1
|
Chen J, Curcio CA, Crosson JN. Shotgun lipidomics of human subretinal fluids under rod-dominant retina reveals cone-dominated lipids. Exp Eye Res 2024; 240:109807. [PMID: 38278468 DOI: 10.1016/j.exer.2024.109807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Subretinal fluid (SRF) accumulates between photoreceptor outer segments and retinal pigment epithelium during rhegmatogenous retinal detachment. Biomolecular components such as lipids originate from cells surrounding the SRF. Knowledge of the composition of these molecules in SRF potentially provides mechanistic insight into the physiologic transfer of lipids between retinal tissue compartments. Using mass spectrometry and tandem mass spectrometry analysis on an electrospray ionization quadrupole-time-of-flight mass spectrometer, we identified a total of 115 lipid molecular species of 11 subclasses and 9 classes in two samples from two patients with rhegmatogenous retinal detachment. These included 47 glycerophosphocholines, 6 glycerophosphoethanolamines, 1 glycerophosphoinositol, 18 sphingomyelins, 9 cholesteryl esters, free cholesterol, 3 ceramides, 22 triacylglycerols and 8 free fatty acids. Glycerophosphocholines were of the highest intensity. By minimizing the formation of different adduct forms or clustering ions of different adducts, we determined the relative intensity of lipid molecular species within the same subclasses. The profiles were compared with those of retinal cells available in the published literature. The glycerophosphocholine profile of SRF was similar to that of cone outer segments, suggesting that outer segment degradation products are constitutively released into the interphotoreceptor matrix, appearing in SRF during detachment. This hypothesis was supported by the retinal distributions of corresponding lipid synthases' mRNA expression obtained from an online resource based on publicly available single-cell sequencing data. In contrast, based on lipid profiles and relevant gene expression in this study, the sources of free cholesterol and cholesteryl esters in SRF appeared more ambiguous, possibly reflecting that outer retina takes up plasma lipoproteins. Further studies to identify and quantify lipids in SRF will help better understand etiology of diseases relevant to outer retina.
Collapse
Affiliation(s)
- Jianzhong Chen
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia, Augusta University, GA, United States; Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, GA, United States; Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Abstract
Strong ultraviolet (UV) radiation at high altitude imposes a serious selective pressure, which may induce skin pigmentation adaptation of indigenous populations. We conducted skin pigmentation phenotyping and genome-wide analysis of Tibetans in order to understand the underlying mechanism of adaptation to UV radiation. We observe that Tibetans have darker baseline skin color compared with lowland Han Chinese, as well as an improved tanning ability, suggesting a two-level adaptation to boost their melanin production. A genome-wide search for the responsible genes identifies GNPAT showing strong signals of positive selection in Tibetans. An enhancer mutation (rs75356281) located in GNPAT intron 2 is enriched in Tibetans (58%) but rare in other world populations (0 to 18%). The adaptive allele of rs75356281 is associated with darker skin in Tibetans and, under UVB treatment, it displays higher enhancer activities compared with the wild-type allele in in vitro luciferase assays. Transcriptome analyses of gene-edited cells clearly show that with UVB treatment, the adaptive variant of GNPAT promotes melanin synthesis, likely through the interactions of CAT and ACAA1 in peroxisomes with other pigmentation genes, and they act synergistically, leading to an improved tanning ability in Tibetans for UV protection.
Collapse
|
3
|
Karadayi R, Pallot C, Cabaret S, Mazzocco J, Gabrielle PH, Semama DS, Chantegret C, Ternoy N, Martin D, Donier A, Gregoire S, Creuzot-Garcher CP, Bron AM, Bretillon L, Berdeaux O, Acar N. Modification of erythrocyte membrane phospholipid composition in preterm newborns with retinopathy of prematurity: The omegaROP study. Front Cell Dev Biol 2022; 10:921691. [PMID: 36158214 PMCID: PMC9504055 DOI: 10.3389/fcell.2022.921691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
N-3 polyunsaturated fatty acids (PUFAs) may prevent retinal vascular abnormalities observed in oxygen-induced retinopathy, a model of retinopathy of prematurity (ROP). In the OmegaROP prospective cohort study, we showed that preterm infants who will develop ROP accumulate the n-6 PUFA arachidonic acid (ARA) at the expense of the n-3 PUFA docosahexaenoic acid (DHA) in erythrocytes with advancing gestational age (GA). As mice lacking plasmalogens -That are specific phospholipids considered as reservoirs of n-6 and n-3 PUFAs- Display a ROP-like phenotype, the aim of this study was to determine whether plasmalogens are responsible for the changes observed in subjects from the OmegaROP study. Accordingly, preterm infants aged less than 29 weeks GA were recruited at birth in the Neonatal Intensive Care Unit of University Hospital Dijon, France. Blood was sampled very early after birth to avoid any nutritional influence on its lipid composition. The lipid composition of erythrocytes and the structure of phospholipids including plasmalogens were determined by global lipidomics using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). LC-HRMS data confirmed our previous observations by showing a negative association between the erythrocyte content in phospholipid esterified to n-6 PUFAs and GA in infants without ROP (rho = -0.485, p = 0.013 and rho = -0.477, p = 0.015 for ethanolamine and choline total phospholipids, respectively). Phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) species with ARA, namely PtdCho16:0/20:4 (rho = -0.511, p < 0.01) and PtdEtn18:1/20:4 (rho = -0.479, p = 0.015), were the major contributors to the relationship observed. On the contrary, preterm infants developing ROP displayed negative association between PtdEtn species with n-3 PUFAs and GA (rho = -0.380, p = 0.034). They were also characterized by a positive association between GA and the ratio of ethanolamine plasmalogens (PlsEtn) with n-6 PUFA to PlsEtn with n-3 PUFAs (rho = 0.420, p = 0.029), as well as the ratio of PlsEtn with ARA to PlsEtn with DHA (rho = 0.843, p = 0.011). Altogether, these data confirm the potential accumulation of n-6 PUFAs with advancing GA in erythrocytes of infants developing ROP. These changes may be partly due to plasmalogens.
Collapse
Affiliation(s)
- Rémi Karadayi
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | - Charlotte Pallot
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
- University Hospital, Department of Ophthalmology, Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, ChemoSens Platform, Dijon, France
| | - Julie Mazzocco
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | | | - Denis S. Semama
- University Hospital, Neonatal Intensive Care Unit, Dijon, France
| | | | - Ninon Ternoy
- University Hospital, Neonatal Intensive Care Unit, Dijon, France
| | - Delphine Martin
- University Hospital, Neonatal Intensive Care Unit, Dijon, France
| | - Aurélie Donier
- University Hospital, Neonatal Intensive Care Unit, Dijon, France
| | - Stéphane Gregoire
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | - Catherine P. Creuzot-Garcher
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
- University Hospital, Department of Ophthalmology, Dijon, France
| | - Alain M. Bron
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
- University Hospital, Department of Ophthalmology, Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, ChemoSens Platform, Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l’Alimentation, Institut Agro, CNRS, INRAE, Université Bourgogne Franche-Comté, Eye and Nutrition Research Group, Dijon, France
| |
Collapse
|
4
|
Chen CT, Shao Z, Fu Z. Dysfunctional peroxisomal lipid metabolisms and their ocular manifestations. Front Cell Dev Biol 2022; 10:982564. [PMID: 36187472 PMCID: PMC9524157 DOI: 10.3389/fcell.2022.982564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retina is rich in lipids and dyslipidemia causes retinal dysfunction and eye diseases. In retina, lipids are not only important membrane component in cells and organelles but also fuel substrates for energy production. However, our current knowledge of lipid processing in the retina are very limited. Peroxisomes play a critical role in lipid homeostasis and genetic disorders with peroxisomal dysfunction have different types of ocular complications. In this review, we focus on the role of peroxisomes in lipid metabolism, including degradation and detoxification of very-long-chain fatty acids, branched-chain fatty acids, dicarboxylic acids, reactive oxygen/nitrogen species, glyoxylate, and amino acids, as well as biosynthesis of docosahexaenoic acid, plasmalogen and bile acids. We also discuss the potential contributions of peroxisomal pathways to eye health and summarize the reported cases of ocular symptoms in patients with peroxisomal disorders, corresponding to each disrupted peroxisomal pathway. We also review the cross-talk between peroxisomes and other organelles such as lysosomes, endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhuo Shao
- Post-Graduate Medical Education, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- The Genetics Program, North York General Hospital, University of Toronto, Toronto, ON, Canada
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Dorninger F, Werner ER, Berger J, Watschinger K. Regulation of plasmalogen metabolism and traffic in mammals: The fog begins to lift. Front Cell Dev Biol 2022; 10:946393. [PMID: 36120579 PMCID: PMC9471318 DOI: 10.3389/fcell.2022.946393] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Due to their unique chemical structure, plasmalogens do not only exhibit distinct biophysical and biochemical features, but require specialized pathways of biosynthesis and metabolization. Recently, major advances have been made in our understanding of these processes, for example by the attribution of the gene encoding the enzyme, which catalyzes the final desaturation step in plasmalogen biosynthesis, or by the identification of cytochrome C as plasmalogenase, which allows for the degradation of plasmalogens. Also, models have been presented that plausibly explain the maintenance of adequate cellular levels of plasmalogens. However, despite the progress, many aspects around the questions of how plasmalogen metabolism is regulated and how plasmalogens are distributed among organs and tissues in more complex organisms like mammals, remain unresolved. Here, we summarize and interpret current evidence on the regulation of the enzymes involved in plasmalogen biosynthesis and degradation as well as the turnover of plasmalogens. Finally, we focus on plasmalogen traffic across the mammalian body - a topic of major importance, when considering plasmalogen replacement therapies in human disorders, where deficiencies in these lipids have been reported. These involve not only inborn errors in plasmalogen metabolism, but also more common diseases including Alzheimer's disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| |
Collapse
|
6
|
Karadayi R, Mazzocco J, Leclere L, Buteau B, Gregoire S, Belloir C, Koudsi M, Bessard P, Bizeau JB, Dubus E, Fenech C, Briand L, Bretillon L, Bron AM, Fioramonti X, Acar N. Plasmalogens Regulate Retinal Connexin 43 Expression and Müller Glial Cells Gap Junction Intercellular Communication and Migration. Front Cell Dev Biol 2022; 10:864599. [PMID: 35433704 PMCID: PMC9009447 DOI: 10.3389/fcell.2022.864599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmalogens are a specific glycerophospholipid subtype characterized by a vinyl-ether bound at their sn-1 moiety. Their biosynthesis is initiated in the peroxisome by dihydroxyacetone phosphate-acyltransferase (DHAPAT), which is encoded by the DAPAT gene. Previous studies have shown that plasmalogen-deficient mice exhibit major physiological dysfunctions including several eye defects, among which abnormal vascular development of the retina and a reactive activation of macroglial Müller cells. Interestingly, plasmalogen deficiency in mice is also associated with a reduced expression of brain connexin 43 (Cx43). Cx43 is the main connexin subtype of retinal glial cells and is involved in several cellular mechanisms such as calcium-based gap junction intercellular communication (GJIC) or cell migration. Thus, the aim of our work was 1) to confirm the alteration of Cx43 expression in the retina of plasmalogen-deficient DAPAT−/- mice and 2) to investigate whether plasmalogens are involved in crucial functions of Müller cells such as GJIC and cell migration. First, we found that plasmalogen deficiency was associated with a significant reduction of Cx43 expression in the retina of DAPAT−/- mice in vivo. Secondly, using a siRNA targeting DHAPAT in vitro, we found that a 50%-reduction of Müller cells content in plasmalogens was sufficient to significantly downregulate Cx43 expression, while increasing its phosphorylation. Furthermore, plasmalogen-depleted Müller cells exhibited several alterations in ATP-induced GJIC, such as calcium waves of higher amplitude that propagated slower to neighboring cells, including astrocytes. Finally, in vitro plasmalogen depletion was also associated with a significant downregulation of Müller cells migration. Taken together, these data confirm that plasmalogens are critical for the regulation of Cx43 expression and for characteristics of retinal Müller glial cells such as GJIC and cell migration.
Collapse
Affiliation(s)
- Rémi Karadayi
- Eye and Nutrition Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Julie Mazzocco
- Eye and Nutrition Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurent Leclere
- Eye and Nutrition Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Bénédicte Buteau
- Eye and Nutrition Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Gregoire
- Eye and Nutrition Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Christine Belloir
- Taste and Olfaction Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Mounzer Koudsi
- Eye and Nutrition Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pauline Bessard
- Eye and Nutrition Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Jean-Baptiste Bizeau
- Eye and Nutrition Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Elisabeth Dubus
- Eye and Nutrition Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Claire Fenech
- Brain Nutrient Sensing and Energy Homeostasis, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Loïc Briand
- Taste and Olfaction Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Lionel Bretillon
- Eye and Nutrition Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Alain M. Bron
- Eye and Nutrition Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | | | - Niyazi Acar
- Eye and Nutrition Research Group, CSGA, Université de Bourgogne Franche-Comté, Dijon, France
- *Correspondence: Niyazi Acar,
| |
Collapse
|
7
|
Wang J, Ossemond J, Le Gouar Y, Boissel F, Dupont D, Pédrono F. Encapsulation of Docosahexaenoic Acid Oil Substantially Improves the Oxylipin Profile of Rat Tissues. Front Nutr 2022; 8:812119. [PMID: 35118110 PMCID: PMC8805515 DOI: 10.3389/fnut.2021.812119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a major n-3 polyunsaturated fatty acid (PUFA) particularly involved in cognitive and cardiovascular functions. Due to the high unsaturation index, its dietary intake form has been considered to improve oxidation status and to favor bioaccessibility and bioavailability as well. This study aimed at investigating the effect of DHA encapsulated with natural whey protein. DHA was dietary provided as triacylglycerols to achieve 2.3% over total fatty acids. It was daily supplied to weanling rats for four weeks in omelet as food matrix, consecutively to a 6-hour fasting. First, when DHA oil was encapsulated, consumption of chow diet was enhanced leading to promote animal growth. Second, the brain exhibited a high accretion of 22.8% DHA, which was not improved by dietary supplementation of DHA. Encapsulation of DHA oil did not greatly affect the fatty acid proportions in tissues, but remarkably modified the profile of oxidized metabolites of fatty acids in plasma, heart, and even brain. Specific oxylipins derived from DHA were upgraded, such as Protectin Dx in heart and 14-HDoHE in brain, whereas those generated from n-6 PUFAs were mainly mitigated. This effect did not result from oxylipins measured in DHA oil since DHA and EPA derivatives were undetected after food processing. Collectively, these data suggested that dietary encapsulation of DHA oil triggered a more efficient absorption of DHA, the metabolism of which was enhanced more than its own accretion in our experimental conditions. Incorporating DHA oil in functional food may finally improve the global health status by generating precursors of protectins and maresins.
Collapse
Affiliation(s)
- Jun Wang
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Jordane Ossemond
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yann Le Gouar
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Françoise Boissel
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Didier Dupont
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Frédérique Pédrono
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
- *Correspondence: Frédérique Pédrono
| |
Collapse
|
8
|
Bringer MA, Gabrielle PH, Bron AM, Creuzot-Garcher C, Acar N. The gut microbiota in retinal diseases. Exp Eye Res 2021; 214:108867. [PMID: 34856206 DOI: 10.1016/j.exer.2021.108867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/25/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
Abstract
The gut microbiota is a complex ecosystem that inhabits the gastrointestinal tract and consists of archaea, fungi, viruses, and bacteria, with bacteria being dominant. From birth onwards, it coevolves dynamically together with the host. The composition of the gut microbiota is under the influence of a complex interplay between both host and environmental factors. Scientific advances in the past few decades have shown that it is essential in maintaining homeostasis and tipping the balance between health and disease. In addition to its role in food digestion, the gut microbiota is implicated in regulating multiple physiological processes in the host gut mucosa and in distant organs such as the brain. Persistent imbalance between gut microbial communities, termed "dysbiosis," has been associated with several inflammatory and metabolic diseases as well as with central nervous system disorders. In this review, we present the state of the art of current knowledge on an emerging concept, the microbiota-retina axis, and the potential role of its disturbance in the development of retinopathies. We also describe several microbiota-targeting strategies that could constitute preventive and therapeutic tools for retinopathies.
Collapse
Affiliation(s)
- Marie-Agnès Bringer
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Pierre-Henry Gabrielle
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France; Ophthalmology Department, University Hospital, F-21000, Dijon, France
| | - Alain M Bron
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France; Ophthalmology Department, University Hospital, F-21000, Dijon, France
| | - Catherine Creuzot-Garcher
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France; Ophthalmology Department, University Hospital, F-21000, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
9
|
Wu S, Lam SM, Li H, Jiang B, Sun Z, Zhu T, Wei X, Zou X, Shui G, Sui R. Targeted lipidomics reveals plasmalogen phosphatidylethanolamines and storage triacylglycerols as the major systemic lipid aberrations in Bietti crystalline corneoretinal dystrophy. J Genet Genomics 2021; 49:380-383. [PMID: 34710622 DOI: 10.1016/j.jgg.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Shijing Wu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huajin Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Binhua Jiang
- LipidALL Technologies Company Limited, Changzhou, Jiangsu 213022, China
| | - Zixi Sun
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian Zhu
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xing Wei
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xuan Zou
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
10
|
Lipidomic profile of human nasal mucosa and associations with circulating fatty acids and olfactory deficiency. Sci Rep 2021; 11:16771. [PMID: 34408170 PMCID: PMC8373950 DOI: 10.1038/s41598-021-93817-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
The nasal mucosa (NM) contains olfactory mucosa which contributes to the detection of odorant molecules and the transmission of olfactory information to the brain. To date, the lipid composition of the human NM has not been adequately characterized. Using gas chromatography, liquid chromatography coupled to mass spectrometry and thin layer chromatography, we analyzed the fatty acids and the phospholipid and ceramide molecular species in adult human nasal and blood biopsies. Saturated and polyunsaturated fatty acids (PUFAs) accounted for 45% and 29% of the nasal total fatty acids, respectively. Fatty acids of the n-6 family were predominant in the PUFA subgroup. Linoleic acid and arachidonic acid (AA) were incorporated in the main nasal phospholipid classes. Correlation analysis revealed that the nasal AA level might be positively associated with olfactory deficiency. In addition, a strong positive association between the AA levels in the NM and in plasma cholesteryl esters suggested that this blood fraction might be used as an indicator of the nasal AA level. The most abundant species of ceramides and their glycosylated derivatives detected in NM contained palmitic acid and long-chain fatty acids. Overall, this study provides new insight into lipid species that potentially contribute to the maintenance of NM homeostasis and demonstrates that circulating biomarkers might be used to predict nasal fatty acid content.
Collapse
|
11
|
Butler JM, Supharattanasitthi W, Yang YC, Paraoan L. RNA-seq analysis of ageing human retinal pigment epithelium: Unexpected up-regulation of visual cycle gene transcription. J Cell Mol Med 2021; 25:5572-5585. [PMID: 33934486 PMCID: PMC8184696 DOI: 10.1111/jcmm.16569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ageing presents adverse effects on the retina and is the primary risk factor for age‐related macular degeneration (AMD). We report the first RNA‐seq analysis of age‐related transcriptional changes in the human retinal pigment epithelium (RPE), the primary site of AMD pathogenesis. Whole transcriptome sequencing of RPE from human donors ranging in age from 31 to 93 reveals that ageing is associated with increasing transcription of main RPE‐associated visual cycle genes (including LRAT, RPE65, RDH5, RDH10, RDH11; pathway enrichment BH‐adjusted P = 4.6 × 10−6). This positive correlation is replicated in an independent set of 28 donors and a microarray dataset of 50 donors previously published. LRAT expression is positively regulated by retinoid by‐products of the visual cycle (A2E and all‐trans‐retinal) involving modulation by retinoic acid receptor alpha transcription factor. The results substantiate a novel age‐related positive feedback mechanism between accumulation of retinoid by‐products in the RPE and the up‐regulation of visual cycle genes.
Collapse
Affiliation(s)
- Joe M Butler
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Wasu Supharattanasitthi
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Yit C Yang
- Department of Ophthalmology, Wolverhampton Eye Infirmary, New Cross Hospital, Wolverhampton, UK
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Das Y, Roose N, De Groef L, Fransen M, Moons L, Van Veldhoven PP, Baes M. Differential distribution of peroxisomal proteins points to specific roles of peroxisomes in the murine retina. Mol Cell Biochem 2019; 456:53-62. [PMID: 30604065 DOI: 10.1007/s11010-018-3489-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
The retinal pathology in peroxisomal disorders suggests that peroxisomes are important to maintain retinal homeostasis and function. These ubiquitous cell organelles are mainly involved in lipid metabolism, which comprises α- and β-oxidation and ether lipid synthesis. Although peroxisomes were extensively studied in liver, their role in the retina still remains to be elucidated. As a first step in gaining more insight into the role of peroxisomes in retinal physiology, we performed immunohistochemical stainings, immunoblotting and enzyme activity measurements to reveal the distribution of peroxisomes and peroxisomal lipid metabolizing enzymes in the murine retina. Whereas peroxisomes were detected in every retinal layer, we found a clear differential distribution of the peroxisomal lipid metabolizing enzymes in the neural retina compared to the retinal pigment epithelium. In particular, the ABC transporters that transfer lipid substrates into the organelle as well as several enzymes of the β-oxidation pathway were enriched either in the neural retina or in the retinal pigment epithelium. In conclusion, our results strongly indicate that peroxisome function varies between different regions in the murine retina.
Collapse
Affiliation(s)
- Yannick Das
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Nele Roose
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Lies De Groef
- Department of Biology, Animal Physiology and Neurobiology, KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Marc Fransen
- Department of Cellular and Molecular Medicine, Lipid Biochemistry and Protein Interactions (LIPIT), KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Lieve Moons
- Department of Biology, Animal Physiology and Neurobiology, KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Paul P Van Veldhoven
- Department of Cellular and Molecular Medicine, Lipid Biochemistry and Protein Interactions (LIPIT), KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven -University of Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
13
|
Le Bon AM, Deprêtre N, Sibille E, Cabaret S, Grégoire S, Soubeyre V, Masson E, Acar N, Bretillon L, Grosmaitre X, Berdeaux O. Comprehensive study of rodent olfactory tissue lipid composition. Prostaglandins Leukot Essent Fatty Acids 2018; 131:32-43. [PMID: 29628048 DOI: 10.1016/j.plefa.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
Abstract
The peripheral olfactory tissue (OT) plays a primordial role in the detection and transduction of olfactory information. Recent proteomic and transcriptomic studies have provided valuable insight into proteins and RNAs expressed in this tissue. Paradoxically, there is little information regarding the lipid composition of mammalian OT. To delve further into this issue, using a set of complementary state-of-the-art techniques, we carried out a comprehensive analysis of OT lipid composition in rats and mice fed with standard diets. The results showed that phospholipids are largely predominant, the major classes being phosphatidylcholine and phosphatidylethanolamine. Two types of plasmalogens, plasmenyl-choline and plasmenyl-ethanolamine, as well as gangliosides were also detected. With the exception of sphingomyelin, substantial levels of n-3 polyunsaturated fatty acids, mainly docosahexaenoic acid (22:6n-3; DHA), were found in the different phospholipid classes. These findings demonstrate that the rodent OT shares several features in common with other neural tissues, such as the brain and retina.
Collapse
Affiliation(s)
- Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
| | - Nicolas Deprêtre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Estelle Sibille
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Vanessa Soubeyre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| |
Collapse
|
14
|
Koscielniak A, Serafin M, Duda M, Oles T, Zadlo A, Broniec A, Berdeaux O, Gregoire S, Bretillon L, Sarna T, Pawlak A. Oxidation-Induced Increase In Photoreactivity of Bovine Retinal Lipid Extract. Cell Biochem Biophys 2017; 75:443-454. [PMID: 29098642 PMCID: PMC5691103 DOI: 10.1007/s12013-017-0832-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022]
Abstract
The mammalian retina contains a high level of polyunsaturated fatty acids, including docosahexaenoic acid (22:6) (DHA), which are highly susceptible to oxidation. It has been shown that one of the products of DHA oxidation-carboxyethylpyrrole (CEP), generated in situ, causes modifications of retinal proteins and induces inflammation response in the outer retina. These contributing factors may play a role in the development of age-related macular degeneration (AMD). It is also possible that some of the lipid oxidation products are photoreactive, and upon irradiation with blue light may generate reactive oxygen species. Therefore, in this work we analysed oxidation-induced changes in photoreactivity of lipids extracted from bovine neural retinas. Lipid composition of bovine neural retinas closely resembles that of human retinas making the bovine tissue a convenient model for studying the photoreactivity and potential phototoxicity of oxidized human retinal lipids. Lipid composition of bovine neural retinas Folch' extracts (BRex) was determined by gas chromatography (GC) and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS) analysis. Liposomes prepared from BRex, equilibrated with air, were oxidized in the dark at 37 °C for up to 400 h. The photoreactivity of BRex at different stages of oxidation was studied by EPR-oximetry and EPR-spin trapping. Photogeneration of singlet oxygen (1O2, 1Δg) by BRex was measured using time-resolved detection of the characteristic phosphorescence at 1270 nm. To establish contribution of lipid components to the analysed photoreactivity of Folch' extract of bovine retinas, a mixture of selected synthetic lipids in percent by weight (w/w %) ratio resembling that of the BRex has been also studied. Folch's extraction of bovine neural retinas was very susceptible to oxidation despite the presence of powerful endogenous antioxidants such as α-tocopherol and zeaxanthin. Non-oxidized and oxidized BRex photogenerated singlet oxygen with moderate quantum yield. Blue-light induced generation of superoxide anion by Folch' extract of bovine neural retinas strongly depended on the oxidation time. The observed photoreactivity of the studied extract gradually increased during its in vitro oxidation.
Collapse
Affiliation(s)
- A Koscielniak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH-University of Science and Technology, Kraków, Poland
| | - M Serafin
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - M Duda
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - T Oles
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - A Zadlo
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - A Broniec
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - O Berdeaux
- INRA, Centre des Sciences du Gout et de l'Alimentation, Universite de Bourgogne, Dijon, France
| | - S Gregoire
- INRA, Centre des Sciences du Gout et de l'Alimentation, Universite de Bourgogne, Dijon, France
| | - L Bretillon
- INRA, Centre des Sciences du Gout et de l'Alimentation, Universite de Bourgogne, Dijon, France
| | - T Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - A Pawlak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
15
|
Essaid D, Rosilio V, Daghildjian K, Solgadi A, Vergnaud J, Kasselouri A, Chaminade P. Artificial plasma membrane models based on lipidomic profiling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2725-2736. [PMID: 27457703 DOI: 10.1016/j.bbamem.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022]
Abstract
Phospholipid monolayers are often described as membrane models for analyzing drug-lipid interactions. In many works, a single phosphatidylcholine is chosen, sometimes with one or two additional components. Drug penetration is studied at 30mN/m, a surface pressure considered as corresponding to the pressure in bilayers, independently of the density of lipid molecular packing. In this work, we have extracted, identified, and quantified the major lipids constituting the lipidome of plasma and mitochondrial membranes of retinoblastoma (Y79) and retinal pigment epithelium cells (ARPE-19), using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS/MS). The results obtained from this lipidomic analysis were used in an attempt to build an artificial lipid monolayer with a composition mimicking that of the plasma membrane of Y79 cells, better than a single phospholipid. The variety and number of lipid classes and species in cell extracts monolayers exceeding by far those of the phospholipids chosen to mimic them, the π-A isotherms of model monolayers differed from those of lipid extracts in shape and apparent packing density. We propose a model monolayer based on the most abundant species identified in the extracts, with a surface compressional modulus at 30mN/m close to the one of the lipid extracts.
Collapse
Affiliation(s)
- Donia Essaid
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France; Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry, France
| | - Véronique Rosilio
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France.
| | - Katia Daghildjian
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Audrey Solgadi
- Institut Paris-Saclay d'Innovation Thérapeutique, UMS IPSIT SAMM, Châtenay-Malabry, France
| | - Juliette Vergnaud
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Athena Kasselouri
- Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry, France
| | - Pierre Chaminade
- Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry, France
| |
Collapse
|
16
|
Ramchani-Ben Othman K, Cercy C, Amri M, Doly M, Ranchon-Cole I. Dietary supplement enriched in antioxidants and omega-3 protects from progressive light-induced retinal degeneration. PLoS One 2015; 10:e0128395. [PMID: 26042773 PMCID: PMC4455991 DOI: 10.1371/journal.pone.0128395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/27/2015] [Indexed: 11/30/2022] Open
Abstract
In the present study, we have evaluated one of the dietary supplements enriched with antioxidants and fish oil used in clinical care for patient with age-related macular degeneration. Rats were orally fed by a gastric canula daily with 0.2 ml of water or dietary supplement until they were sacrificed. After one week of treatment, animals were either sacrificed for lipid analysis in plasma and retina, or used for evaluation of rod-response recovery by electroretinography (ERG) followed by their sacrifice to measure rhodopsin content, or used for progressive light-induced retinal degeneration (PLIRD). For PLIRD, animals were transferred to bright cyclic light for one week. Retinal damage was quantified by ERG, histology and detection of apoptotic nuclei. Animals kept in dim-cyclic-light were processed in parallel. PLIRD induced a thinning of the outer nuclear layer and a reduction of the b-wave amplitude of the ERG in the water group. Retinal structure and function were preserved in supplemented animals. Supplement induced a significant increase in omega-3 fatty acids in plasma by 168% for eicosapentaenoic acid (EPA), 142% for docosapentaenoic acid (DPA) and 19% for docosahexaenoic acid (DHA) and a decrease in the omega-6 fatty acids, DPA by 28%. In the retina, supplement induced significant reduction of linolenic acid by 67% and an increase in EPA and DPA by 80% and 72%, respectively, associated with significant decrease in omega-6 DPA by 42%. Supplement did not affect rhodopsin content or rod-response recovery. The present data indicate that supplement rapidly modified the fatty acid content and induced an accumulation of EPA in the retina without affecting rhodopsin content or recovery. In addition, it protected the retina from oxidative stress induced by light. Therefore, this supplement might be beneficial to slow down progression of certain retinal degeneration.
Collapse
Affiliation(s)
- Khaoula Ramchani-Ben Othman
- Université Auvergne, UFR Pharmacie, Laboratoire de Biophysique Neurosensorielle, Inserm UMR 1107, Clermont-Ferrand, France
- Department of Biological Sciences, Tunis El Manar University, Laboratory of Functional Neurophysiology and Pathology, UR/11ES09, El Manar 1, Tunis, Tunisia
| | - Christine Cercy
- Université Auvergne, UFR Pharmacie, Laboratoire de Biophysique Neurosensorielle, Inserm UMR 1107, Clermont-Ferrand, France
| | - Mohamed Amri
- Department of Biological Sciences, Tunis El Manar University, Laboratory of Functional Neurophysiology and Pathology, UR/11ES09, El Manar 1, Tunis, Tunisia
| | - Michel Doly
- Université Auvergne, UFR Pharmacie, Laboratoire de Biophysique Neurosensorielle, Inserm UMR 1107, Clermont-Ferrand, France
| | - Isabelle Ranchon-Cole
- Université Auvergne, UFR Pharmacie, Laboratoire de Biophysique Neurosensorielle, Inserm UMR 1107, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
17
|
Saab S, Mazzocco J, Creuzot-Garcher CP, Bron AM, Bretillon L, Acar N. Plasmalogens in the retina: From occurrence in retinal cell membranes to potential involvement in pathophysiology of retinal diseases. Biochimie 2014; 107 Pt A:58-65. [DOI: 10.1016/j.biochi.2014.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/26/2014] [Indexed: 10/24/2022]
|
18
|
Saab S, Buteau B, Leclère L, Bron AM, Creuzot-Garcher CP, Bretillon L, Acar N. Involvement of plasmalogens in post-natal retinal vascular development. PLoS One 2014; 9:e101076. [PMID: 24963632 PMCID: PMC4071069 DOI: 10.1371/journal.pone.0101076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/03/2014] [Indexed: 01/05/2023] Open
Abstract
Objective Proper development of retinal blood vessels is essential to ensure sufficient oxygen and nutrient supplies to the retina. It was shown that polyunsaturated fatty acids (PUFAs) could modulate factors involved in tissue vascularization. A congenital deficiency in ether-phospholipids, also termed “plasmalogens”, was shown to lead to abnormal ocular vascularization. Because plasmalogens are considered to be reservoirs of PUFAs, we wished to improve our understanding of the mechanisms by which plasmalogens regulate retinal vascular development and whether the release of PUFAs by calcium-independent phospholipase A2 (iPLA2) could be involved. Methods and Results By characterizing the cellular and molecular steps of retinal vascular development in a mouse model of plasmalogen deficiency, we demonstrated that plasmalogens modulate angiogenic processes during the early phases of retinal vascularization. They influence glial activity and primary astrocyte template formation, endothelial cell proliferation and retinal vessel outgrowth, and impact the expression of the genes involved in angiogenesis in the retina. These early defects led to a disorganized and dysfunctional retinal vascular network at adult age. By comparing these data to those obtained on a mouse model of retinal iPLA2 inhibition, we suggest that these processes may be mediated by PUFAs released from plasmalogens and further signalling through the angiopoietin/tie pathways. Conclusions These data suggest that plasmalogens play a crucial role in retinal vascularization processes.
Collapse
Affiliation(s)
- Sarah Saab
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Bénédicte Buteau
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Laurent Leclère
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Alain M. Bron
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | - Catherine P. Creuzot-Garcher
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | - Lionel Bretillon
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Niyazi Acar
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- * E-mail:
| |
Collapse
|
19
|
Pinazo-Durán MD, Gómez-Ulla F, Arias L, Araiz J, Casaroli-Marano R, Gallego-Pinazo R, García-Medina JJ, López-Gálvez MI, Manzanas L, Salas A, Zapata M, Diaz-Llopis M, García-Layana A. Do nutritional supplements have a role in age macular degeneration prevention? J Ophthalmol 2014; 2014:901686. [PMID: 24672708 PMCID: PMC3941929 DOI: 10.1155/2014/901686] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/12/2013] [Indexed: 11/18/2022] Open
Abstract
Purpose. To review the proposed pathogenic mechanisms of age macular degeneration (AMD), as well as the role of antioxidants (AOX) and omega-3 fatty acids ( ω -3) supplements in AMD prevention. Materials and Methods. Current knowledge on the cellular/molecular mechanisms of AMD and the epidemiologic/experimental studies on the effects of AOX and ω -3 were addressed all together with the scientific evidence and the personal opinion of professionals involved in the Retina Group of the OFTARED (Spain). Results. High dietary intakes of ω -3 and macular pigments lutein/zeaxanthin are associated with lower risk of prevalence and incidence in AMD. The Age-Related Eye Disease study (AREDS) showed a beneficial effect of high doses of vitamins C, E, beta-carotene, and zinc/copper in reducing the rate of progression to advanced AMD in patients with intermediate AMD or with one-sided late AMD. The AREDS-2 study has shown that lutein and zeaxanthin may substitute beta-carotene because of its potential relationship with increased lung cancer incidence. Conclusion. Research has proved that elder people with poor diets, especially with low AOX and ω -3 micronutrients intake and subsequently having low plasmatic levels, are more prone to developing AMD. Micronutrient supplementation enhances antioxidant defense and healthy eyes and might prevent/retard/modify AMD.
Collapse
Affiliation(s)
- Maria D Pinazo-Durán
- University of Valencia, Spain ; The Ophthalmic Research Unit "Santiago Grisolía", Valencia, Spain
| | - Francisco Gómez-Ulla
- University of Santiago de Compostela, Spain ; The Institute Gomez-Ulla, Santiago de Compostela, Spain ; Foundation RetinaPlus, Spain
| | - Luis Arias
- University of Barcelona, Spain ; Retina Section, Department of Ophthalmology, Bellvitge University Hospital, Barcelona, Spain
| | - Javier Araiz
- Vitreous and Retina Department, UPV/EHU and Instituto Clínico Quirúrgico de Oftalmología (ICQO), University of the Basque Country, Bilbao, Spain
| | - Ricardo Casaroli-Marano
- Clinic Institute of Ophthalmology, Clinic Hospital of Barcelona, University of Barcelona, Barcelona, Spain
| | - Roberto Gallego-Pinazo
- Macula Section, Department of Ophthalmology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Jose J García-Medina
- University of Murcia, General University Hospital Reina Sofia, Murcia, Spain ; Ophthalmic Reseach Unit "Santiago Grisolia", Valencia, Spain
| | - Maria Isabel López-Gálvez
- The University of Valladolid, Diabetes and Telemedicine Unit at the IOBA, Spain ; The Retina Unit of the Clinic University Hospital of Valladolid, Spain
| | - Lucía Manzanas
- The University of Valladolid, Spain ; The Vitreo-Retina Unit of the Clinic University Hospital of Valladolid, Spain
| | - Anna Salas
- Research Institute of the Hospital of Vall Hebron, Barcelona, Spain
| | - Miguel Zapata
- Retina Section of the Hospital of Vall Hebron, The Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Diaz-Llopis
- Faculty of Medicine, University of Valencia, Valencia, Spain ; University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
20
|
da Silva TF, Sousa VF, Malheiro AR, Brites P. The importance of ether-phospholipids: a view from the perspective of mouse models. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1501-8. [PMID: 22659211 DOI: 10.1016/j.bbadis.2012.05.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/06/2012] [Accepted: 05/23/2012] [Indexed: 12/11/2022]
Abstract
Ether-phospholipids represent an important group of phospholipids characterized by an alkyl or an alkenyl bond at the sn-1 position of the glycerol backbone. Plasmalogens are the most abundant form of alkenyl-glycerophospholipids, and their synthesis requires functional peroxisomes. Defects in the biosynthesis of plasmalogens are the biochemical hallmark of the human peroxisomal disorder Rhizomelic Chondrodysplasia Punctata (RCDP), which is characterized by defects in eye, bone and nervous tissue. The generation and characterization of mouse models with defects in plasmalogen levels have significantly advanced our understanding of the role and importance of plasmalogens as well as pathogenetic mechanisms underlying RCDP. A review of the current mouse models and the description of the combined knowledge gathered from the histopathological and biochemical studies is presented and discussed. Further characterization of the role and functions of plasmalogens will contribute to the elucidation of disease pathogenesis in peroxisomal and non-peroxisomal disorders. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.
Collapse
|
21
|
Lipid composition of the human eye: are red blood cells a good mirror of retinal and optic nerve fatty acids? PLoS One 2012; 7:e35102. [PMID: 22496896 PMCID: PMC3322172 DOI: 10.1371/journal.pone.0035102] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/08/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The assessment of blood lipids is very frequent in clinical research as it is assumed to reflect the lipid composition of peripheral tissues. Even well accepted such relationships have never been clearly established. This is particularly true in ophthalmology where the use of blood lipids has become very common following recent data linking lipid intake to ocular health and disease. In the present study, we wanted to determine in humans whether a lipidomic approach based on red blood cells could reveal associations between circulating and tissue lipid profiles. To check if the analytical sensitivity may be of importance in such analyses, we have used a double approach for lipidomics. METHODOLOGY AND PRINCIPAL FINDINGS Red blood cells, retinas and optic nerves were collected from 9 human donors. The lipidomic analyses on tissues consisted in gas chromatography and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS). Gas chromatography did not reveal any relevant association between circulating and ocular fatty acids except for arachidonic acid whose circulating amounts were positively associated with its levels in the retina and in the optic nerve. In contrast, several significant associations emerged from LC-ESI-MS analyses. Particularly, lipid entities in red blood cells were positively or negatively associated with representative pools of retinal docosahexaenoic acid (DHA), retinal very-long chain polyunsaturated fatty acids (VLC-PUFA) or optic nerve plasmalogens. CONCLUSIONS AND SIGNIFICANCE LC-ESI-MS is more appropriate than gas chromatography for lipidomics on red blood cells, and further extrapolation to ocular lipids. The several individual lipid species we have identified are good candidates to represent circulating biomarkers of ocular lipids. However, further investigation is needed before considering them as indexes of disease risk and before using them in clinical studies on optic nerve neuropathies or retinal diseases displaying photoreceptors degeneration.
Collapse
|
22
|
Nagy K, Brahmbhatt VV, Berdeaux O, Bretillon L, Destaillats F, Acar N. Comparative study of serine-plasmalogens in human retina and optic nerve: identification of atypical species with odd carbon chains. J Lipid Res 2012; 53:776-83. [PMID: 22266369 DOI: 10.1194/jlr.d022962] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The objective of this work was to detect and identify phosphatidylserine plasmalogen species in human ocular neurons represented by the retina and the optic nerve. Plasmalogens (vinyl-ether bearing phospholipids) are commonly found in the forms of phosphatidylcholine and phosphatidylethanolamine in numerous mammalian cell types, including the retina. Although their biological functions are unclear, the alteration of cellular plasmalogen content has been associated with several human disorders such as rhizomelic chondrodysplasia punctata Type 2 and primary open-angle glaucoma. By using liquid chromatography coupled to high-resolution and tandem mass spectrometry, we have identified for the first time several species of phosphatidylserine plasmalogens, including atypical forms having moieties with odd numbers of carbons and unsaturation in sn-2 position. Structural elucidation of the potential phosphatidylserine ether linked species was pursued by performing MS(3) experiments, and three fragments are proposed as marker ions to deduce which fatty acid is linked as ether or ester on the glycerol backbone. Interpretation of the fragmentation patterns based on this scheme enabled the assignment of structures to the m/z values, thereby identifying the phosphatidylserine plasmalogens.
Collapse
Affiliation(s)
- Kornél Nagy
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Schuhmann K, Herzog R, Schwudke D, Metelmann-Strupat W, Bornstein SR, Shevchenko A. Bottom-Up Shotgun Lipidomics by Higher Energy Collisional Dissociation on LTQ Orbitrap Mass Spectrometers. Anal Chem 2011; 83:5480-7. [DOI: 10.1021/ac102505f] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Department of Internal Medicine III, Technical University of Dresden, 01307 Dresden, Germany
| | - Ronny Herzog
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Department of Internal Medicine III, Technical University of Dresden, 01307 Dresden, Germany
| | - Dominik Schwudke
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India
| | | | - Stefan R. Bornstein
- Department of Internal Medicine III, Technical University of Dresden, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
24
|
Broniec A, Klosinski R, Pawlak A, Wrona-Krol M, Thompson D, Sarna T. Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems. Free Radic Biol Med 2011; 50:892-8. [PMID: 21236336 PMCID: PMC3073128 DOI: 10.1016/j.freeradbiomed.2011.01.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/29/2010] [Accepted: 01/03/2011] [Indexed: 11/20/2022]
Abstract
Plasmalogens are phospholipids containing a vinyl-ether linkage at the sn-1 position of the glycerophospholipid backbone. Despite being quite abundant in humans, the biological role of plasmalogens remains speculative. It has been postulated that plasmalogens are physiological antioxidants with the vinyl-ether functionality serving as a sacrificial trap for free radicals and singlet oxygen. However, no quantitative data on the efficiency of plasmalogens at scavenging these reactive species are available. In this study, rate constants of quenching of singlet oxygen, generated by photosensitized energy transfer, by several plasmalogens and, for comparison, by their diacyl analogs were determined by time-resolved detection of phosphorescence at 1270nm. Relative rates of the interactions of singlet oxygen with plasmalogens and other lipids, in solution and in liposomal membranes, were measured by electron paramagnetic resonance oximetry and product analysis using HPLC-EC detection of cholesterol hydroperoxides and iodometric assay of lipid hydroperoxides. The results show that singlet oxygen interacts with plasmalogens significantly faster than with the other lipids, with the corresponding rate constants being 1 to 2 orders of magnitude greater. The quenching of singlet oxygen by plasmalogens is mostly reactive in nature and results from its preferential interaction with the vinyl-ether bond. The data suggest that plasmalogens could protect unsaturated membrane lipids against oxidation induced by singlet oxygen, providing that the oxidation products are not excessively cytotoxic.
Collapse
Affiliation(s)
- Agnieszka Broniec
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Radoslaw Klosinski
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Pawlak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Wrona-Krol
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - David Thompson
- Department of Chemistry, Purdue University, W. Lafayette, IN, USA
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
25
|
Kawano J, Tanizawa Y, Shinoda K. Wolfram syndrome 1 (Wfs1) gene expression in the normal mouse visual system. J Comp Neurol 2008; 510:1-23. [PMID: 18613120 DOI: 10.1002/cne.21734] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Wolfram syndrome (OMIM 222300) is a neurodegenerative disorder defined by insulin-dependent diabetes mellitus and progressive optic atrophy. This syndrome has been attributed to mutations in the WFS1 gene, which codes for a putative multi-spanning membrane glycoprotein of the endoplasmic reticulum. The function of WFS1 (wolframin), the distribution of this protein in the mammalian visual system, and the pathogenesis of optic atrophy in Wolfram syndrome are unclear. In this study we made a detailed analysis of the distribution of Wfs1 mRNA and protein in the normal mouse visual system by using in situ hybridization and immunohistochemistry. The mRNA and protein were observed in the retina, optic nerve, and brain. In the retina, Wfs1 expression was strong in amacrine and Müller cells, and moderate in photoreceptors and horizontal cells. In addition, it was detectable in bipolar and retinal ganglion cells. Interestingly, moderate Wfs1 expression was seen in the optic nerve, particularly in astrocytes, while little Wfs1 was expressed in the optic chiasm or optic tract. In the brain, moderate Wfs1 expression was observed in the zonal, superficial gray, and intermediate gray layers of the superior colliculus, in the dorsomedial part of the suprachiasmatic nucleus, and in layer II of the primary and secondary visual cortices. Thus, Wfs1 mRNA and protein were widely distributed in the normal mouse visual system. This evidence may provide clues as to the physiological role of Wfs1 protein in the biology of vision, and help to explain the selective vulnerability of the optic nerve to WFS1 loss-of-function.
Collapse
Affiliation(s)
- June Kawano
- Laboratory for Neuroanatomy, Department of Neurology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan.
| | | | | |
Collapse
|