA intracellular levels through a decorin–Ca2+ pathway. Although RARβ has been implicated in distinct aspects of CNS regeneration, this study identifies a novel function for both RARβ and RARα in remyelination.
Collapse
|
8
|
Skrzycki M, Czeczot H, Mielczarek-Puta M, Otto-Ślusarczyk D, Graboń W. Effect of different concentrations of oxygen on expression of sigma 1 receptor and superoxide dismutases in human colon adenocarcinoma cell lines. J Recept Signal Transduct Res 2017; 37:252-258. [PMID: 27829319 DOI: 10.1080/10799893.2016.1217882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 07/17/2016] [Indexed: 12/25/2022]
Abstract
CONTEXT Tumor cells due to distance from capillary vessels exist in different oxygenation conditions (anoxia, hypoxia, normoxia). Changes in cell oxygenation lead to reactive oxygen species production and oxidative stress. Sigma 1 receptor (Sig1R) is postulated to be stress responding agent and superoxide dismutases (SOD1 and SOD2) are key antioxidant enzymes. It is possible that they participate in tumor cells adaptation to different concentrations of oxygen. OBJECTIVE Evaluation of Sig1R, SOD1, and SOD2 expression in different concentrations of oxygen (1%, 10%, 21%) in colon adenocarcinoma cell lines. MATERIALS AND METHODS SW480 (primary adenocarcinoma) and SW620 (metastatic) cell lines were cultured in standard conditions in Dulbecco's modified Eagle's medium for 5 days, and next cultured in Hypoxic Chamber in 1% O2, 10% O2, 21% O2. Number of living cells was determined by trypan blue assay. Level of mRNA for Sig1R, SOD1, and SOD2 was determined by standard PCR method. Statistical analysis was conducted using Statistica 10.1 software. RESULTS We observed significant changes in expression of Sig1R, SOD1, SOD2 due to different oxygen concentrations. ANOVA analysis revealed significant interactions between studied parameters mainly in hypoxia conditions in SW480 cells and between Sig1R and SOD2 in SW620 cells. It also showed that changes in expression of studied proteins depend significantly on type of the cell line. CONCLUSION Changes of Sig1R and SOD2 expression point to mitochondria as main organelle responsible for survival of tumor cells exposed to hypoxia or oxidative stress. Studied proteins are involved in intracellular response to stress related with different concentrations of oxygen.
Collapse
Affiliation(s)
- Michał Skrzycki
- a Department of Biochemistry , Medical University of Warsaw , Warsaw , Poland
| | - Hanna Czeczot
- a Department of Biochemistry , Medical University of Warsaw , Warsaw , Poland
| | | | | | - Wojciech Graboń
- a Department of Biochemistry , Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
9
|
Sulforaphane promotes ER stress, autophagy, and cell death: implications for cataract surgery. J Mol Med (Berl) 2017; 95:553-564. [PMID: 28083623 PMCID: PMC5403866 DOI: 10.1007/s00109-016-1502-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 01/23/2023]
Abstract
Abstract Posterior capsule opacification (PCO) commonly develops following cataract surgery and is a wound-healing response that can ultimately lead to secondary visual loss. Improved management of this problem is required. The isothiocyanate, sulforaphane (SFN), is reported to exert cytoprotective and cytotoxic actions, and the latter may be exploited to treat/prevent PCO. SFN concentrations of 10 μM and above significantly impaired wound-healing in a human lens capsular bag model. A similar pattern of response was also seen with a human lens cell line, FHL124. SFN treatment promoted increased expression of endoplasmic reticulum (ER) stress genes, which also corresponded with protein expression. Evidence of autophagy was observed in response to SFN as determined by increased microtubule-associated protein 1A/1B-light chain 3 (LC3)-II levels and detection of autophagic vesicles. This response was disrupted by established autophagy inhibitors chloroquine and 3-MA. SFN was found to promote MAPK signaling, and inhibition of ERK activation using U0126 prevented SFN-induced LC3-II elevation and vesicle formation. SFN also significantly increased levels of reactive oxygen species. Taken together, our findings suggest that SFN is capable of reducing lens cell growth and viability and thus could serve as a putative therapeutic agent for PCO. Key message SFN reduces lens epithelial cell growth, migration, and viability. SFN can promote ER stress and autophagy in lens cells. SFN promotes MAPK signaling, and inhibition of MEK can suppress SFN-induced autophagy. ER stress and autophagy in lens cells are likely promoted by ROS production. SFN may help prevent posterior capsule opacification after cataract surgery.
Collapse
|
10
|
Ainsbury EA, Barnard S, Bright S, Dalke C, Jarrin M, Kunze S, Tanner R, Dynlacht JR, Quinlan RA, Graw J, Kadhim M, Hamada N. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:238-261. [DOI: 10.1016/j.mrrev.2016.07.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
|
11
|
Wormstone IM, Eldred JA. Experimental models for posterior capsule opacification research. Exp Eye Res 2015; 142:2-12. [PMID: 25939555 DOI: 10.1016/j.exer.2015.04.021] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/28/2022]
Abstract
Millions of people worldwide are blinded due to cataract formation. At present the only means of treating a cataract is through surgical intervention. A modern cataract operation involves the creation of an opening in the anterior lens capsule to allow access to the fibre cells, which are then removed. This leaves in place a capsular bag that comprises the remaining anterior capsule and the entire posterior capsule. In most cases, an intraocular lens is implanted into the capsular bag during surgery. This procedure initially generates good visual restoration, but unfortunately, residual lens epithelial cells undergo a wound-healing response invoked by surgery, which in time commonly results in a secondary loss of vision. This condition is known as posterior capsule opacification (PCO) and exhibits classical features of fibrosis, including hyperproliferation, migration, matrix deposition, matrix contraction and transdifferentiation into myofibroblasts. These changes alone can cause visual deterioration, but in a significant number of cases, fibre differentiation is also observed, which gives rise to Soemmering's ring and Elschnig's pearl formation. Elucidating the regulatory factors that govern these events is fundamental in the drive to develop future strategies to prevent or delay visual deterioration resulting from PCO. A range of experimental platforms are available for the study of PCO that range from in vivo animal models to in vitro human cell and tissue culture models. In the current review, we will highlight some of the experimental models used in PCO research and provide examples of key findings that have resulted from these approaches.
Collapse
Affiliation(s)
| | - Julie Ann Eldred
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
12
|
Lauf PK, Alqahtani T, Flues K, Meller J, Adragna NC. Interaction between Na-K-ATPase and Bcl-2 proteins BclXL and Bak. Am J Physiol Cell Physiol 2015; 308:C51-60. [DOI: 10.1152/ajpcell.00287.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In silico analysis predicts interaction between Na-K-ATPase (NKA) and Bcl-2 protein canonical BH3- and BH1-like motifs, consistent with NKA inhibition by the benzo-phenanthridine alkaloid chelerythrine, a BH3 mimetic, in fetal human lens epithelial cells (FHLCs) (Lauf PK, Heiny J, Meller J, Lepera MA, Koikov L, Alter GM, Brown TL, Adragna NC. Cell Physiol Biochem 31: 257–276, 2013). This report establishes proof of concept: coimmunoprecipitation and immunocolocalization showed unequivocal and direct physical interaction between NKA and Bcl-2 proteins. Specifically, NKA antibodies (ABs) coimmunoprecipitated BclXL (B-cell lymphoma extra large) and BAK (Bcl-2 antagonist killer) proteins in FHLCs and A549 lung cancer cells. In contrast, both anti-Bcl-2 ABs failed to pull down NKA. Notably, the molecular mass of BAK1 proteins pulled down by NKA and BclXL ABs appeared to be some 4-kDa larger than found in input monomers. In silico analysis predicts these higher molecular mass BAK1 proteins as alternative splicing variants, encoding 42 amino acid (aa) larger proteins than the known 211-aa long canonical BAK1 protein. These BAK1 variants may constitute a pool separate from that forming mitochondrial pores by specifically interacting with NKA and BclXL proteins. We propose a NKA-Bcl-2 protein ternary complex supporting our hypothesis for a special sensor role of NKA in Bcl-2 protein control of cell survival and apoptosis.
Collapse
Affiliation(s)
- Peter K. Lauf
- Cell Biophysics Group, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Department of Pathology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio; and
| | - Tariq Alqahtani
- Cell Biophysics Group, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio; and
| | - Karin Flues
- Cell Biophysics Group, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio; and
| | - Jaroslaw Meller
- Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Norma C. Adragna
- Cell Biophysics Group, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio; and
| |
Collapse
|
13
|
Wertheimer C, Liegl R, Kernt M, Docheva D, Kampik A, Eibl-Lindner KH. EGFR-blockade with erlotinib reduces EGF and TGF-β2 expression and the actin-cytoskeleton which influences different aspects of cellular migration in lens epithelial cells. Curr Eye Res 2014; 39:1000-12. [PMID: 24588338 DOI: 10.3109/02713683.2014.888453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION After cataract surgery, residual lens epithelial cells migrate and proliferate within the capsular bag resulting in posterior capsule opacification (PCO). The up-regulation of TGF-β2, EGF and FGF-2 has been identified as a key factor in PCO pathogenesis leading to actin fiber assembly and alterations in the migration pattern. In this in vitro study, the influence of Erlotinib as a selective EGFR inhibitor is investigated on the cellular features indicated, which might promote a future clinical application. METHODS Expression of EGF, FGF-2 and TGF-β2 was measured using RT-PCR and ELISA in human lens epithelial cells (HLEC). Computational data of an in vitro time lapse microscopy assay were used for statistical analysis of single cell migration with a particular focus on cell-cell interaction; cell velocity distribution; and displacement before, during and after mitosis. The effect of Erlotinib on the actin-cytoskeleton was evaluated using Alexa Fluor 488 Phalloidin and epifluorescence microscopy. RESULTS EGF and TGF-β2 mRNA expression and protein levels are reduced by Erlotinib, while FGF-2 expression remained stable. Overall fluidity of cell-cell interaction is less in the presence of Erlotinib compared to the control and the velocity distribution across all cells becomes less uniform within the cell cluster. After mitosis, HLEC move significantly faster without EGFR inhibition, which can be completely blocked by Erlotinib. Furthermore, Erlotinib diminishes the amount of actin stress fibers and the stress fiber diameter. CONCLUSION As a novel effect of Erlotinib on HLEC, we describe the down-regulation of EGF and TGF-β2 expression, both are crucial factors for PCO development. Cellular movement displays complex alterations under EGFR inhibition, which is partly explained by actin fiber depletion. These findings further underline the role of Erlotinib in pharmacologic PCO prophylaxis.
Collapse
Affiliation(s)
- C Wertheimer
- Cell- and Molecular Biology Laboratory, Department of Ophthalmology, Ludwig-Maximilians-University , Munich , Germany and
| | | | | | | | | | | |
Collapse
|
14
|
Spalton DJ, Russell SL, Evans-Gowing R, Eldred JA, Wormstone MI. Effect of total lens epithelial cell destruction on intraocular lens fixation in the human capsular bag. J Cataract Refract Surg 2014; 40:306-12. [DOI: 10.1016/j.jcrs.2013.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 11/15/2022]
|
15
|
Skrzycki M, Czeczot H. Altered expression level of Sigma1 receptor gene in human colorectal cancer. J Recept Signal Transduct Res 2013; 33:313-8. [PMID: 23906352 DOI: 10.3109/10799893.2013.822891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nonopioid Sigma1 receptor (Sig1R) influences numerous metabolism functions including regulation of ion channels, reaction on stress and response to growth signals. Due to this influence, Sigma1 receptor ligands show anti-proliferative and cytotoxic action on tumor cells. Additionally its increased level is observed in some types of tumors. Colorectal cancer is one of the most common cancers worldwide and its clinical development is well described. The aim of the study was evaluation of Sigma1 receptor mRNA expression level in human colorectal cancer and colorectal cancer liver metastases at different stages of tumor development. The mRNA was isolated from 30 patients: 18 with colorectal cancer (CRC) and 12 with colorectal cancer liver metastases (CRCLM). The cDNA of Sig1R gene was amplified by polymerase chain reaction using specific primers. The level of Sig1R mRNA expression was determined by measurement of optical density. Sig1R expression level was increased in CRC and CRCLM. The highest level of Sig1R mRNA was observed in UICC stage III. We also showed significant interactions of UICC stage and tumor localization with Sig1R expression level. There were no interactions between UICC stage and age of patients, although we observed significantly decreased level of Sig1R mRNA in older patients. Clinical advancement stage, localization of tumor and age of patients seems to be an important factors influencing Sigma1 receptor expression level. It is probably due to double nature of Sig1R action - in certain conditions it could act pro- or antiapoptotic. This action might depend on Sig1R activity resulting from its expression level.
Collapse
Affiliation(s)
- Michał Skrzycki
- Department of Biochemistry, Warsaw Medical University , Warsaw , Poland
| | | |
Collapse
|
16
|
Wang L, Eldred JA, Sidaway P, Sanderson J, Smith AJO, Bowater RP, Reddan JR, Wormstone IM. Sigma 1 receptor stimulation protects against oxidative damage through suppression of the ER stress responses in the human lens. Mech Ageing Dev 2012; 133:665-74. [PMID: 23041531 DOI: 10.1016/j.mad.2012.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/31/2012] [Accepted: 09/24/2012] [Indexed: 11/23/2022]
Abstract
Stimulation of sigma-1 receptors is reported to protect against oxidative stress. The present study uses cells and tissue from the human lens to elucidate the relationship between the sigma 1 receptor, ER stress and oxidative stress-induced damage. Exposure of the human lens cell line FHL124 to increasing concentrations of H(2)O(2) led to reduced cell viability and increased apoptosis. In response to 30 μM H(2)O(2), levels of the ER stress proteins BiP, ATF6 and pEIF2α were significantly increased within 4h of exposure. Expression of the sigma 1 receptor was markedly increased in response to H(2)O(2). Application of 10 and 30 μM (+)-pentazocine, a sigma 1 receptor agonist, significantly inhibited the H(2)O(2) induced cell death. (+)-Pentazocine also suppressed the oxidative stress induced reduction of pro-caspase 12 and suppressed the induction of the ER stress proteins BiP and EIF2α. When applied to cultured human lenses, (+)-pentazocine protected against apoptotic cell death, LDH release and against H(2)O(2) induced opacification. These data demonstrate that stimulation of the sigma 1 receptor provides significant protection from oxidative damage and is, therefore, a putative therapeutic approach to delay the onset of diseases that may be triggered by oxidative damage, including cataract formation.
Collapse
Affiliation(s)
- Lixin Wang
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lou-Bonafonte JM, Bonafonte-Marquez E, Bonafonte-Royo S, Martínez-Carpio PA. Posology, efficacy, and safety of epidermal growth factor eye drops in 305 patients: logistic regression and group-wise odds of published data. J Ocul Pharmacol Ther 2012; 28:467-72. [PMID: 22537292 DOI: 10.1089/jop.2011.0236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aim of this article is to investigate clinical research on indications, posology, efficacy, and safety of epidermal growth factor (EGF) eye drops in the treatment of some human corneal disorders. Methods used include systematic search and selection of series of cases and clinical trials in Medline database up to January 2012, kappa index (K) to validate retrieval information, cumulative Mantel-Haenszel-stratified meta-analysis, 2×2 contingency table of randomized EGF-vehicle-controlled treated groups, and statistical program SPSSv12. Our results indicate that EGF eye drops appear to be a very effective treatment of acute heterogeneous corneal diseases, without significant adverse effects, with a 86.8% clinical efficacy reported by authors, a 98% (P<0.05) probabilistic expected efficacy, and 51.3 (17.4-148.7 confidence interval 95%; P<0.05) odds ratio EGF/vehicle. However, clinical trials are scarce, with low sample sizes and serious inconsistencies in EGF posology. EGF eye drops (50-1,000 ng, 2-3 times/day) could be a useful treatment for promoting postoperative refractive surgery, reversing cases of keratopathy secondary to systematic EGF receptor inhibitors, diabetic keratopathy, and other corneal and conjunctival disorders.
Collapse
Affiliation(s)
- José Manuel Lou-Bonafonte
- Department of Pharmacology and Physiology, FCCSYD (Facultad de Ciencias de la Salud y del Deporte), University of Zaragoza, Spain.
| | | | | | | |
Collapse
|
18
|
Wang Y, Xing KY, Lou MF. Regulation of cytosolic phospholipase A2 (cPLA2alpha) and its association with cell proliferation in human lens epithelial cells. Invest Ophthalmol Vis Sci 2011; 52:8231-40. [PMID: 21896865 PMCID: PMC3208028 DOI: 10.1167/iovs.11-7542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 07/25/2011] [Accepted: 08/18/2011] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate the molecular mechanism for cytosolic phospholipase A2 (cPLA(2)α) regulation and its association to platelet-derived growth factor (PDGF)-induced cell proliferation. METHODS cPLA(2)α was examined using human lens epithelial (HLE) B3 cells. Reactive oxygen species (ROS) generation induced by PDGF was analyzed by luminescence assay. Cell proliferation was measured by cell counting and by BrdU assay. Human cPLA(2)α gene was cloned via RT-PCR followed by site-directed mutagenesis to construct HLE B3 cells expressing either inactive cPLA(2)α enzyme with S228A mutation (S228A), or cPLA(2)α truncated at the calcium-binding C2 domain (C2D). Activity of cPLA(2)α was measured by arachidonic acid (AA) release from cell membranes using [(3)H]-arachidonic acid prelabeled cells. The effect of intracellular calcium level on cPLA(2)α function was examined by treating cells with ionomycin (calcium influx), thapsgargin (endoplasmic reticulum [ER] calcium store release) or 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (BAPTA; calcium chelator). Activation of extracellular signal-regulated kinases (ERK), JNK, p38, or Akt was detected by Western blot analysis using specific antibodies. RESULTS S228A mutant showed suppressed PDGF-induced reactive oxygen species generation, ERK and JNK activation (no effect on p38 or Akt), and cell proliferation in comparison with the vector alone (Vec) control. Calcium-binding C2 domain cells lost the ability of membrane translocation and activation of cPLA(2)α. PDGF cell signaling was calcium-dependent, and the calcium was supplied either from the external flux or endoplasmic reticulum store. However, enrichment of cellular calcium not only augmented PDGF function, but also demonstrated a cPLA(2)α-dependent calcium-signaling cascade that led to cell proliferation. CONCLUSIONS cPLA(2)α is regulated by calcium mobilization and mitogen-activated protein kinases (MAPK) activation. Both PDGF mitogenic action and calcium signaling are cPLA(2)α-dependent.
Collapse
Affiliation(s)
- Yin Wang
- From the School of Veterinary Medicine and Biomedical Sciences, and
- the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Kui-Yi Xing
- From the School of Veterinary Medicine and Biomedical Sciences, and
- the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Marjorie F. Lou
- From the School of Veterinary Medicine and Biomedical Sciences, and
- the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska; and
- the Department of Ophthalmology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
19
|
Dahm R, van Marle J, Quinlan RA, Prescott AR, Vrensen GFJM. Homeostasis in the vertebrate lens: mechanisms of solute exchange. Philos Trans R Soc Lond B Biol Sci 2011; 366:1265-77. [PMID: 21402585 DOI: 10.1098/rstb.2010.0299] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The eye lens is avascular, deriving nutrients from the aqueous and vitreous humours. It is, however, unclear which mechanisms mediate the transfer of solutes between these humours and the lens' fibre cells (FCs). In this review, we integrate the published data with the previously unpublished ultrastructural, dye loading and magnetic resonance imaging results. The picture emerging is that solute transfer between the humours and the fibre mass is determined by four processes: (i) paracellular transport of ions, water and small molecules along the intercellular spaces between epithelial and FCs, driven by Na(+)-leak conductance; (ii) membrane transport of such solutes from the intercellular spaces into the fibre cytoplasm by specific carriers and transporters; (iii) gap-junctional coupling mediating solute flux between superficial and deeper fibres, Na(+)/K(+)-ATPase-driven efflux of waste products in the equator, and electrical coupling of fibres; and (iv) transcellular transfer via caveoli and coated vesicles for the uptake of macromolecules and cholesterol. There is evidence that the Na(+)-driven influx of solutes occurs via paracellular and membrane transport and the Na(+)/K(+)-ATPase-driven efflux of waste products via gap junctions. This micro-circulation is likely restricted to the superficial cortex and nearly absent beyond the zone of organelle loss, forming a solute exchange barrier in the lens.
Collapse
Affiliation(s)
- Ralf Dahm
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
20
|
Targeted analysis of four breeds narrows equine Multiple Congenital Ocular Anomalies locus to 208 kilobases. Mamm Genome 2011; 22:353-60. [PMID: 21465164 PMCID: PMC3098992 DOI: 10.1007/s00335-011-9325-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/08/2011] [Indexed: 11/05/2022]
Abstract
The syndrome Multiple Congenital Ocular Anomalies (MCOA) is the collective name ascribed to heritable congenital eye defects in horses. Individuals homozygous for the disease allele (MCOA phenotype) have a wide range of eye anomalies, while heterozygous horses (Cyst phenotype) predominantly have cysts that originate from the temporal ciliary body, iris, and/or peripheral retina. MCOA syndrome is highly prevalent in the Rocky Mountain Horse but the disease is not limited to this breed. Affected horses most often have a Silver coat color; however, a pleiotropic link between these phenotypes is yet to be proven. Locating and possibly isolating these traits would provide invaluable knowledge to scientists and breeders. This would favor maintenance of a desirable coat color while addressing the health concerns of the affected breeds, and would also provide insight into the genetic basis of the disease. Identical-by-descent mapping was used to narrow the previous 4.6-Mb region to a 264-kb interval for the MCOA locus. One haplotype common to four breeds showed complete association to the disease (Cyst phenotype, n = 246; MCOA phenotype, n = 83). Candidate genes from the interval, SMARCC2 and IKZF4, were screened for polymorphisms and genotyped, and segregation analysis allowed the MCOA syndrome region to be shortened to 208 kb. This interval also harbors PMEL17, the gene causative for Silver coat color. However, by shortening the MCOA locus by a factor of 20, 176 other genes have been unlinked from the disease and only 15 genes remain.
Collapse
|
21
|
Márquez EB, Ortueta DD, Royo SB, Martínez-Carpio PA. Epidermal growth factor receptor in corneal damage: update and new insights from recent reports. Cutan Ocul Toxicol 2010; 30:7-14. [DOI: 10.3109/15569527.2010.498398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Wormstone IM, Wang L, Liu CSC. Posterior capsule opacification. Exp Eye Res 2008; 88:257-69. [PMID: 19013456 DOI: 10.1016/j.exer.2008.10.016] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 11/18/2022]
Abstract
Posterior Capsule Opacification (PCO) is the most common complication of cataract surgery. At present the only means of treating cataract is by surgical intervention, and this initially restores high visual quality. Unfortunately, PCO develops in a significant proportion of patients to such an extent that a secondary loss of vision occurs. A modern cataract operation generates a capsular bag, which comprises a proportion of the anterior and the entire posterior capsule. The bag remains in situ, partitions the aqueous and vitreous humours, and in the majority of cases, houses an intraocular lens. The production of a capsular bag following surgery permits a free passage of light along the visual axis through the transparent intraocular lens and thin acellular posterior capsule. However, on the remaining anterior capsule, lens epithelial cells stubbornly reside despite enduring the rigours of surgical trauma. This resilient group of cells then begin to re-colonise the denuded regions of the anterior capsule, encroach onto the intraocular lens surface, occupy regions of the outer anterior capsule and most importantly of all begin to colonise the previously cell-free posterior capsule. Cells continue to divide, begin to cover the posterior capsule and can ultimately encroach on the visual axis resulting in changes to the matrix and cell organization that can give rise to light scatter. This review will describe the biological mechanisms driving PCO progression and discuss the influence of IOL design, surgical techniques and putative drug therapies in regulating the rate and severity of PCO.
Collapse
Affiliation(s)
- I Michael Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.
| | | | | |
Collapse
|
23
|
Lauf PK, Misri S, Chimote AA, Adragna NC. Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells. Am J Physiol Cell Physiol 2008; 294:C820-32. [PMID: 18184876 DOI: 10.1152/ajpcell.00375.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study explores the nature of K fluxes in human lens epithelial cells (LECs) in hyposmotic solutions. Total ion fluxes, Na-K pump, Cl-dependent Na-K-2Cl (NKCC), K-Cl (KCC) cotransport, and K channels were determined by 85Rb uptake and cell K (Kc) by atomic absorption spectrophotometry, and cell water gravimetrically after exposure to ouabain +/- bumetanide (Na-K pump and NKCC inhibitors), and ion channel inhibitors in varying osmolalities with Na, K, or methyl-d-glucamine and Cl, sulfamate, or nitrate. Reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analyses, and immunochemistry were also performed. In isosmotic (300 mosM) media approximately 90% of the total Rb influx occurred through the Na-K pump and NKCC and approximately 10% through KCC and a residual leak. Hyposmotic media (150 mosM) decreased K(c) by a 16-fold higher K permeability and cell water, but failed to inactivate NKCC and activate KCC. Sucrose replacement or extracellular K to >57 mM, but not Rb or Cs, in hyposmotic media prevented Kc and water loss. Rb influx equaled Kc loss, both blocked by clotrimazole (IC50 approximately 25 microM) and partially by 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) inhibitors of the IK channel KCa3.1 but not by other K channel or connexin hemichannel blockers. Of several anion channel blockers (dihydro-indenyl)oxy]alkanoic acid (DIOA), 4-2(butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB), and phloretin totally or partially inhibited Kc loss and Rb influx, respectively. RT-PCR and immunochemistry confirmed the presence of KCa3.1 channels, aside of the KCC1, KCC2, KCC3 and KCC4 isoforms. Apparently, IK channels, possibly in parallel with volume-sensitive outwardly rectifying Cl channels, effect regulatory volume decrease in LECs.
Collapse
Affiliation(s)
- Peter K Lauf
- Cell Biophysics Group, 054 Biological Sciences Bldg., Wright State Univ. Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | | | | | | |
Collapse
|
24
|
Zhang H, Duncan G, Wang L, Liu P, Cui H, Reddan JR, Yang BF, Wormstone IM. Arsenic trioxide initiates ER stress responses, perturbs calcium signalling and promotes apoptosis in human lens epithelial cells. Exp Eye Res 2007; 85:825-35. [DOI: 10.1016/j.exer.2007.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/08/2007] [Accepted: 08/10/2007] [Indexed: 11/25/2022]
|
25
|
Mizobuchi M, Ogata H, Hatamura I, Saji F, Koiwa F, Kinugasa E, Koshikawa S, Akizawa T. Activation of calcium-sensing receptor accelerates apoptosis in hyperplastic parathyroid cells. Biochem Biophys Res Commun 2007; 362:11-16. [PMID: 17706605 DOI: 10.1016/j.bbrc.2007.07.177] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/10/2007] [Indexed: 11/19/2022]
Abstract
Calcimimetic compounds inhibit not only parathyroid hormone (PTH) synthesis and secretion, but also parathyroid cell proliferation. The aim of this investigation is to examine the effect of the calcimimetic compound NPS R-568 (R-568) on parathyroid cell death in uremic rats. Hyperplastic parathyroid glands were obtained from uremic rats (subtotal nephrectomy and high-phosphorus diet), and incubated in the media only or the media which contained high concentration of R-568 (10(-4)M), or 10% cyclodextrin, for 6h. R-568 treatment significantly suppressed medium PTH concentration compared with that of the other two groups. R-568 treatment not only increased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay-positive cells, but also induced the morphologic changes of cell death determined by light or electron microscopy. These results suggest that CaR activation by R-568 accelerates parathyroid cell death, probably through an apoptotic mechanism in uremic rats in vitro.
Collapse
Affiliation(s)
- Masahide Mizobuchi
- Department of Nephrology, School of Medicine, Showa University, Tokyo, Japan
| | - Hiroaki Ogata
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, 35-1, Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan.
| | - Ikuji Hatamura
- First Department of Pathology, Wakayama Medical University, Wakayama, Japan
| | - Fumie Saji
- Division of Nephrology and Blood Purification Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fumihiko Koiwa
- Division of Nephrology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Eriko Kinugasa
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, 35-1, Chigasaki-chuo, Tsuzuki, Yokohama 224-8503, Japan
| | - Shozo Koshikawa
- Division of Nephrology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Tadao Akizawa
- Department of Nephrology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
26
|
Abstract
Regulation of cell proliferation is a critical aspect of the development of multicellular organisms. The ocular lens is an excellent model system in which to unravel the mechanisms controlling cell proliferation during development. In recent years, several cell cycle regulators have been shown to be essential for maintaining normal patterns of lens cell proliferation. Additionally, many growth factor signaling pathways and cell adhesion factors have been shown to have the capacity to regulate lens cell proliferation. Given this complexity, understanding the cross talk between these many signaling pathways and how they are coordinated are important directions for the future.
Collapse
Affiliation(s)
- Anne E Griep
- Department of Anatomy, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
27
|
Kalman K, Németh-Cahalan KL, Froger A, Hall JE. AQP0-LTR of the CatFr mouse alters water permeability and calcium regulation of wild type AQP0. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1094-9. [PMID: 16515771 DOI: 10.1016/j.bbamem.2006.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 12/06/2005] [Accepted: 01/09/2006] [Indexed: 11/29/2022]
Abstract
Aquaporin 0 (AQP0) is the major intrinsic protein of the lens and its water permeability can be modulated by changes in pH and Ca2+. The Cataract Fraser (Cat Fr) mouse accumulates an aberrant AQP0 (AQP0-LTR) in sub-cellular compartments resulting in a congenital cataract. We investigated the interference of AQP0-LTR with normal function of AQP0 in three systems. First, we created a transgenic mouse expressing AQP0 and AQP0-LTR in the lens. Expression of AQP0 did not prevent the congenital cataract but improved the size and transparency of the lens. Second, we measured water permeability of AQP0 co-expressed with AQP0-LTR in Xenopus oocytes. A low expression level of AQP0-LTR decreased the water permeability of AQP0, and a high expression level eliminated its calcium regulation. Third, we studied trafficking of AQP0 and AQP0-LTR in transfected lens epithelial cells. At low expression level, AQP0-LTR migrated with AQP0 toward the cell membrane, but at high expression level, it accumulated in sub-cellular compartments. The deleterious effect of AQP0-LTR on lens development may be explained by lowering water permeability and abolishing calcium regulation of AQP0. This study provides the first evidence that calcium regulation of AQP0 water permeability may be crucial for maintaining normal lens homeostasis and development.
Collapse
Affiliation(s)
- Katalin Kalman
- Department of Physiology and Biophysics, University of California Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
28
|
Xie L, Overbeek PA, Reneker LW. Ras signaling is essential for lens cell proliferation and lens growth during development. Dev Biol 2006; 298:403-14. [PMID: 16889766 DOI: 10.1016/j.ydbio.2006.06.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 06/12/2006] [Accepted: 06/27/2006] [Indexed: 01/08/2023]
Abstract
The vertebrate ocular lens is a simple and continuously growing tissue. Growth factor-mediated receptor tyrosine kinases (RTKs) are believed to be required for lens cell proliferation, differentiation and survival. The signaling pathways downstream of the RTKs remain to be elucidated. Here, we demonstrate the important role of Ras in lens development by expressing a dominant-negative form of Ras (dn-Ras) in the lens of transgenic mice. We show that lens in the transgenic mice was smaller and lens growth was severely inhibited as compared to the wild-type lens. However, the lens shape, polarity and transparency appeared normal in the transgenic mice. Further analysis showed that cell proliferation is inhibited in the dn-Ras lens. For example, the percentage of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in epithelial layer was about 2- to 3-fold lower in the transgenic lens than in the wild-type lens, implying that Ras activity is required for normal cell proliferation during lens development. We also found a small number of apoptotic cells in both epithelial and fiber compartment of the transgenic lens, suggesting that Ras also plays a role in cell survival. Interestingly, although there was a delay in primary fiber cell differentiation, secondary fiber cell differentiation was not significantly affected in the transgenic mice. For example, the expression of beta- and gamma-crystallins, the marker proteins for fiber differentiation, was not changed in the transgenic mice. Biochemical analysis indicated that ERK activity, but not Akt activity, was significantly reduced in the dn-Ras transgenic lenses. Overall, our data imply that the RTK-Ras-ERK signaling pathway is essential for cell proliferation and, to a lesser extent, for cell survival, but not for crystallin gene expression during fiber differentiation. Thus, some of the fiber differentiation processes are likely mediated by RTK-dependent but Ras-independent pathways.
Collapse
Affiliation(s)
- Leike Xie
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | | | | |
Collapse
|