1
|
Arrigo A, Cremona O, Aragona E, Casoni F, Consalez G, Dogru RM, Hauck SM, Antropoli A, Bianco L, Parodi MB, Bandello F, Grosche A. Müller cells trophism and pathology as the next therapeutic targets for retinal diseases. Prog Retin Eye Res 2025; 106:101357. [PMID: 40254246 DOI: 10.1016/j.preteyeres.2025.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Müller cells are a crucial retinal cell type involved in multiple regulatory processes and functions that are essential for retinal health and functionality. Acting as structural and functional support for retinal neurons and photoreceptors, Müller cells produce growth factors, regulate ion and fluid homeostasis, and facilitate neuronal signaling. They play a pivotal role in retinal morphogenesis and cell differentiation, significantly contributing to macular development. Due to their radial morphology and unique cytoskeletal organization, Müller cells act as optical fibers, efficiently channeling photons directly to the photoreceptors. In response to retinal damage, Müller cells undergo specific gene expression and functional changes that serve as a first line of defense for neurons, but can also lead to unwarranted cell dysfunction, contributing to cell death and neurodegeneration. In some species, Müller cells can reactivate their developmental program, promoting retinal regeneration and plasticity-a remarkable ability that holds promising therapeutic potential if harnessed in mammals. The crucial and multifaceted roles of Müller cells-that we propose to collectively call "Müller cells trophism"-highlight the necessity of maintaining their functionality. Dysfunction of Müller cells, termed "Müller cells pathology," has been associated with a plethora of retinal diseases, including age-related macular degeneration, diabetic retinopathy, vitreomacular disorders, macular telangiectasia, and inherited retinal dystrophies. In this review, we outline how even subtle disruptions in Müller cells trophism can drive the pathological cascade of Müller cells pathology, emphasizing the need for targeted therapies to preserve retinal health and prevent disease progression.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Ottavio Cremona
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Emanuela Aragona
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Casoni
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Consalez
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rüya Merve Dogru
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, 80939, Germany
| | - Alessio Antropoli
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bianco
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesco Bandello
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
2
|
Ashworth KE, Weisbrod J, Ballios BG. Inherited Retinal Diseases and Retinal Organoids as Preclinical Cell Models for Inherited Retinal Disease Research. Genes (Basel) 2024; 15:705. [PMID: 38927641 PMCID: PMC11203130 DOI: 10.3390/genes15060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a large group of genetically and clinically diverse blinding eye conditions that result in progressive and irreversible photoreceptor degeneration and vision loss. To date, no cures have been found, although strides toward treatments for specific IRDs have been made in recent years. To accelerate treatment discovery, retinal organoids provide an ideal human IRD model. This review aims to give background on the development and importance of retinal organoids for the human-based in vitro study of the retina and human retinogenesis and retinal pathologies. From there, we explore retinal pathologies in the context of IRDs and the current landscape of IRD treatment discovery. We discuss the usefulness of retinal organoids in this context (as a patient-derived cell model for IRDs) to precisely understand the pathogenesis and potential mechanisms behind a specific IRD-causing variant of interest. Finally, we discuss the importance and promise of retinal organoids in treatment discovery for IRDs, now and in the future.
Collapse
Affiliation(s)
- Kristen E. Ashworth
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
| | - Jessica Weisbrod
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
| | - Brian G. Ballios
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H2, Canada;
- Donald K. Johnson Eye Institute, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada;
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| |
Collapse
|
3
|
He Y, Chen X, Tsui I, Vajzovic L, Sadda SR. Insights into the developing fovea revealed by imaging. Prog Retin Eye Res 2022; 90:101067. [PMID: 35595637 DOI: 10.1016/j.preteyeres.2022.101067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
Early development of the fovea has been documented by histological studies over the past few decades. However, structural distortion due to sample processing and the paucity of high-quality post-mortem tissue has limited the effectiveness of this approach. With the continuous progress in high-resolution non-invasive imaging technology, most notably optical coherence tomography (OCT) and OCT angiography (OCT-A), in vivo visualization of the developing retina has become possible. Combining the information from histologic studies with this novel imaging information has provided a more complete and accurate picture of retinal development, and in particular the developing fovea. Advances in neonatal care have increased the survival rate of extremely premature infants. However, with enhanced survival there has been an attendant increase in retinal developmental complications. Several key abnormalities, including a thickening of the inner retina at the foveal center, a shallower foveal pit, a smaller foveal avascular zone, and delayed development of the photoreceptors have been described in preterm infants when compared to full-term infants. Notably these abnormalities, which are consistent with a partial arrest of foveal development, appear to persist into later childhood and adulthood in these eyes of individuals born prematurely. Understanding normal foveal development is vital to interpreting these pathologic findings associated with prematurity. In this review, we first discuss the various advanced imaging technologies that have been adapted for imaging the infant eye. We then review the key events and steps in the development of the normal structure of the fovea and contrast structural features in normal and preterm retina from infancy to childhood. Finally, we discuss the development of the perifoveal retinal microvasculature and highlight future opportunities to expand our understanding of the developing fovea.
Collapse
Affiliation(s)
- Ye He
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Pasadena, CA, USA; Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, China
| | - Xi Chen
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Irena Tsui
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Pasadena, CA, USA
| | - Lejla Vajzovic
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Srinivas R Sadda
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Pasadena, CA, USA.
| |
Collapse
|
4
|
Retinae of Anencephalic Fetuses: Quantitative Analysis and Comparison with Fetuses Without any Malformations. JOURNAL OF FETAL MEDICINE 2021. [DOI: 10.1007/s40556-021-00289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Singh RK, Nasonkin IO. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness. Front Cell Neurosci 2020; 14:179. [PMID: 33132839 PMCID: PMC7513806 DOI: 10.3389/fncel.2020.00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The self-formation of retinal tissue from pluripotent stem cells generated a tremendous promise for developing new therapies of retinal degenerative diseases, which previously seemed unattainable. Together with use of induced pluripotent stem cells or/and CRISPR-based recombineering the retinal organoid technology provided an avenue for developing models of human retinal degenerative diseases "in a dish" for studying the pathology, delineating the mechanisms and also establishing a platform for large-scale drug screening. At the same time, retinal organoids, highly resembling developing human fetal retinal tissue, are viewed as source of multipotential retinal progenitors, young photoreceptors and just the whole retinal tissue, which may be transplanted into the subretinal space with a goal of replacing patient's degenerated retina with a new retinal "patch." Both approaches (transplantation and modeling/drug screening) were projected when Yoshiki Sasai demonstrated the feasibility of deriving mammalian retinal tissue from pluripotent stem cells, and generated a lot of excitement. With further work and testing of both approaches in vitro and in vivo, a major implicit limitation has become apparent pretty quickly: the absence of the uniform layer of Retinal Pigment Epithelium (RPE) cells, which is normally present in mammalian retina, surrounds photoreceptor layer and develops and matures first. The RPE layer polarize into apical and basal sides during development and establish microvilli on the apical side, interacting with photoreceptors, nurturing photoreceptor outer segments and participating in the visual cycle by recycling 11-trans retinal (bleached pigment) back to 11-cis retinal. Retinal organoids, however, either do not have RPE layer or carry patches of RPE mostly on one side, thus directly exposing most photoreceptors in the developing organoids to neural medium. Recreation of the critical retinal niche between the apical RPE and photoreceptors, where many retinal disease mechanisms originate, is so far unattainable, imposes clear limitations on both modeling/drug screening and transplantation approaches and is a focus of investigation in many labs. Here we dissect different retinal degenerative diseases and analyze how and where retinal organoid technology can contribute the most to developing therapies even with a current limitation and absence of long and functional outer segments, supported by RPE.
Collapse
|
6
|
Bringmann A, Syrbe S, Görner K, Kacza J, Francke M, Wiedemann P, Reichenbach A. The primate fovea: Structure, function and development. Prog Retin Eye Res 2018; 66:49-84. [PMID: 29609042 DOI: 10.1016/j.preteyeres.2018.03.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 01/31/2023]
Abstract
A fovea is a pitted invagination in the inner retinal tissue (fovea interna) that overlies an area of photoreceptors specialized for high acuity vision (fovea externa). Although the shape of the vertebrate fovea varies considerably among the species, there are two basic types. The retina of many predatory fish, reptilians, and birds possess one (or two) convexiclivate fovea(s), while the retina of higher primates contains a concaviclivate fovea. By refraction of the incoming light, the convexiclivate fovea may function as image enlarger, focus indicator, and movement detector. By centrifugal displacement of the inner retinal layers, which increases the transparency of the central foveal tissue (the foveola), the primate fovea interna improves the quality of the image received by the central photoreceptors. In this review, we summarize ‒ with the focus on Müller cells of the human and macaque fovea ‒ data regarding the structure of the primate fovea, discuss various aspects of the optical function of the fovea, and propose a model of foveal development. The "Müller cell cone" of the foveola comprises specialized Müller cells which do not support neuronal activity but may serve optical and structural functions. In addition to the "Müller cell cone", structural stabilization of the foveal morphology may be provided by the 'z-shaped' Müller cells of the fovea walls, via exerting tractional forces onto Henle fibers. The spatial distribution of glial fibrillary acidic protein may suggest that the foveola and the Henle fiber layer are subjects to mechanical stress. During development, the foveal pit is proposed to be formed by a vertical contraction of the centralmost Müller cells. After widening of the foveal pit likely mediated by retracting astrocytes, Henle fibers are formed by horizontal contraction of Müller cell processes in the outer plexiform layer and the centripetal displacement of photoreceptors. A better understanding of the molecular, cellular, and mechanical factors involved in the developmental morphogenesis and the structural stabilization of the fovea may help to explain the (patho-) genesis of foveal hypoplasia and macular holes.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Steffen Syrbe
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Katja Görner
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Johannes Kacza
- Saxon Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Mike Francke
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; Saxon Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
7
|
Aleman TS, Ventura CV, Cavalcanti MM, Serrano LW, Traband A, Nti AA, Gois AL, Bravo-Filho V, Martins TT, Nichols CW, Maia M, Belfort R. Quantitative Assessment of Microstructural Changes of the Retina in Infants With Congenital Zika Syndrome. JAMA Ophthalmol 2017; 135:1069-1076. [PMID: 28880978 DOI: 10.1001/jamaophthalmol.2017.3292] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Importance A better pathophysiologic understanding of the neurodevelopmental abnormalities observed in neonates exposed in utero to Zika virus (ZIKV) is needed to develop treatments. The retina as an extension of the diencephalon accessible to in vivo microcopy with spectral-domain optical coherence tomography (SD-OCT) can provide an insight into the pathophysiology of congenital Zika syndrome (CZS). Objective To quantify the microstructural changes of the retina in CZS and compare these changes with those of cobalamin C (cblC) deficiency, a disease with potential retinal maldevelopment. Design, Setting, and Participants This case series included 8 infants with CZS and 8 individuals with cblC deficiency. All patients underwent ophthalmologic evaluation at 2 university teaching hospitals and SD-OCT imaging in at least 1 eye. Patients with cblC deficiency were homozygous or compound heterozygotes for mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Data were collected from January 1 to March 17, 2016, for patients with CZS and from May 4, 2015, to April 23, 2016, for patients with cblC deficiency. Main Outcomes and Measures The SD-OCT cross-sections were segmented using automatic segmentation algorithms embedded in the SD-OCT systems. Each retinal layer thickness was measured at critical eccentricities using the position of the signal peaks and troughs on longitudinal reflectivity profiles. Results Eight infants with CZS (5 girls and 3 boys; age range, 3-5 months) and 8 patients with cblC deficiency (3 girls and 5 boys; age range, 4 months to 15 years) were included in the analysis. All 8 patients with CZS had foveal abnormalities in the analyzed eyes (8 eyes), including discontinuities of the ellipsoid zone, thinning of the central retina with increased backscatter, and severe structural disorganization, with 3 eyes showing macular pseudocolobomas. Pericentral retina with normal lamination showed a thinned (<30% of normal thickness) ganglion cell layer (GCL) that colocalized in 7 of 8 eyes with a normal photoreceptor layer. The inner nuclear layer was normal or had borderline thinning. The central retinal degeneration was similar to that of cblC deficiency. Conclusions and Relevance Congenital Zika syndrome showed a central retinal degeneration with severe GCL loss, borderline inner nuclear layer thinning, and less prominent photoreceptor loss. The findings provide the first, to date, in vivo evidence in humans for possible retinal maldevelopment with a predilection for retinal GCL loss in CZS, consistent with a murine model of the disease and suggestive of in utero depletion of this neuronal population as a consequence of Zika virus infection.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Perelman School of Medicine, Department of Ophthalmology, University of Pennsylvania, Philadelphia
| | - Camila V Ventura
- Department of Ophthalmology, Altino Ventura Foundation, Recife, Brazil.,Department of Ophthalmology, HOPE Eye Hospital, Recife, Brazil.,Department of Ophthalmology, Federal University of São Paulo, Paulista Medical School, São Paulo, Brazil
| | - Milena M Cavalcanti
- Rehabilitation Center Menina dos Olhos, Altino Ventura Foundation, Recife, Brazil
| | - Leona W Serrano
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Perelman School of Medicine, Department of Ophthalmology, University of Pennsylvania, Philadelphia
| | - Anastasia Traband
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Perelman School of Medicine, Department of Ophthalmology, University of Pennsylvania, Philadelphia
| | - Akosua A Nti
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Perelman School of Medicine, Department of Ophthalmology, University of Pennsylvania, Philadelphia
| | - Adriana L Gois
- Department of Ophthalmology, Altino Ventura Foundation, Recife, Brazil.,Department of Ophthalmology, HOPE Eye Hospital, Recife, Brazil
| | - Vasco Bravo-Filho
- Department of Ophthalmology, Altino Ventura Foundation, Recife, Brazil.,Department of Ophthalmology, HOPE Eye Hospital, Recife, Brazil
| | - Thayze T Martins
- Department of Ophthalmology, Altino Ventura Foundation, Recife, Brazil.,Department of Ophthalmology, HOPE Eye Hospital, Recife, Brazil
| | - Charles W Nichols
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, Perelman School of Medicine, Department of Ophthalmology, University of Pennsylvania, Philadelphia
| | - Mauricio Maia
- Department of Ophthalmology, Federal University of São Paulo, Paulista Medical School, São Paulo, Brazil
| | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo, Paulista Medical School, São Paulo, Brazil
| |
Collapse
|
8
|
ATTENUATION OF THE GANGLION CELL LAYER IN A PREMATURE INFANT REVEALED WITH HANDHELD SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY. Retin Cases Brief Rep 2017; 10:229-31. [PMID: 26529438 PMCID: PMC4853294 DOI: 10.1097/icb.0000000000000235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To report on subclinical retinal abnormalities shown through handheld spectral domain optical coherence tomography on a premature infant. METHODS Case report. RESULTS The initial and follow-up exams on a premature infant revealed severely attenuated ganglion cell and nerve fiber layers. There was cystoid macular edema in both eyes at the initial visits, which resolved by the 1-year follow-up. DISCUSSION Optical coherence tomography can reveal significant retinal abnormalities in premature infants which are not detectable through funduscopic exam. Documenting such findings may be useful for the comprehensive management of vision problems in children with a history of premature birth.
Collapse
|
9
|
Gregory-Evans CY, Gregory-Evans K. Foveal hypoplasia: the case for arrested development. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.11.60] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Adaptation of the central retina for high acuity vision: cones, the fovea and the avascular zone. Prog Retin Eye Res 2013; 35:63-81. [PMID: 23500068 DOI: 10.1016/j.preteyeres.2013.01.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 12/31/2022]
Abstract
Presence of a fovea centralis is directly linked to molecular specification of an avascular area in central retina, before the fovea (or 'pit') begins to form. Modelling suggests that mechanical forces, generated within the eye, initiate formation of a pit within the avascular area, and its later remodelling in the postnatal period. Within the avascular area the retina is dominated by 'midget' circuitry, in which signals are transferred from a single cone to a single bipolar cell, then a single ganglion cell. Thus in inner, central retina there are relatively few lateral connections between neurons. This renders the region adaptable to tangential forces, that translocate of ganglion cells laterally/centrifugally, to form the fovea. Optical coherence tomography enables live imaging of the retina, and shows that there is greater variation in the morphology of foveae in humans than previously thought. This variation is associated with differences in size of the avascular area and appears to be genetically based, but can be modified by environmental factors, including prematurity. Even when the fovea is absent (foveal hypoplasia), cones in central retina adopt an elongated and narrow morphology, enabling them to pack more densely to increase the sampling rate, and to act as more effective waveguides. Given these findings, what then is the adaptive advantage of a fovea? We suggest that the advantages of having a pit in central retina are relatively few, and minor, but together work to enhance acuity.
Collapse
|
11
|
Abstract
The spatial and temporal pattern of cone packing during marmoset foveal development was explored to understand the variables involved in creating a high acuity area. Retinal ages were between fetal day (Fd) 125 and 6 years. Cone density was determined in wholemounts using a new hexagonal quantification method. Wholemounts were labeled immunocytochemically with rod markers to identify reliably the foveal center. Cones were counted in small windows and density was expressed as cones × 103/mm2 (K). Two weeks before birth (Fd 125-130), cone density had a flat distribution of 20-30 K across the central retina encompassing the fovea. Density began to rise at postnatal day 1 (Pd 1) around, but not in, the foveal center and reached a parafoveal peak of 45-55 K by Pd 10. Between Pd 10 and 33, there was an inversion such that cone density at the foveal center rose rapidly, reaching 283 K by 3 months and 600 K by 5.4 months. Peak foveal density then diminished to 440 K at 6 months and older. Counts done in sections showed the same pattern of low foveal density up to Pd 1, a rapid rise from Pd 30 to 90, followed by a small decrease into adulthood. Increasing foveal cone density was accompanied by 1) a reduction in the amount of Müller cell cytoplasm surrounding each cone, 2) increased stacking of foveal cone nuclei into a mound 6-10 deep, and 3) a progressive narrowing of the rod-free zone surrounding the fovea. Retaining foveal cones in a monolayer precludes final foveal cone densities above 60 K. However, high foveal adult cone density (300 K) can be achieved by having cone nuclei stack into columns and without reducing their nuclear diameter. Marmosets reach adult peak cone density by 3-6 months postnatal, while macaques and humans take much longer. Early weaning and an arboreal environment may require rapid postnatal maturation of the marmoset fovea.
Collapse
|
12
|
Edwards MM, McLeod DS, Li R, Grebe R, Bhutto I, Mu X, Lutty GA. The deletion of Math5 disrupts retinal blood vessel and glial development in mice. Exp Eye Res 2011; 96:147-56. [PMID: 22200487 DOI: 10.1016/j.exer.2011.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 10/12/2011] [Accepted: 12/03/2011] [Indexed: 11/17/2022]
Abstract
Retinal vascular development is a complex process that is not yet fully understood. The majority of research in this area has focused on astrocytes and the template they form in the inner retina, which precedes endothelial cells in the mouse retina. In humans and dogs, however, astrocyte migration follows behind development of blood vessels, suggesting that other cell types may guide this process. One such cell type is the ganglion cell, which differentiates before blood vessel formation and lies adjacent to the primary retinal vascular plexus. The present study investigated the potential role played by ganglion cells in vascular development using Math5(-/-) mice. It has previously been reported that Math5 regulates the differentiation of ganglion cells and Math5(-/-) mice have a 95% reduction in these cells. The development of blood vessels and glia was investigated using Griffonia simplicifolia isolectin B4 labeling and GFAP immunohistochemistry, respectively. JB-4 analysis demonstrated that the hyaloid vessels arose from choriovitreal vessels adjacent to the optic nerve area. As previously reported, Math5(-/-) mice had a rudimentary optic nerve. The primary retinal vessels did not develop post-natally in the Math5(-/-) mice, however, branches of the hyaloid vasculature eventually dove into the retina and formed the inner retinal capillary networks. An astrocyte template only formed in some areas of the Math5(-/-) retina. In addition, GFAP(+) Müller cells were seen throughout the retina that had long processes wrapped around the hyaloid vessels. Transmission electron microscopy confirmed Müller cell abnormalities and revealed disruptions in the inner limiting membrane. The present data demonstrates that the loss of ganglion cells in the Math5(-/-) mice is associated with a lack of retinal vascular development.
Collapse
Affiliation(s)
- Malia M Edwards
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|
14
|
Wu TW, Chen S, Brinton RD. Membrane estrogen receptors mediate calcium signaling and MAP kinase activation in individual hippocampal neurons. Brain Res 2011; 1379:34-43. [PMID: 21241678 DOI: 10.1016/j.brainres.2011.01.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2011] [Indexed: 11/19/2022]
Abstract
Previously we demonstrated that 17β-Estradiol (E2) induced rapid Ca(2+) influx via L-type calcium channel activation, which was required for activation of Src/ERK/CREB/Bcl2 signaling cascade and subsequent induction of neuroprotective and neurotrophic responses in rat hippocampal and cortical neurons (Wu et al., 2005; Zhao et al., 2005). The current study determined the presence and specificity of membrane E2 binding sites and the functional consequence of E2 binding to membrane receptors in individual neurons. Using E2-BSA-FITC (fluorescein isothiocyanate) macromolecular complex, membrane E2 binding sites were observed in hippocampal neurons. Punctate FITC signal was observed on plasma membrane of soma and neuronal processes in E2-BSA-FITC binding neurons. No membrane binding was observed with BSA-FITC. Specificity of binding was demonstrated by competition with excess un-conjugated E2. An ERa specific agonist, PPT, and an ERb agonist, DPN, partially competed for E2-BSA-FITC binding. Imaging of intracellular Ca(2+) ([Ca(2+)]i) in live neurons, revealed rapid Ca(2+) responses in E2-BSA-FITC binding neurons within minutes that culminated in a greater [Ca(2+)]i rise and [Ca(2+)]i spikes at >20 min. The same neurons in which E2-BSA-FITC induced a [Ca(2+)]i rise also exhibited activated pERK (extracellular signal-regulated kinase) that was translocated to the nucleus. Immunofluorescent analyses demonstrated that both excitatory and inhibitory neuronal markers labeled subpopulations of E2-BSA-FITC binding neurons. All E2-BSA-FITC binding neurons expressed L-type calcium channels. These results demonstrate, at a single cell level, that E2 membrane receptors mediate the rapid signaling cascades required for E2 neuroprotective and neurotrophic effects in hippocampal neurons. These results are discussed with respect to therapeutic targets of estrogen therapy in brain.
Collapse
Affiliation(s)
- Tzu-Wei Wu
- University of Southern California, Pharmaceutical Sciences Center, Los Angeles, CA 90089-9121, USA.
| | | | | |
Collapse
|
15
|
Impaired retinal vascular development in anencephalic human fetus. Histochem Cell Biol 2010; 134:277-84. [DOI: 10.1007/s00418-010-0731-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
|
16
|
Abstract
Anencephaly results from defects in neural tube closure early in gestation and, to the authors' knowledge, has not been reported in dogs. In this case, the canine fetus was stillborn at the 62nd day of gestation and had a hypoplastic calvarium, with flattened base of the skull and shallow orbits, causing protrusion of the eyes. Macroscopically, the brain was completely missing. Histologically, well-differentiated nerve fibers, fragments of cerebellar folia, and ganglia with large neurons and glial cells were detected in a loose stroma in sections through the cranial bone and adjacent soft tissue in the rudimentary cranial cavity. Immunohistochemically, single cells within the stroma expressed NeuN, consistent with mature neurons, whereas intracranial ganglion cells and nerves had mild expression of doublecortin. The presence of many immature, and only a few mature, neurons in the rudimentary nerve tissue in this case indicates a failure of physiological brain development and differentiation.
Collapse
Affiliation(s)
- M. Huisinga
- Institut für Veterinär-Pathologie, Justus-Liebig-Universität Giessen, Germany
| | - M. Reinacher
- Institut für Veterinär-Pathologie, Justus-Liebig-Universität Giessen, Germany
| | - S. Nagel
- Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Germany
| | - C. Herden
- Institut für Veterinär-Pathologie, Justus-Liebig-Universität Giessen, Germany
| |
Collapse
|
17
|
McAllister JT, Dubis AM, Tait DM, Ostler S, Rha J, Stepien KE, Summers CG, Carroll J. Arrested development: high-resolution imaging of foveal morphology in albinism. Vision Res 2010; 50:810-7. [PMID: 20149815 DOI: 10.1016/j.visres.2010.02.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
Albinism, an inherited disorder of melanin biosynthesis, disrupts normal retinal development, with foveal hypoplasia as one of the more commonly associated ocular phenotypes. However the cellular integrity of the fovea in albinism is not well understood - there likely exist important anatomical differences that underlie phenotypic variability within the disease and that also may affect responsiveness to therapeutic intervention. Here, using spectral-domain optical coherence tomography (SD-OCT) and adaptive optics (AO) retinal imaging, we obtained high-resolution images of the foveal region in six individuals with albinism. We provide a quantitative analysis of cone density and outer segment elongation demonstrating that foveal cone specialization is variable in albinism. In addition, our data reveal a continuum of foveal pit morphology, roughly aligning with schematics of normal foveal development based on post-mortem analyses. Different albinism subtypes, genetic mutations, and constitutional pigment background likely play a role in determining the degree of foveal maturation.
Collapse
Affiliation(s)
- John T McAllister
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bhosale P, Li B, Sharifzadeh M, Gellermann W, Frederick JM, Tsuchida K, Bernstein PS. Purification and partial characterization of a lutein-binding protein from human retina. Biochemistry 2009; 48:4798-807. [PMID: 19402606 DOI: 10.1021/bi9004478] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dietary intake of lutein and zeaxanthin appears to be advantageous for protecting human retinal and macular tissues from degenerative disorders such as age-related macular degeneration. Selective concentration of just two of the many dietary carotenoids suggests that uptake and transport of these xanthophyll carotenoids into the human foveal region are mediated by specific xanthophyll-binding proteins such as GSTP1 which has previously been identified as the zeaxanthin-binding protein of the primate macula. Here, a membrane-associated human retinal lutein-binding protein (HR-LBP) was purified from human peripheral retina using ion-exchange chromatography followed by size-exclusion chromatography. After attaining 83-fold enrichment of HR-LBP, this protein exhibited a significant bathochromic shift of approximately 90 nm in association with lutein, and equilibrium binding studies demonstrated saturable, specific binding toward lutein with a K(D) of 0.45 muM. Examination for cross-reactivity with antibodies raised against known lutein-binding proteins from other organisms revealed consistent labeling of a major protein band of purified HR-LBP at approximately 29 kDa with an antibody raised against silkworm (Bombyx mori) carotenoid-binding protein (CBP), a member of steroidogenic acute regulatory (StAR) protein family with significant homology to many human StAR proteins. Immunolocalization with antibodies directed against either CBP or GSTP1 showed specific labeling of rod and cone inner segments, especially in the mitochondria-rich ellipsoid region. There was also strong labeling of the outer plexiform (Henle fiber) layer with anti-GSTP1. Such localizations compare favorably with the distribution of macular carotenoids as revealed by resonance Raman microscopy. Our results suggest that HR-LBP may facilitate lutein's localization to a region of the cell subject to considerable oxidative stress.
Collapse
Affiliation(s)
- Prakash Bhosale
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Marmor MF, Choi SS, Zawadzki RJ, Werner JS. Visual insignificance of the foveal pit: reassessment of foveal hypoplasia as fovea plana. ACTA ACUST UNITED AC 2008; 126:907-13. [PMID: 18625935 DOI: 10.1001/archopht.126.7.907] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To elucidate the visual significance of the foveal pit by measuring foveal architecture and function and to reassess use of the term foveal hypoplasia (as visual acuity can vary among patients who lack a pit). METHODS We describe 4 patients who lack a foveal pit. Visual acuities ranged from 20/20 to 20/50. Stratus and Cirrus (Carl Zeiss Meditec, Dublin, California) optical coherence tomographs (OCTs) and multifocal electroretinograms were obtained. High-resolution retinal imaging on 2 of the participants was obtained by using a high-resolution Fourier-domain OCT and an adaptive optics flood-illuminated fundus camera. RESULTS No participants had a visible foveal pit with conventional OCT. Central widening of the outer nuclear layer and lengthening of cone outer segments were seen with high-resolution Fourier-domain OCT. Adaptive optics imaging showed normal cone diameters in the central 1 degrees to 2 degrees. Central multifocal electroretinogram responses were normal. CONCLUSIONS We show that a foveal pit is not required for foveal cone specialization, anatomically or functionally. This helps to explain the potential for good acuity in the absence of a pit and raises questions about the visual role of the foveal pit. Because the term foveal hypoplasia commonly carries a negative functional implication, it may be more proper to call the anatomic lack of a pit fovea plana.
Collapse
Affiliation(s)
- Michael F Marmor
- Department of Ophthalmology, Stanford University Medical Center, 300 Pasteur Dr, Room A-157, Stanford, CA 94305-5308, USA.
| | | | | | | |
Collapse
|
20
|
Neveu MM, von dem Hagen E, Morland AB, Jeffery G. The fovea regulates symmetrical development of the visual cortex. J Comp Neurol 2008; 506:791-800. [PMID: 18076059 DOI: 10.1002/cne.21574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The foveal region contains the highest cell density in the human retina; consequently a disproportionately large area of the visual cortex is dedicated to its representation. In aniridia and albinism the fovea does not develop, and the corresponding cortical representation shows a reduction in gray matter volume. In albinos there are chiasmatic irregularities in the hemispheric projections, which are not found in aniridics. Here, we ask whether the anomalies in central retinal development, present in albinism and aniridia, have a wider impact on the architecture of the visual cortex. The length, depth, and topology of the calcarine fissure is analyzed in albino, aniridic, and normal subjects. These measures are compared between groups and between the cortical hemispheres within each subject. We show that the calcarine fissure, where the primary visual cortex is represented, is abnormally short in those lacking a fovea. Moreover, surface reconstructions of the calcarine fissure revealed marked interhemispheric asymmetries. The two groups could not be distinguished on the basis of their cortical features, and we therefore interpret the abnormalities in cortical architecture in terms of the absence of the fovea, the common retinal feature found in both groups.
Collapse
Affiliation(s)
- Magella M Neveu
- Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
21
|
Pow DV, Sullivan RKP. Nuclear kinesis, neurite sprouting and abnormal axonal projections of cone photoreceptors in the aged and AMD-afflicted human retina. Exp Eye Res 2007; 84:850-7. [PMID: 17343852 DOI: 10.1016/j.exer.2007.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/11/2007] [Accepted: 01/11/2007] [Indexed: 11/25/2022]
Abstract
Tissues often respond to damage by recapitulating developmental programs. We have investigated whether anatomical signs of developmental recapitulation are evident in cone photoreceptors of the aged and AMD-afflicted human retina. Radial migration of cell nuclei mediated by microtubules is a characteristic feature of cells in the developing retina. Similarly, neurite outgrowth is a feature of developing neurons. We have examined whether nuclear kinesis and neurite outgrowth from cone photoreceptors is evident. Calbindin-positive cone photoreceptor nuclei are normally positioned as a single layer of somata at the outer border of the outer nuclear layer. In AMD-afflicted retinae, many nuclei are translocated, with some somata abutting the outer plexiform layer (OPL) and others outside the outer limiting membrane whilst many nuclei are present at intermediate levels. The axonal processes of many cones were also aberrant, displaying tortuous pathways as they projected to the OPL, with occasional evidence for bifurcation at points where the axon changed direction. We suggest that tangential extension of collateral neurites and the rapid retraction of the original process may give rise to the tortuous axonal projections observed. Since microtubules are key mediators of both neurite extension and nuclear kinesis we examined expression of microtubule associated protein 2 (MAP2) which is an important regulator of neurite extension. The strong expression of MAP2 observed in those cells with aberrant morphologies supports the notion that abnormal microtubule-mediated remodelling events are present in the AMD retina and to a lesser extent in normal aged retinas, allowing cone photoreceptors to recapitulate two key features of development.
Collapse
Affiliation(s)
- David V Pow
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | |
Collapse
|