1
|
Villegas L, Zvietcovich F, Marcos S, Birkenfeld JS. Revealing regional variations in scleral shear modulus in a rabbit eye model using multi-directional ultrasound optical coherence elastography. Sci Rep 2024; 14:21010. [PMID: 39251655 PMCID: PMC11384758 DOI: 10.1038/s41598-024-71343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
The mechanical properties of the sclera play a critical role in supporting the ocular structure and maintaining its shape. However, non-invasive measurements to quantify scleral biomechanics remain challenging. Recently introduced multi-directional optical coherence elastography (OCE) combined with an air-coupled ultrasound transducer for excitation of elastic surface waves was used to estimate phase speed and shear modulus in ex vivo rabbit globes (n = 7). The scleral phase speed (12.1 ± 3.2 m/s) was directional-dependent and higher than for corneal tissue (5.9 ± 1.4 m/s). In the tested locations, the sclera proved to be more anisotropic than the cornea by a factor of 11 in the maximum of modified planar anisotropy coefficient. The scleral shear moduli, estimated using a modified Rayleigh-Lamb wave model, showed significantly higher values in the circumferential direction (65.4 ± 31.9 kPa) than in meridional (22.5 ± 7.2 kPa); and in the anterior zone (27.3 ± 9.3 kPa) than in the posterior zone (17.8 ± 7.4 kPa). The multi-directional scanning approach allowed both quantification and radial mapping of estimated parameters within a single measurement. The results indicate that multi-directional OCE provides a valuable non-invasive assessment of scleral tissue properties that may be useful in the development of improved ocular models, the evaluation of potential myopia treatment strategies, and disease characterization and monitoring.
Collapse
Affiliation(s)
- Lupe Villegas
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Fernando Zvietcovich
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Engineering, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Susana Marcos
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- The Center for Visual Science, The Institute of Optics, Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - Judith S Birkenfeld
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
2
|
Tan HY, Wu YF, Wang CY, Lin SJ, Ma YH, Young TH. The cellular responses of corneal fibroblasts to cyclic stretching loads. Exp Eye Res 2023; 237:109696. [PMID: 37890758 DOI: 10.1016/j.exer.2023.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Mechanical signaling plays a crucial role in maintaining extracellular matrix (ECM) homeostasis in various structures. In this study, we investigated the responses of corneal fibroblasts to cyclic stretching loads using an in vitro cell culture system. Bovine corneal fibroblasts were cultured and subjected to equibiaxial cyclic strain of 15% for 72 h at a frequency of 0.25 Hz, with bovine skin fibroblasts used as a comparison. We explored various cellular behaviors, including morphological changes, cell proliferation, and metabolism in response to mechanical stretching loads. The expression of genes, protein secretion, and enzymatic activity for several major metalloproteinases was also determined through Q-PCR, Western blot, and gel zymography. Additionally, we investigated the involvement of mitogen-activated protein kinases (MAPKs) signaling pathways in the corneal fibroblasts when subjected to mechanical stimuli. Our findings revealed that, compared to skin fibroblasts, corneal fibroblasts were reluctant to morphological changes in response to a prolonged (72 h) and high-amplitude (15% of strain) cyclic stretching load. However, cyclic stretching loads stimulated the upregulation of MMP-2 expression in corneal fibroblasts via the MAPK signaling pathways involving extracellular signal-regulated kinase and p38. Together with a lack of upregulation in type I collagen expression, our results indicate the induction of the ECM degradation process in corneal fibroblasts in response to cyclic stretching. These findings emphasize the mechanoresponsive nature of corneal fibroblasts and shed light on the potential impact of intense mechanical stress on the cornea in both normal and pathological conditions such as keratoconus, providing valuable insights for understanding corneal mechanobiology.
Collapse
Affiliation(s)
- Hsin-Yuan Tan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yueh-Feng Wu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Yi Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yunn-Hwa Ma
- Department of Physiology and Pharmacology and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Akoto T, Cai J, Nicholas S, McCord H, Estes AJ, Xu H, Karamichos D, Liu Y. Unravelling the Impact of Cyclic Mechanical Stretch in Keratoconus-A Transcriptomic Profiling Study. Int J Mol Sci 2023; 24:7437. [PMID: 37108600 PMCID: PMC10139219 DOI: 10.3390/ijms24087437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Biomechanical and molecular stresses may contribute to the pathogenesis of keratoconus (KC). We aimed to profile the transcriptomic changes in healthy primary human corneal (HCF) and KC-derived cells (HKC) combined with TGFβ1 treatment and cyclic mechanical stretch (CMS), mimicking the pathophysiological condition in KC. HCFs (n = 4) and HKCs (n = 4) were cultured in flexible-bottom collagen-coated 6-well plates treated with 0, 5, and 10 ng/mL of TGFβ1 with or without 15% CMS (1 cycle/s, 24 h) using a computer-controlled Flexcell FX-6000T Tension system. We used stranded total RNA-Seq to profile expression changes in 48 HCF/HKC samples (100 bp PE, 70-90 million reads per sample), followed by bioinformatics analysis using an established pipeline with Partek Flow software. A multi-factor ANOVA model, including KC, TGFβ1 treatment, and CMS, was used to identify differentially expressed genes (DEGs, |fold change| ≥ 1.5, FDR ≤ 0.1, CPM ≥ 10 in ≥1 sample) in HKCs (n = 24) vs. HCFs (n = 24) and those responsive to TGFβ1 and/or CMS. PANTHER classification system and the DAVID bioinformatics resources were used to identify significantly enriched pathways (FDR ≤ 0.05). Using multi-factorial ANOVA analyses, 479 DEGs were identified in HKCs vs. HCFs including TGFβ1 treatment and CMS as cofactors. Among these DEGs, 199 KC-altered genes were responsive to TGFβ1, thirteen were responsive to CMS, and six were responsive to TGFβ1 and CMS. Pathway analyses using PANTHER and DAVID indicated the enrichment of genes involved in numerous KC-relevant functions, including but not limited to degradation of extracellular matrix, inflammatory response, apoptotic processes, WNT signaling, collagen fibril organization, and cytoskeletal structure organization. TGFβ1-responsive KC DEGs were also enriched in these. CMS-responsive KC-altered genes such as OBSCN, CLU, HDAC5, AK4, ITGA10, and F2RL1 were identified. Some KC-altered genes, such as CLU and F2RL1, were identified to be responsive to both TGFβ1 and CMS. For the first time, our multi-factorial RNA-Seq study has identified many KC-relevant genes and pathways in HKCs with TGFβ1 treatment under CMS, suggesting a potential role of TGFβ1 and biomechanical stretch in KC development.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jingwen Cai
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sarah Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Hayden McCord
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amy J. Estes
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Grosbois J, Bailie EC, Kelsey TW, Anderson RA, Telfer EE. Spatio-temporal remodelling of the composition and architecture of the human ovarian cortical extracellular matrix during in vitro culture. Hum Reprod 2023; 38:444-458. [PMID: 36721914 PMCID: PMC9977129 DOI: 10.1093/humrep/dead008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION How does in vitro culture alter the human ovarian cortical extracellular matrix (ECM) network structure? SUMMARY ANSWER The ECM composition and architecture vary in the different layers of the ovarian cortex and are remodelled during in vitro culture. WHAT IS KNOWN ALREADY The ovarian ECM is the scaffold within which follicles and stromal cells are organized. Its composition and structural properties constantly evolve to accommodate follicle development and expansion. Tissue preparation for culture of primordial follicles within the native ECM involves mechanical loosening; this induces undefined modifications in the ECM network and alters cell-cell contact, leading to spontaneous follicle activation. STUDY DESIGN, SIZE, DURATION Fresh ovarian cortical biopsies were obtained from six women aged 28-38 years (mean ± SD: 32.7 ± 4.1 years) at elective caesarean section. Biopsies were cut into fragments of ∼4 × 1 × 1 mm and cultured for 0, 2, 4, or 6 days (D). PARTICIPANTS/MATERIALS, SETTING, METHODS Primordial follicle activation, stromal cell density, and ECM-related protein (collagen, elastin, fibronectin, laminin) positive area in the entire cortex were quantified at each time point using histological and immunohistological analysis. Collagen and elastin content, collagen fibre characteristics, and follicle distribution within the tissue were further quantified within each layer of the human ovarian cortex, namely the outer cortex, the mid-cortex, and the cortex-medulla junction regions. MAIN RESULTS AND THE ROLE OF CHANCE Primordial follicle activation occurred concomitantly with a loosening of the ovarian cortex during culture, characterized by an early decrease in stromal cell density from 3.6 ± 0.2 × 106 at day 0 (D0) to 2.8 ± 0.1 × 106 cells/mm3 at D2 (P = 0.033) and a dynamic remodelling of the ECM. Notably, collagen content gradually fell from 55.5 ± 1.7% positive area at D0 to 42.3 ± 1.1% at D6 (P = 0.001), while elastin increased from 1.1 ± 0.2% at D0 to 1.9 ± 0.1% at D6 (P = 0.001). Fibronectin and laminin content remained stable. Moreover, collagen and elastin distribution were uneven throughout the cortex and during culture. Analysis at the sub-region level showed that collagen deposition was maximal in the outer cortex and the lowest in the mid-cortex (69.4 ± 1.2% versus 53.8 ± 0.8% positive area, respectively, P < 0.0001), and cortical collagen staining overall decreased from D0 to D2 (65.2 ± 2.4% versus 60.6 ± 1.8%, P = 0.033) then stabilized. Elastin showed the converse distribution, being most concentrated at the cortex-medulla junction (3.7 ± 0.6% versus 0.9 ± 0.2% in the outer cortex, P < 0.0001), and cortical elastin peaked at D6 compared to D0 (3.1 ± 0.5% versus 1.3 ± 0.2%, P < 0.0001). This was corroborated by a specific signature of the collagen fibre type across the cortex, indicating a distinct phenotype of the ovarian cortical ECM depending on region and culture period that might be responsible for the spatio-temporal and developmental pattern of follicular distribution observed within the cortex. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Ovarian cortical biopsies were obtained from women undergoing caesarean sections. As such, the data obtained may not accurately reflect the ECM distribution and structure of non-pregnant women. WIDER IMPLICATIONS OF THE FINDINGS Clarifying the composition and architecture signature of the human ovarian cortical ECM provides a foundation for further exploration of ovarian microenvironments. It is also critical for understanding the ECM-follicle interactions regulating follicle quiescence and awakening, leading to improvements in both in vitro activation and in vitro growth techniques. STUDY FUNDING/COMPETING INTEREST(S) Medical Research Council grant MR/R003246/1 and Wellcome Trust Collaborative Award in Science: 215625/Z/19/Z. The authors have no conflicts to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Johanne Grosbois
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Emily C Bailie
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tom W Kelsey
- School of Computer Science, University of St Andrews, St Andrews, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Evelyn E Telfer
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Kurysheva NI, Kim VY, Kim VE, Pliyeva HM. [The value of lamina cribrosa in the diagnosis and treatment of glaucoma. Remodeling of lamina cribrosa collagen and approaches to its therapeutic treatment]. Vestn Oftalmol 2023; 139:121-126. [PMID: 37638582 DOI: 10.17116/oftalma2023139041121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Among the first structures suffering damage with an increase in intraocular pressure (IOP) and in early stage of glaucoma are the lamina cribrosa (LC) and peripapillary sclera (ppScl). Changes in these structures occur at the molecular and cellular level. Extracellular matrix (ECM) is the basis of connective tissue, provides mechanical support for the cells, facilitates intercellular interactions and transport of chemicals, including in LC and ppScl. Mechanical stress causes remodeling and disorganization of the ECM, which leads to changes in the structure of the tissue itself, an increase in its rigidity and a decrease in elasticity. Taking into account the molecular and cellular mechanisms of damage to LC and ppScl, various researchers have developed strategies and tactics for therapeutic intervention on these structures, contributing to a decrease in ECM secretion and, as a consequence, suspension of their remodeling. These approaches may in the future form the basis for the treatment of glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- N I Kurysheva
- Medical Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Moscow, Russia
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center of the Federal Medical Biological Agency, Moscow, Russia
| | - V Yu Kim
- Medical Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Moscow, Russia
| | - V E Kim
- Medical Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Moscow, Russia
| | - H M Pliyeva
- Medical Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
6
|
Zhang X, Yu X, Wen Y, Jin L, Zhang L, Zhu H, Zhang D, Xie C, Guo D, Tong J, Shen Y. Functions of retinal astrocytes and Müller cells in mammalian myopia. BMC Ophthalmol 2022; 22:451. [PMID: 36418970 PMCID: PMC9686084 DOI: 10.1186/s12886-022-02643-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Background Changes in the retina and choroid blood vessels are regularly observed in myopia. However, if the retinal glial cells, which directly contact blood vessels, play a role in mammalian myopia is unknown. We aimed to explore the potential role and mechanism of retinal glial cells in form deprived myopia. Methods We adapted the mice form-deprivation myopia model by covering the right eye and left the left eye open for control, measured the ocular structure with anterior segment optical coherence tomography, evaluated changes in the morphology and distribution of retinal glial cells by fluorescence staining and western blotting; we also searched the online GEO databases to obtain relative gene lists and confirmed them in the form-deprivation myopia mouse retina at mRNA and protein level. Results Compared with the open eye, the ocular axial length (3.54 ± 0.006 mm v.s. 3.48 ± 0.004 mm, p = 0.027) and vitreous chamber depth (3.07 ± 0.005 mm v.s. 2.98 ± 0.006 mm, p = 0.007) in the covered eye became longer. Both glial fibrillary acidic protein and excitatory amino acid transporters 4 elevated. There were 12 common pathways in human myopia and anoxic astrocytes. The key proteins were also highly relevant to atropine target proteins. In mice, two common pathways were found in myopia and anoxic Müller cells. Seven main genes and four key proteins were significantly changed in the mice form-deprivation myopia retinas. Conclusion Retinal astrocytes and Müller cells were activated in myopia. They may response to stimuli and secretory acting factors, and might be a valid target for atropine. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02643-0.
Collapse
Affiliation(s)
- Xuhong Zhang
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Xin Yu
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Yingying Wen
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Le Jin
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Liyue Zhang
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Hong Zhu
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Dongyan Zhang
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China ,Department of Ophthalmology, Shaoxing Central Hospital, Shaoxing, 312030 Zhejiang China
| | - Chen Xie
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Dongyu Guo
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Jianping Tong
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Ye Shen
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| |
Collapse
|
7
|
Chen B, Chen W, Han B, Tong C, Ma J. Effect of TGF- β2 on the Mechanical Properties of Posterior Scleral Fibroblasts in Experimental Myopia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6193876. [PMID: 36132076 PMCID: PMC9484883 DOI: 10.1155/2022/6193876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/04/2022]
Abstract
Objective The effects of TGF-β2 on mechanical properties of sclerotic desmocytes isolated from healthy and myopic guinea pigs were investigated in order to further understand the pathogenesis of myopia. To study the effect of TGF-β2 on the mechanical properties of posterior scleral fibroblasts in experimental myopia. Methods A lens-induced myopia (LIM) animal model was developed in 12 guinea pigs, with the opposite eye serving as a self-control (SC). Five untreated guinea pigs served as normal controls. Lenses were removed 30 days after model onset. Primary scleral fibroblasts were isolated and passaged twice and then treated with vehicle control or 1, 10, or 100 ng/mL TGF-β2. After 24 h, micropipette aspiration was used to investigate the viscoelastic properties of the cells. Results Scleral fibroblasts from LIM exhibited significantly higher equilibrium moduli and apparent viscosities relative to SC without TGF-β2 treatment. Treatment of LIM or SC scleral fibroblasts with 1 or 10 ng/mL TGF-β2 led to significantly different (p < 0.05) equilibrium moduli and apparent viscosities compared with vehicle control, whereas no significant differences were observed upon treatment with 100 ng/mL TGF-β2. LIM cells treated with 1 and 10 ng/mL TGF-β2 exhibited lower equilibrium moduli and apparent viscosities compared with similarly treated SC cells, but LIM cells and SC cells treated with 100 ng/mL TGF-β2 had similar mechanical properties. Conclusions The addition of 1 and 10 ng/mL TGF-β2 can lower the equilibrium modulus and apparent viscosity of scleral fibroblasts in the normal eye.
Collapse
Affiliation(s)
- Boyu Chen
- Department of Ophthalmology, Tianjin Aier Eye Hospital, Tianjin 300190, China
- Ophthalmology Department of 980 Hospital of the People's Liberation Army Joint Logistic Support Force (Bethune International Peace Hospital), Beijing 100005, China
| | - Weyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030002, China
| | - Baoyan Han
- Department of Ophthalmology, Langfang Aier Eye Hospital, Langfang 065099, China
| | - Chunmei Tong
- Ophthalmology Department of 980 Hospital of the People's Liberation Army Joint Logistic Support Force (Bethune International Peace Hospital), Beijing 100005, China
| | - Jingxue Ma
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang 050004, China
| |
Collapse
|
8
|
Strickland RG, Garner MA, Gross AK, Girkin CA. Remodeling of the Lamina Cribrosa: Mechanisms and Potential Therapeutic Approaches for Glaucoma. Int J Mol Sci 2022; 23:8068. [PMID: 35897642 PMCID: PMC9329908 DOI: 10.3390/ijms23158068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Glaucomatous optic neuropathy is the leading cause of irreversible blindness in the world. The chronic disease is characterized by optic nerve degeneration and vision field loss. The reduction of intraocular pressure remains the only proven glaucoma treatment, but it does not prevent further neurodegeneration. There are three major classes of cells in the human optic nerve head (ONH): lamina cribrosa (LC) cells, glial cells, and scleral fibroblasts. These cells provide support for the LC which is essential to maintain healthy retinal ganglion cell (RGC) axons. All these cells demonstrate responses to glaucomatous conditions through extracellular matrix remodeling. Therefore, investigations into alternative therapies that alter the characteristic remodeling response of the ONH to enhance the survival of RGC axons are prevalent. Understanding major remodeling pathways in the ONH may be key to developing targeted therapies that reduce deleterious remodeling.
Collapse
Affiliation(s)
- Ryan G. Strickland
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Alecia K. Gross
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Christopher A. Girkin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
González-Iglesias E, López-Vázquez A, Noval S, Nieves-Moreno M, Granados-Fernández M, Arruti N, Rosa-Pérez I, Pacio-Míguez M, Montaño VEF, Rodríguez-Solana P, del Pozo A, Santos-Simarro F, Vallespín E. Next-Generation Sequencing Screening of 43 Families with Non-Syndromic Early-Onset High Myopia: A Clinical and Genetic Study. Int J Mol Sci 2022; 23:4233. [PMID: 35457050 PMCID: PMC9031962 DOI: 10.3390/ijms23084233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Early-onset high myopia (EoHM) is a disease that causes a spherical refraction error of ≥-6 diopters before 10 years of age, with potential multiple ocular complications. In this article, we report a clinical and genetic study of 43 families with EoHM recruited in our center. A complete ophthalmological evaluation was performed, and a sample of peripheral blood was obtained from proband and family members. DNA was analyzed using a customized next-generation sequencing panel that included 419 genes related to ophthalmological disorders with a suspected genetic cause, and genes related to EoHM pathogenesis. We detected pathogenic and likely pathogenic variants in 23.9% of the families and detected variants of unknown significance in 76.1%. Of these, 5.7% were found in genes related to non-syndromic EoHM, 48.6% in genes associated with inherited retinal dystrophies that can include a syndromic phenotype, and 45.7% in genes that are not directly related to EoHM or retinal dystrophy. We found no candidate genes in 23% of the patients, which suggests that further studies are needed. We propose a systematic genetic analysis for patients with EoHM because it helps with follow-up, prognosis and genetic counseling.
Collapse
Affiliation(s)
- Eva González-Iglesias
- Section of Molecular Ophthalmology, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (E.G.-I.); (V.E.F.M.); (P.R.-S.)
| | - Ana López-Vázquez
- Department of Ophthalmology, La Paz University Hospital, 28046 Madrid, Spain; (A.L.-V.); (S.N.); (M.N.-M.); (M.G.-F.); (N.A.); (I.R.-P.)
| | - Susana Noval
- Department of Ophthalmology, La Paz University Hospital, 28046 Madrid, Spain; (A.L.-V.); (S.N.); (M.N.-M.); (M.G.-F.); (N.A.); (I.R.-P.)
| | - María Nieves-Moreno
- Department of Ophthalmology, La Paz University Hospital, 28046 Madrid, Spain; (A.L.-V.); (S.N.); (M.N.-M.); (M.G.-F.); (N.A.); (I.R.-P.)
| | - María Granados-Fernández
- Department of Ophthalmology, La Paz University Hospital, 28046 Madrid, Spain; (A.L.-V.); (S.N.); (M.N.-M.); (M.G.-F.); (N.A.); (I.R.-P.)
| | - Natalia Arruti
- Department of Ophthalmology, La Paz University Hospital, 28046 Madrid, Spain; (A.L.-V.); (S.N.); (M.N.-M.); (M.G.-F.); (N.A.); (I.R.-P.)
| | - Irene Rosa-Pérez
- Department of Ophthalmology, La Paz University Hospital, 28046 Madrid, Spain; (A.L.-V.); (S.N.); (M.N.-M.); (M.G.-F.); (N.A.); (I.R.-P.)
| | - Marta Pacio-Míguez
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (M.P.-M.); (A.d.P.); (F.S.-S.)
- Section of Neurodevelopmental Disorders, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain
| | - Victoria E. F. Montaño
- Section of Molecular Ophthalmology, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (E.G.-I.); (V.E.F.M.); (P.R.-S.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (M.P.-M.); (A.d.P.); (F.S.-S.)
| | - Patricia Rodríguez-Solana
- Section of Molecular Ophthalmology, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (E.G.-I.); (V.E.F.M.); (P.R.-S.)
| | - Angela del Pozo
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (M.P.-M.); (A.d.P.); (F.S.-S.)
- Section of Clinical Bioinformatics, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain
| | - Fernando Santos-Simarro
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (M.P.-M.); (A.d.P.); (F.S.-S.)
- Section of Clinical Genetics, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain
| | - Elena Vallespín
- Section of Molecular Ophthalmology, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, La Paz University Hospital, 28046 Madrid, Spain; (E.G.-I.); (V.E.F.M.); (P.R.-S.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain; (M.P.-M.); (A.d.P.); (F.S.-S.)
| |
Collapse
|
10
|
Zoio P, Oliva A. Skin-on-a-Chip Technology: Microengineering Physiologically Relevant In Vitro Skin Models. Pharmaceutics 2022; 14:pharmaceutics14030682. [PMID: 35336056 PMCID: PMC8955316 DOI: 10.3390/pharmaceutics14030682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
The increased demand for physiologically relevant in vitro human skin models for testing pharmaceutical drugs has led to significant advancements in skin engineering. One of the most promising approaches is the use of in vitro microfluidic systems to generate advanced skin models, commonly known as skin-on-a-chip (SoC) devices. These devices allow the simulation of key mechanical, functional and structural features of the human skin, better mimicking the native microenvironment. Importantly, contrary to conventional cell culture techniques, SoC devices can perfuse the skin tissue, either by the inclusion of perfusable lumens or by the use of microfluidic channels acting as engineered vasculature. Moreover, integrating sensors on the SoC device allows real-time, non-destructive monitoring of skin function and the effect of topically and systemically applied drugs. In this Review, the major challenges and key prerequisites for the creation of physiologically relevant SoC devices for drug testing are considered. Technical (e.g., SoC fabrication and sensor integration) and biological (e.g., cell sourcing and scaffold materials) aspects are discussed. Recent advancements in SoC devices are here presented, and their main achievements and drawbacks are compared and discussed. Finally, this review highlights the current challenges that need to be overcome for the clinical translation of SoC devices.
Collapse
Affiliation(s)
- Patrícia Zoio
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
| | - Abel Oliva
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
11
|
Song M, Zhang Y, Sun Y, Kong M, Han S, Wang C, Wang Y, Xu D, Tu Q, Zhu K, Sun C, Li G, Zhao H, Ma X. Inhibition of RhoA/MRTF-A signaling alleviates nucleus pulposus fibrosis induced by mechanical stress overload. Connect Tissue Res 2022; 63:53-68. [PMID: 34420462 DOI: 10.1080/03008207.2021.1952193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM : Intervertebral disc degeneration (IDD) is the leading cause of lower back pain, and clinically useful drugs for IDD are unavailable. Mechanical stress overload-induced fibrosis plays a critical role in IDD. RhoA/MRTF-A signaling is known to regulate tissue fibrosis; however, the effect of RhoA/MRTF-A on the development of IDD is unclear. MATERIALS AND METHODS : The expression of aggrecan, collagen I, collagen II, MMP-12, CTGF, and MRTF-A in nucleus pulposus (NP) samples from IDD patients and controls was detected by immunohistochemical staining. Primary nucleus pulposus cells (NPCs) were isolated and cultured to establish an overload strain model treated with or without CCG-1423. The protein levels of RhoA, ROCK2, MRTF-A, CTGF, and MMP-12 as well as fibrosis-associated proteins were detected by western blotting and immunofluorescence. RESULTS : Collagen I, MMP-12, and CTGF were significantly upregulated, and aggrecan and collagen II were significantly downregulated in the IDD samples. The cellular localization of MRTF-A was associated with intervertebral disc (IVD) degeneration. Overloaded strain enhanced the nuclear translocation of MRTF-A and changed the NPC morphology from spindle-shaped to long strips. Additional experiments showed that RhoA, ROCK2, MRTF-A, SRF, MMP-12, and CTGF were upregulated; however, aggrecan and collagen II were downregulated in NPCs under overload strain. CCG-1423, a RhoA/MRTF-A pathway inhibitor, reversed strain-induced fibrosis. CONCLUSION : Mechanical stress activates RhoA/MRTF-A signaling to promote extracellular matrix (ECM) degeneration in the NP, which is associated with the development of IDD. Our findings suggest that the RhoA/MRTF-A inhibitor CCG-1423 can alleviate NPC degeneration caused by overload stress and has potential as a therapeutic agent for IDD.
Collapse
Affiliation(s)
- Mengxiong Song
- Department of Orthopaedic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Yiran Zhang
- Shandong Institute of Orthopaedics and Traumatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Sun
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Kong
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuo Han
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Wang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Derong Xu
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qihao Tu
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kai Zhu
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Sun
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanghui Li
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Zhao
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuexiao Ma
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Lei Y, Bortolin L, Benesch-Lee F, Oguntolu T, Dong Z, Bondah N, Billiar K. Hyaluronic acid regulates heart valve interstitial cell contraction in fibrin-based scaffolds. Acta Biomater 2021; 136:124-136. [PMID: 34592445 DOI: 10.1016/j.actbio.2021.09.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
Heart valve disease is associated with high morbidity and mortality worldwide resulting in hundreds of thousands of heart valve replacements each year. Tissue engineered heart valves (TEHVs) have the potential to overcome the major limitations of traditional replacement valves; however, leaflet retraction has led to the failure of TEHVs in preclinical studies. As native unmodified hyaluronic acid (HA) is known to promote healthy tissue development in native heart valves, we hypothesize that adding unmodified HA to fibrin-based scaffolds common to tissue engineering will reduce retraction by increasing cell-scaffold interactions and density of the scaffolds. Using a custom high-throughput culture system, we found that incorporating HA into millimeter-scale fibrin-based cell-populated scaffolds increases initial fiber diameter and cell-scaffold interactions, causing a cascade of mechanical, morphological, and cellular responses. These changes lead to higher levels of scaffold compaction and stiffness, increased cell alignment, and less bundling of fibrin fibers by the cells during culture. These effects significantly reduce scaffold retraction and total contractile force each by around 25%. These findings increase our understanding of how HA alters tissue remodeling and could inform the design of the next generation of tissue engineered heart valves to help reduce retraction. STATEMENT OF SIGNIFICANCE: Tissue engineered heart valves (TEHVs) have the potential to overcome the major limitations of traditional replacement valves; however, leaflet retraction induced by excessive myofibroblast activation has led to failure in preclinical studies. Developing valves are rich in hyaluronic acid (HA), which helps maintain a physiological environment for tissue remodeling without retraction. We hypothesized that adding unmodified HA to TEHVs would reduce retraction by increasing cell-scaffold interactions and density of the scaffolds. Using a high-throughput tissue culture platform, we demonstrate that HA incorporation into a fibrin-based scaffold can significantly reduce tissue retraction and total contractile force by increasing fiber bundling and altering cell-mediated matrix remodeling, therefore increasing gel density and stiffness. These finding increase our knowledge of native HA's effects within the extracellular matrix, and provide a new tool for TEHV design.
Collapse
Affiliation(s)
- Ying Lei
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Luciano Bortolin
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Frank Benesch-Lee
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Teniola Oguntolu
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Zhijie Dong
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Narda Bondah
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Kristen Billiar
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Wang P, Chen S, Liu Y, Lin F, Song Y, Li T, Aung T, Zhang X. Lowering Intraocular Pressure: A Potential Approach for Controlling High Myopia Progression. Invest Ophthalmol Vis Sci 2021; 62:17. [PMID: 34787640 PMCID: PMC8606873 DOI: 10.1167/iovs.62.14.17] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
High myopia is among the most common causes of vision impairment, and it is mainly characterized by abnormal elongation of the axial length, leading to pathologic changes in the ocular structures. Owing to the close relationship between high myopia and glaucoma, the association between intraocular pressure (IOP) and high myopia progression has garnered attention. However, whether lowering IOP can retard the progression of high myopia is unclear. On reviewing previous studies, we suggest that lowering IOP plays a role in progressive axial length elongation in high myopia, particularly in pathologic myopia, wherein the sclera is more remodeled. Based on the responses of the ocular layers, we further proposed the potential mechanisms. For the sclera, lowering the IOP could inhibit the activation of scleral fibroblasts and then reduce scleral remodeling, and a decrease in the scleral distending force would retard the ocular expansion like a balloon. For the choroid, lowering IOP results in an increase in choroidal blood perfusion, thereby reducing scleral hypoxia and slowing down scleral remodeling. The final effect of these pathways is slowing axial elongation and the development of scleral staphyloma. Further animal and clinical studies regarding high myopia with varied degree of IOP and the changes of choroid and sclera during IOP fluctuation in high myopia are needed to verify the role of IOP in the pathogenesis and progression of high myopia. It is hoped that this may lead to the development of a prospective treatment option to prevent and control high myopia progression.
Collapse
Affiliation(s)
- Peiyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shida Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yaoming Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fengbin Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yunhe Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tuozhang Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tin Aung
- Singapore National Eye Center, National University of Singapore, Singapore
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | |
Collapse
|
14
|
Hu D, Jiang J, Ding B, Xue K, Sun X, Qian S. Mechanical Strain Regulates Myofibroblast Differentiation of Human Scleral Fibroblasts by YAP. Front Physiol 2021; 12:712509. [PMID: 34658907 PMCID: PMC8514697 DOI: 10.3389/fphys.2021.712509] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Scleral extracellular matrix (ECM) remodeling is thought to play a critical role in the pathogenesis of glaucoma. Mechanical strain induced by elevated intraocular pressure can promote myofibroblast differentiation of fibroblasts and result in scleral ECM remodeling; however, the underlying mechanism remains poorly understood. Yes-associated protein (YAP) is a mechanosensory protein and the key downstream transcriptional effector of the Hippo signaling pathway. Here, we investigated the role of YAP in mechanical strain-induced myofibroblast transformation during glaucoma scleral ECM remodeling. Integrative bioinformatics analyses were performed to identify the key pathways for the ECM remodeling of the sclera in glaucoma. Sprague–Dawley rats were used to establish a chronic ocular hypertension model, and the expression of collagen type I (COL1) and YAP in the sclera was analyzed by immunohistochemical analysis and Western blotting. Furthermore, human scleral fibroblasts (HSFs) were cultured and subjected to mechanical strain. In groups with or without the YAP siRNA or YAP inhibitor, cell proliferation, migration capacity, and the expression levels of YAP, COL1, and α-smooth muscle actin (α-SMA) were evaluated by Cell Counting Kit-8 assay, scratch assay, and Western blotting. The interactions between YAP and Smad3 were demonstrated by coimmunoprecipitation, and the expression levels of COL1 and α-SMA were evaluated in groups treated with or without the Smad3 inhibitor. We first revealed that the Hippo signaling pathway may be involved in mechanical strain-induced scleral ECM remodeling through bioinformatics analysis. Furthermore, the in vivo study showed upregulated YAP, COL1, and α-SMA expression in the hypertensive sclera of rats. In vitro, mechanical strain increased YAP and COL1 expression in HSFs and promoted myofibroblast differentiation. After YAP knockdown or inhibition with verteporfin, mechanical strain-induced fibrotic changes in HSFs were markedly suppressed. Additionally, YAP showed a protein interaction with Smad3, and the upregulation of a-SMA and COL1 in response to mechanical strain was also significantly downregulated following the inhibition of Smad3. In conclusion, mechanical strain activated scleral myofibroblast differentiation via YAP. The YAP pathway may play an important role in regulating scleral myofibroblast differentiation and ECM remodeling of the sclera in glaucoma.
Collapse
Affiliation(s)
- Di Hu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.,Department of Ophthalmology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Junhong Jiang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Baiyang Ding
- Spine Research Center of Wannan Medical College, Wuhu, China
| | - Kang Xue
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shaohong Qian
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
15
|
Leslie MN, Chou J, Young PM, Traini D, Bradbury P, Ong HX. How Do Mechanics Guide Fibroblast Activity? Complex Disruptions during Emphysema Shape Cellular Responses and Limit Research. Bioengineering (Basel) 2021; 8:110. [PMID: 34436113 PMCID: PMC8389228 DOI: 10.3390/bioengineering8080110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022] Open
Abstract
The emphysema death toll has steadily risen over recent decades, causing the disease to become the third most common cause of death worldwide in 2019. Emphysema is currently incurable and could be due to a genetic condition (Alpha-1 antitrypsin deficiency) or exposure to pollutants/irritants, such as cigarette smoke or poorly ventilated cooking fires. Despite the growing burden of emphysema, the mechanisms behind emphysematous pathogenesis and progression are not fully understood by the scientific literature. A key aspect of emphysematous progression is the destruction of the lung parenchyma extracellular matrix (ECM), causing a drastic shift in the mechanical properties of the lung (known as mechanobiology). The mechanical properties of the lung such as the stiffness of the parenchyma (measured as the elastic modulus) and the stretch forces required for inhalation and exhalation are both reduced in emphysema. Fibroblasts function to maintain the structural and mechanical integrity of the lung parenchyma, yet, in the context of emphysema, these fibroblasts appear incapable of repairing the ECM, allowing emphysema to progress. This relationship between the disturbances in the mechanical cues experienced by an emphysematous lung and fibroblast behaviour is constantly overlooked and consequently understudied, thus warranting further research. Interestingly, the failure of current research models to integrate the altered mechanical environment of an emphysematous lung may be limiting our understanding of emphysematous pathogenesis and progression, potentially disrupting the development of novel treatments. This review will focus on the significance of emphysematous lung mechanobiology to fibroblast activity and current research limitations by examining: (1) the impact of mechanical cues on fibroblast activity and the cell cycle, (2) the potential role of mechanical cues in the diminished activity of emphysematous fibroblasts and, finally, (3) the limitations of current emphysematous lung research models and treatments as a result of the overlooked emphysematous mechanical environment.
Collapse
Affiliation(s)
- Mathew N. Leslie
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Department of Biomedical Sciences, Faculty of Medicine, Healthy and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Joshua Chou
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia;
| | - Paul M. Young
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Department of Marketing, Macquarie Business School, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Department of Biomedical Sciences, Faculty of Medicine, Healthy and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Peta Bradbury
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia;
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168—Laboratoire Physico-Chimie Curie, Institut Curie, 75248 Paris, France
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Department of Biomedical Sciences, Faculty of Medicine, Healthy and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
16
|
Gögele C, Hoffmann C, Konrad J, Merkel R, Schwarz S, Tohidnezhad M, Hoffmann B, Schulze-Tanzil GG. Cyclically stretched ACL fibroblasts emigrating from spheroids adapt their cytoskeleton and ligament-related expression profile. Cell Tissue Res 2021; 384:675-690. [PMID: 33835257 PMCID: PMC8211585 DOI: 10.1007/s00441-021-03416-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/13/2021] [Indexed: 01/09/2023]
Abstract
Mechanical stress of ligaments varies; hence, ligament fibroblasts must adapt their expression profile to novel mechanomilieus to ensure tissue resilience. Activation of the mechanoreceptors leads to a specific signal transduction, the so-called mechanotransduction. However, with regard to their natural three-dimensional (3D) microenvironment cell reaction to mechanical stimuli during emigrating from a 3D spheroid culture is still unclear. This study aims to provide a deeper understanding of the reaction profile of anterior cruciate ligament (ACL)-derived fibroblasts exposed to cyclic uniaxial strain in two-dimensional (2D) monolayer culture and during emigration from 3D spheroids with respect to cell survival, cell and cytoskeletal orientation, distribution, and expression profile. Monolayers and spheroids were cultured in crosslinked polydimethyl siloxane (PDMS) elastomeric chambers and uniaxially stretched (14% at 0.3 Hz) for 48 h. Cell vitality, their distribution, nuclear shape, stress fiber orientation, focal adhesions, proliferation, expression of ECM components such as sulfated glycosaminoglycans, collagen type I, decorin, tenascin C and cell-cell communication-related gap junctional connexin (CXN) 43, tendon-related markers Mohawk and tenomodulin (myodulin) were analyzed. In contrast to unstretched cells, stretched fibroblasts showed elongation of stress fibers, cell and cytoskeletal alignment perpendicular to strain direction, less rounded cell nuclei, increased numbers of focal adhesions, proliferation, amplified CXN43, and main ECM component expression in both cultures. The applied cyclic stretch protocol evoked an anabolic response and enhanced tendon-related marker expression in ACL-derived fibroblasts emigrating from 3D spheroids and seems also promising to support in future tissue formation in ACL scaffolds seeded in vitro with spheroids.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof.-Ernst-Nathan Str. 1, 90419 Nuremberg and Salzburg, Nuremberg, Germany
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Christina Hoffmann
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jens Konrad
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Silke Schwarz
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof.-Ernst-Nathan Str. 1, 90419 Nuremberg and Salzburg, Nuremberg, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing: IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gundula Gesine Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Prof.-Ernst-Nathan Str. 1, 90419 Nuremberg and Salzburg, Nuremberg, Germany
| |
Collapse
|
17
|
Qiu C, Yao J, Zhang X, Zhang R, Sun X, Qian S. The Dynamic Scleral Extracellular Matrix Alterations in Chronic Ocular Hypertension Model of Rats. Front Physiol 2020; 11:682. [PMID: 32719611 PMCID: PMC7349004 DOI: 10.3389/fphys.2020.00682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/26/2020] [Indexed: 11/23/2022] Open
Abstract
Intraocular pressure (IOP) generates stress and strains in the laminar cribrosa and sclera, which may affect the development and progression of glaucoma. Scleral stiffness and material components have changed under elevated IOP. However, the detailed changes of the components of the hypertensive sclera are not well understood. In this study, we aimed to investigate the changes of the main components in the scleral extracellular matrix (ECM), and matrix metalloproteinase 2 (MMP2) and their relationship with time under chronic elevated IOP in Sprague–Dawley rats. An ocular hypertension model was established in the right eyes by anterior chamber injection with 0.3% carbomer solution. The left eye was used as the contralateral control. Immunofluorescent imaging of the tissue frozen sections, Western blot analysis, and quantitative PCR (qPCR) were performed to detect the expressions of type I collagen (COL1), elastin, and MMP2 in the sclera. The ocular hypertension model was successfully established. As compared to the left eyes, the immunofluorescence imaging, Western blot analysis, and qPCR showed that COL1, elastin, and MMP2 were significantly increased in the right eyes at 1 week (all P < 0.05). At 2 weeks, COL1 in the right eyes tended to be lower than that in the left eyes, while elastin and MMP2 were still higher (all P < 0.05) in the right eyes. When the IOP was elevated for 4 weeks, both COL1 and MMP2 were lower than those in the left eyes (all P < 0.05), while elastin between the two eyes was similar (P > 0.05). Under this 4-week hypertensive state, COL1 and elastin were initially elevated at 1 week, and then obviously reduced from 2 to 4 weeks. Consistently, MMP2 was gradually increased, with a peak at 2 weeks, and then decreased at 4 weeks. In conclusion, the chronic elevated IOP induced dynamic scleral ECM alterations in rats in a pressure- and time-dependent manner. MMP2 may play an important role in the balance between ECM synthesis and degradation and could potentially be a novel target for glaucoma intervention.
Collapse
Affiliation(s)
- Chen Qiu
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jing Yao
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xi Zhang
- Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Rong Zhang
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Shaohong Qian
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose, Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
18
|
Lee EJ, Han JC, Park DY, Kee C. Long-term morphologic fundus and optic nerve head pattern of progressive myopia in congenital glaucoma distinguished by age at first surgery. Sci Rep 2020; 10:10041. [PMID: 32572115 PMCID: PMC7308308 DOI: 10.1038/s41598-020-67051-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 04/09/2020] [Indexed: 11/09/2022] Open
Abstract
The purpose of this study was to investigate the preservation of round optic nerve head (ONH) shape in myopic eyes of surgically treated congenital glaucoma patients, with regard to factors associated with intraocular pressure (IOP) elevation-induced peripapillary scleral (PPS) deformation. Using optical coherence tomography (OCT) on the ONH and macula, we identified myopic eyes with round ONH and internally oblique border tissue and those with non-round ONH. We investigated differences in clinical factors between the two groups. We included 51 eyes of 34 patients. Age at first surgery (2.8 vs. 15.2 months, P < 0.001) was significantly different between the two groups. Axial length was also significantly longer (P = 0.004) in the non-round group, but multiple logistic regression analysis revealed age as the only significant factor (P < 0.05) in ONH roundness. Interestingly, the round ONH group also had non-curved fundus morphology and a thick choroid, while the non-round ONH group showed diverse degrees of disc tilt and posterior pole curvature, and a thin choroid. In conclusion, in eyes with congenital glaucoma, age at first surgery, particularly when older than 6 months, was associated with round ONH and emmetropia-like fundus despite high myopia. The findings may indicate two different changes in the posterior sclera and the neural canal in response to the increased IOP.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
The effect of nutraceuticals on multiple signaling pathways in cardiac fibrosis injury and repair. Heart Fail Rev 2020; 27:321-336. [PMID: 32495263 DOI: 10.1007/s10741-020-09980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cardiac fibrosis is one of the most common pathological conditions caused by different heart diseases, including myocardial infarction and diabetic cardiomyopathy. Cardiovascular disease is one of the major causes of mortality worldwide. Cardiac fibrosis is caused by different processes, including inflammatory reactions and oxidative stress. The process of fibrosis begins by changing the balance between production and destruction of extracellular matrix components and stimulating the proliferation and differentiation of cardiac fibroblasts. Many studies have focused on finding drugs with less adverse effects for the treatment of cardiovascular disease. Some studies show that nutraceuticals are effective in preventing and treating diseases, including cardiovascular disease, and that they can reduce the risk. However, big clinical studies to prove the therapeutic properties of all these substances and their adverse effects are lacking so far. Therefore, in this review, we tried to summarize the knowledge on pathways and mechanisms of several nutraceuticals which have shown their usefulness in the prevention of cardiac fibrosis.
Collapse
|
20
|
Xie Y, Ouyang X, Wang G. Mechanical strain affects collagen metabolism-related gene expression in scleral fibroblasts. Biomed Pharmacother 2020; 126:110095. [PMID: 32217440 DOI: 10.1016/j.biopha.2020.110095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
We previously demonstrated that collagen metabolism affects scleral mechanical properties and scleral remodeling. Scleral remodeling changes the mechanical strain on sclera and scleral fibroblasts. We postulated that mechanical strain changes affect collagen metabolism in scleral fibroblasts. To understand the differences in collagen metabolism in scleral fibroblasts related to mechanical strain changes, scleral fibroblasts were isolated and cultured under different mechanical strains using the FX-4000 system or were treated with the TGF-β1 and TGFBR1 inhibitor LY364947. The collagen metabolism-related gene expression levels were detected. The results showed that the appropriate (lower) mechanical strain improved collagen synthesis and reduced collagen decomposition. In contrast, higher mechanical strain reduced collagen synthesis and enhanced collagen decomposition, especially a sustained higher strain. Furthermore, the effect of a transitory higher strain was recoverable, and collagen metabolism in scleral fibroblasts was regulated by TGF-β1. These results suggested that mechanical strain mediates TGF-β1 expression to regulate collagen metabolism in scleral fibroblasts, thereby affect scleral tissue remodeling.
Collapse
Affiliation(s)
- Yongfang Xie
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Xinli Ouyang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China
| | - Guohui Wang
- Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
21
|
Zwart SR, Laurie SS, Chen JJ, Macias BR, Lee SMC, Stenger M, Grantham B, Carey K, Young M, Smith SM. Association of Genetics and B Vitamin Status With the Magnitude of Optic Disc Edema During 30-Day Strict Head-Down Tilt Bed Rest. JAMA Ophthalmol 2019; 137:1195-1200. [PMID: 31415055 DOI: 10.1001/jamaophthalmol.2019.3124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Optic disc edema among astronauts after long-duration spaceflight is associated with 1-carbon pathway single-nucleotide polymorphisms and B vitamin status. A recent strict 6° head-down tilt bed rest (HDTBR) study documented development of optic disc edema and increased total retinal thickness in participants exposed to carbon dioxide, 0.5%, for 30 days, but genetic risk factors have not been explored in the cohort. Objective To examine whether peripapillary retinal thickness measures obtained from optical coherence tomography images during HDTBR and carbon dioxide, 0.5%, exposure are associated with B vitamin status and single-nucleotide polymorphisms involved in folate-dependent and vitamin B12-dependent 1-carbon metabolism pathways. Design, Setting, and Participants This study was conducted with a cohort of healthy volunteers at the Institute of Aerospace Medicine at the German Aerospace Center in Cologne, Germany. Data collection occurred from October 2017 to November 2017. After a 14-day ambulatory phase without carbon dioxide, participants maintained strict HDTBR with carbon dioxide, 0.5%, for 30 days, followed by a 13-day ambulatory phase without carbon dioxide. Main Outcomes and Measures Blood samples were collected before HDTBR to assess vitamin levels and single-nucleotide polymorphism status. Optical coherence tomographic images were collected before HDTBR; at days 1, 15, and 30 of the resting period; and 6 and 13 days after the period ended. Total retinal thickness was measured from a radial-24 B-scan centered over the optic disc, and global retinal nerve fiber layer thickness was measured from a circle scan. The changes in total retinal thickness and retinal nerve fiber layer thickness were evaluated against the number of risk alleles (defined as 5-methyltetrahydrofolate-homocysteine methyltransferase reductase [MTRR] 66 G and serine hydroxymethyltransferase 1 [SHMT1] 1420C alleles), along with folate, vitamin B6 (pyridoxine), and vitamin B12 (cobalamin) status. Results Eleven heathy volunteers (6 men and 5 women) had a mean (SD) age of 33.4 (8.0) years and a mean (SD) body mass index of 23.4 (2.2). After statistical adjustment for B vitamin status, total retinal thickness at the end of HDTBR in participants with 3 or 4 risk alleles was 40 um (SE, 19 μm) greater than in participants with 0 to 2 risk alleles. In addition, the baseline retinal nerve fiber layer thickness was 14 um (SE, 2 μm) greater in those with 3 or 4 risk alleles compared with those with 0 to 2 risk alleles. Conclusions and Relevance The magnitude of optic disc edema in individuals experiencing HDTBR and exposed to a chronic headward fluid shift in a mild hypercapnic environment was higher in participants with more MTRR 66 G and SHMT1 1420C alleles, even when this finding was statistically adjusted for B vitamin status. These findings may help explain the variability in magnitude of optic disc edema observed during bed rest and spaceflight and thereby improve efforts to counteract this phenomenon.
Collapse
Affiliation(s)
| | | | - John J Chen
- Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Michael Stenger
- Human Health and Performance Directorate, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas
| | | | | | - Millennia Young
- Human Health and Performance Directorate, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas
| | - Scott M Smith
- Human Health and Performance Directorate, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas
| |
Collapse
|
22
|
Fazio MA, Girard MJA, Lee W, Morris JS, Burgoyne CF, Downs JC. The Relationship Between Scleral Strain Change and Differential Cumulative Intraocular Pressure Exposure in the Nonhuman Primate Chronic Ocular Hypertension Model. Invest Ophthalmol Vis Sci 2019; 60:4141-4150. [PMID: 31598625 PMCID: PMC6785842 DOI: 10.1167/iovs.19-27060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/17/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose To determine the relationship between peripapillary scleral strain change and cumulative differential IOP exposure in nonhuman primates (NHPs) with unilateral chronic ocular hypertension. Methods Posterior scleral shells from 6 bilaterally normal and 10 unilateral chronic ocular hypertension NHPs were pressurized from 5 to 45 mm Hg, and the resulting full-field, three-dimensional, scleral surface deformations were acquired using laser speckle interferometry. Scleral tensile strain (local tissue deformation) was calculated by analytical differentiation of the displacement field; zero strain was assumed at 5 mm Hg. Maximum principal strain was used to represent the scleral strain, and strains were averaged over a 15°-wide (∼3.6-mm) circumpapillary region adjacent to the ONH. The relative difference in mean strain was calculated between fellow eyes and compared with the differential cumulative IOP exposure within NHPs during the study period. The relationship between the relative difference in scleral strain and the differential cumulative IOP exposure in fellow eyes was assessed using an F test and quadratic regression model. Results Relative differential scleral tensile strain was significantly associated with differential cumulative IOP exposure in contralateral eyes in the chronic ocular hypertension NHPs, with the bilaterally normal NHPs showing no significant strain difference between fellow eyes. The sclera in the chronic ocular hypertension eyes was more compliant than in their fellow eyes at low levels of differential cumulative IOP exposure, but stiffer at larger differential IOPs (P < 0.0001). Conclusions These cross-sectional findings suggest that longitudinal IOP-induced changes in scleral mechanical behavior are dependent on the magnitude of differential cumulative IOP exposure.
Collapse
Affiliation(s)
- Massimo A. Fazio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Michael J. A. Girard
- In Vivo Biomechanics Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Wonyul Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Jeffrey S. Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Claude F. Burgoyne
- Optic Nerve Head Biomechanics Laboratory, Devers Eye Institute, Portland, Oregon, United States
| | - J. Crawford Downs
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
23
|
Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA. Scleral structure and biomechanics. Prog Retin Eye Res 2019; 74:100773. [PMID: 31412277 DOI: 10.1016/j.preteyeres.2019.100773] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Abstract
As the eye's main load-bearing connective tissue, the sclera is centrally important to vision. In addition to cooperatively maintaining refractive status with the cornea, the sclera must also provide stable mechanical support to vulnerable internal ocular structures such as the retina and optic nerve head. Moreover, it must achieve this under complex, dynamic loading conditions imposed by eye movements and fluid pressures. Recent years have seen significant advances in our knowledge of scleral biomechanics, its modulation with ageing and disease, and their relationship to the hierarchical structure of the collagen-rich scleral extracellular matrix (ECM) and its resident cells. This review focuses on notable recent structural and biomechanical studies, setting their findings in the context of the wider scleral literature. It reviews recent progress in the development of scattering and bioimaging methods to resolve scleral ECM structure at multiple scales. In vivo and ex vivo experimental methods to characterise scleral biomechanics are explored, along with computational techniques that combine structural and biomechanical data to simulate ocular behaviour and extract tissue material properties. Studies into alterations of scleral structure and biomechanics in myopia and glaucoma are presented, and their results reconciled with associated findings on changes in the ageing eye. Finally, new developments in scleral surgery and emerging minimally invasive therapies are highlighted that could offer new hope in the fight against escalating scleral-related vision disorder worldwide.
Collapse
Affiliation(s)
- Craig Boote
- Structural Biophysics Research Group, School of Optometry & Vision Sciences, Cardiff University, UK; Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Newcastle Research & Innovation Institute Singapore (NewRIIS), Singapore.
| | - Ian A Sigal
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Rafael Grytz
- Department of Ophthalmology & Visual Sciences, University of Alabama at Birmingham, USA
| | - Yi Hua
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Michael J A Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore Eye Research Institute (SERI), Singapore National Eye Centre, Singapore
| |
Collapse
|
24
|
Acute and chronic optic nerve head biomechanics and intraocular pressure changes in patients receiving multiple intravitreal injections of anti-VEGF. Graefes Arch Clin Exp Ophthalmol 2019; 257:2221-2231. [DOI: 10.1007/s00417-019-04354-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 01/24/2023] Open
|
25
|
Xie Y, Wang M, Cong Y, Cheng M, Wang S, Wang G. The pilocarpine-induced ciliary body contraction affects the elastic modulus and collagen of cornea and sclera in early development. Biomed Pharmacother 2018; 108:1816-1824. [DOI: 10.1016/j.biopha.2018.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 12/26/2022] Open
|
26
|
Han JC, Choi JH, Park DY, Lee EJ, Kee C. Deep Optic Nerve Head Morphology Is Associated With Pattern of Glaucomatous Visual Field Defect in Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2018; 59:3842-3851. [PMID: 30073358 DOI: 10.1167/iovs.18-24588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigated the relationship between visual field (VF) defect pattern and deep optic nerve head (ONH) morphology in open angle glaucoma (OAG) eyes using spectral-domain optical coherence tomography (SD-OCT). Methods Of 278 OAG eyes, 169 with and 55 without externally oblique border tissue (EOBT) were included in the final analysis. Enhance depth imaging SD-OCT was used to measure the deep ONH parameters, such as EOBT length, ONH tilt angle, and optic canal (OC) obliqueness. The extents and locations of the maximum deep ONH parameters were explored according to VF pattern in OAG eyes. Results OAG eyes with EOBT showed longer axial length (AL; 25.6 vs. 24.4 mm; P < 0.001) and greater superior VF defects (67.5% vs. 49.1%; P = 0.02) compared to OAG eyes without EOBT. Multivariate logistic regression analysis revealed that relatively inferior location of maximum deep ONH parameters was associated with superior hemifield defects dominant in OAG (P < 0.001 in all parameters). In addition, the locations of maximum deep ONH parameters were consistent with dominant VF defect locations in OAG eyes with AL < 24.5 mm. The presence of paracentral scotoma in OAG was associated with worse mean deviation (MD) and relatively inferior location of deep ONH parameters. Conclusions The locations of maximum deep ONH parameters were associated with the location of dominant VF defects and presence of paracentral scotoma in OAG eyes.
Collapse
Affiliation(s)
- Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hwan Choi
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Yuan Y, Li M, To CH, Lam TC, Wang P, Yu Y, Chen Q, Hu X, Ke B. The Role of the RhoA/ROCK Signaling Pathway in Mechanical Strain-Induced Scleral Myofibroblast Differentiation. ACTA ACUST UNITED AC 2018; 59:3619-3629. [PMID: 30029249 DOI: 10.1167/iovs.17-23580] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ying Yuan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Disease, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Ho To
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong Special Administrative Region of China, China
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong Special Administrative Region of China, China
| | - Peng Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Disease, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yunjie Yu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Disease, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Qingzhong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bilian Ke
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Disease, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
28
|
Esfandiari H, Shazly T, Shah P, Hassanpour K, Torkian P, Yaseri M, Loewen NA. Impact of same-session trabectome surgery on Ahmed glaucoma valve outcomes. Graefes Arch Clin Exp Ophthalmol 2018; 256:1509-1515. [PMID: 29602960 DOI: 10.1007/s00417-018-3967-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/01/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To evaluate the efficacy and survival rates of same session ab interno trabeculectomy with the trabectome and Ahmed glaucoma valve implant (AT) in comparison to the Ahmed glaucoma valve alone (A). METHOD A total of 107 eyes undergoing primary glaucoma surgery were enrolled in this retrospective comparative case series, including 48 eyes which underwent AT and 59 eyes which received A alone. Participants were identified using the procedural terminology codes, and their medical records were reviewed. The primary outcome measure was success defined as IOP > 5 mmHg, ≤ 21 mmHg and ≥ 20% reduction of IOP from baseline at two consecutive visits after 3 months, and no need for glaucoma reoperation. Secondary outcome measures were IOP, the number of glaucoma medications, incidence of a hypertensive phase, and best corrected visual acuity (BCVA). RESULTS The cumulative probability of success at 1 year was 70% in AT, and 65% in A (p = 0.85). IOP decreased significantly from 26.6 ± 10.1 mmHg at baseline to 14.7 ± 3.3 mmHg at the final follow-up in AT (p = 0.001). The corresponding numbers for A were 27.8 ± 10.2 and 16.7 ± 4.9, respectively (p = 0.001). The final IOP was significantly lower in AT (p = 0.022). The number of medications at baseline was comparable in both groups (2.6 ± 1.2 in AT and 2.5 ± 1.3 in A, p = 0.851). Corresponding number at 1 year visit was 1.2 ± 2 in AT and 2.8 ± 1.8 in A (p = 0.001). The incidence of a hypertensive phase was 18.7% in AT and 35.5% in A (p = 0.05). HP resolved in only 30% of eyes. The criteria for HP resolution were fulfilled in 9 eyes (30%). There was no difference in the rate of resolution of the hypertensive phase between AT and A (33.3 and 28.5%, respectively, p = 0.67). CONCLUSION Ahmed glaucoma valve implant with same session trabectome surgery significantly decreased the rate of the hypertensive phase and postoperative IOP as well as the number of glaucoma medications.
Collapse
Affiliation(s)
- Hamed Esfandiari
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, 203 Lothrop St, Pittsburgh, PA, 15213, USA.,Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tarek Shazly
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, 203 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Priyal Shah
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, 203 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Kiana Hassanpour
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, 203 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Pooya Torkian
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, 203 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nils A Loewen
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, 203 Lothrop St, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
29
|
Jia Y, Yue Y, Hu DN, Chen JL, Zhou JB. Human aqueous humor levels of transforming growth factor-β2: Association with matrix metalloproteinases/tissue inhibitors of matrix metalloproteinases. Biomed Rep 2017; 7:573-578. [PMID: 29188062 DOI: 10.3892/br.2017.1004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023] Open
Abstract
The present study aims to investigate the association of transforming growth factor-β2 (TGF-β2) and matrix metalloproteinases (MMPs), MMP-2 and MMP-3, and tissue inhibitors of matrix metalloproteinases (TIMPs), TIMP-1, TIMP-2 and TIMP-3 in the aqueous humor of patients with high myopia or cataracts. The levels of TGF-β2 and MMPs/TIMPs were measured with the Luminex xMAP Technology using commercially available Milliplex xMAP kits. The association between TGF-β2 and MMPs/TIMPs levels was analyzed using the Spearmans correlation test. The levels of TGF-β2 were identified to be positively correlated with the levels of TIMP-1 and TIMP-3 (TIMP-1: r=0.334; P=0.007; TIMP-3: r=0.309; P=0.012). The levels of MMP-2, MMP-3 and TIMP-2 did not significantly correlate with TGF-β2 levels (P>0.05). A positive correlation was identified between TGF-β2 and TIMPs in the aqueous humor of human eyes with elongated axial length. It appears that TGF-β2 stimulates the expression of TIMPs as a compensatory reaction to the development of high myopia.
Collapse
Affiliation(s)
- Yan Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China.,Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai Fudan University, School of Medicine, Shanghai 201102, P.R. China
| | - Yu Yue
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China
| | - Dan-Ning Hu
- Departments of Ophthalmology and Pathology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Ji-Li Chen
- Department of Ophthalmology, Shibei Hospital, Shanghai 200435, P.R. China
| | - Ji-Bo Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
30
|
Zhang P, Karani R, Turner RL, Dufresne C, Ferri S, Van Eyk JE, Semba RD. The proteome of normal human retrobulbar optic nerve and sclera. Proteomics 2017; 16:2592-2596. [PMID: 27538499 DOI: 10.1002/pmic.201600229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 08/15/2016] [Indexed: 01/29/2023]
Abstract
The optic nerve is a white matter tract that conveys visual information to the brain. The sclera comprises the white, protective outer layer of the eye. A characterization of the proteome of normal human retrobulbar optic nerve and sclera may facilitate studies of the eye. We conducted a proteomic analysis of optic nerve and sclera from five adults. Proteins were fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed using LC-MS/MS on an Orbitrap Elite mass spectrometer. We identified 2711 non-redundant proteins in retrobulbar optic nerve and 1945 non-redundant proteins in sclera. Optic nerve proteins included proteins expressed by oligodendrocytes (laminin, proteolipid protein, fibronectin), myelin proteins (myelin basic protein, myelin-associated glycoprotein), and paranodal structural proteins (ankyrin β, spectrin). Sclera included 18 collagen protein chains, small leucine-rich proteoglycans (decorin, biglycan, lumican, keratocan, prolargin, fibromodulin, mimecan), non-collagenous glycoproteins (fibronectin, vitronectin, laminin), extracellular matrix proteins (thrombospondins 1-4, dystroglycan, transgelins 1-3), and integrins alpha-V, alpha-1 and 2, beta-1, -2, and -5. Twenty-one unambiguous alternative splicing protein isoforms were identified in optic nerve and ten unambiguous alternative splicing protein isoforms were identified in sclera. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD001581.
Collapse
Affiliation(s)
- Pingbo Zhang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rabia Karani
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Randi L Turner
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Sara Ferri
- Rochester Eye Associates, Rochester, NY, USA
| | - Jennifer E Van Eyk
- Advanced Clinical BioSystems Research Institute, the Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard D Semba
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Li X, Wu M, Zhang L, Liu H, Zhang L, He J. Riboflavin and ultraviolet A irradiation for the prevention of progressive myopia in a guinea pig model. Exp Eye Res 2017; 165:1-6. [PMID: 28864176 DOI: 10.1016/j.exer.2017.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 10/19/2022]
Abstract
In this study, we evaluated the effect of oral administration of riboflavin combined with whole-body ultraviolet A (UVA) irradiation on the biochemical and biomechanical properties of sclera in a guinea pig model to control the progression of myopia. Experimental groups were administered 0.1% riboflavin solution with or without vitamin C by gavage from 3 days before myopic modeling and during the modeling process. Guinea pigs underwent 30 min of whole-body UVA irradiation after each gavage for 2 weeks. For control groups, guinea pigs were administered vitamin C and underwent either whole-body UVA irradiation without 0.1% riboflavin solution or whole-body fluorescent lamp irradiation with or without 0.1% riboflavin solution. Resultantly, myopia models were established with an increased axial length and myopic diopter. Compared with myopic eyes in the control groups, the net increase in axial length, diopter and strain assessment decreased significantly, and the net decrease in sclera thickness, ultimate load, and stress assessment decreased significantly in experimental groups. MMP-2 expression showed a lower net increase, while TIMP-2 expression showed a lower net decrease. In addition, hyperplasia of scleral fibroblasts was more active in myopic eyes of experimental groups. Overall, our results showed that oral administration of riboflavin with whole-body UVA irradiation could increase the strength and stiffness of sclera by altering the biochemical and biomechanical properties, and decreases in axial elongation and myopic diopter are greater in the guinea pig myopic model.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Miaoqin Wu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Luyi Zhang
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hui Liu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lan Zhang
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jinjing He
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Garcia MB, Jha AK, Healy KE, Wildsoet CF. A Bioengineering Approach to Myopia Control Tested in a Guinea Pig Model. Invest Ophthalmol Vis Sci 2017; 58:1875-1886. [PMID: 28358959 PMCID: PMC5374882 DOI: 10.1167/iovs.16-20694] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Purpose To investigate the biocompatibility of an injectable hydrogel and its ability to control myopia progression in guinea pigs. Methods The study used a hydrogel synthesized from acrylated hyaluronic acid with a conjugated cell-binding peptide and enzymatically degradable crosslinker. Seven-day-old guinea pigs were first form deprived (FD) with diffusers for 1 week. One group was kept as an FD-only control; two groups received a sub-Tenon's capsule injection of either hydrogel or buffer (sham surgery) at the posterior pole of the eye. Form deprivation treatments were then continued for 3 additional weeks. Treatment effects were evaluated in terms of ocular axial length and refractive error. Safety was evaluated via intraocular pressure (IOP), visual acuity, flash electroretinograms (ERG), and histology. Results Both hydrogel and sham surgery groups showed significantly reduced axial elongation and myopia progression compared to the FD-only group. For axial lengths, net changes in interocular difference (treated minus control) were 0.04 ± 0.06, 0.02 ± 0.09, and 0.24 ± 0.08 mm for hydrogel, sham, and FD-only groups, respectively (P = 0.0006). Intraocular pressures, visual acuities, and ERGs of treated eyes were not significantly different from contralateral controls. Extensive cell migration into the implants was evident. Both surgery groups showed noticeable Tenon's capsule thickening. Conclusions Sub-Tenon's capsule injections of both hydrogel and buffer inhibited myopia progression, with no adverse effects on ocular health. The latter unexpected effect warrants further investigation as a potential novel myopia control therapy. That the hydrogel implant supported significant cell infiltration offers further proof of its biocompatibility, with potential application as a tool for drug and cell delivery.
Collapse
Affiliation(s)
- Mariana B Garcia
- Vision Science Graduate Group, University of California-Berkeley, Berkeley, California, United States
| | - Amit K Jha
- Department of Bioengineering, University of California-Berkeley, Berkeley, California, United States 3Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California, United States
| | - Kevin E Healy
- Department of Bioengineering, University of California-Berkeley, Berkeley, California, United States 3Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California, United States
| | - Christine F Wildsoet
- Vision Science Graduate Group, University of California-Berkeley, Berkeley, California, United States 2Department of Bioengineering, University of California-Berkeley, Berkeley, California, United States 3Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California, United States
| |
Collapse
|
33
|
Du GL, Chen WY, Li XN, He R, Feng PF. Induction of MMP‑1 and ‑3 by cyclical mechanical stretch is mediated by IL‑6 in cultured fibroblasts of keratoconus. Mol Med Rep 2017; 15:3885-3892. [PMID: 28393195 DOI: 10.3892/mmr.2017.6433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/16/2017] [Indexed: 11/06/2022] Open
Abstract
In order to understand the effect of mechanical stretch on corneal extracellular matrix remodeling, human keratoconus fibroblasts (HKCFBs) were subjected to cyclic stretch in vitro and the expression of matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinases (TIMPs), and inflammatory cytokines were evaluated. HKCFBs were seeded into a flexible membrane base and subjected to a cyclic stretch regimen of 10% equibiaxial stretch at a stretching frequency of 1 Hz for 6 h using a Flexcell tension unit. An antibody directed against interleukin‑6 (IL‑6 Ab) was used to investigate the roles of IL‑6 on mechanical stretch mediated regulation of MMP in HKCFBs. Culture supernatants were assayed using an enzyme‑linked immunosorbent assay for MMP‑1 and ‑3, TIMP‑1 and ‑2, and IL‑6. Total RNA from the cells was extracted, and quantitative polymerase chain reaction was used to determine mRNA for MMP‑1 and ‑3, TIMP‑1 and ‑2, and IL‑6. In stretched cells, levels of MMP‑1 and ‑3 demonstrated an increase compared with unstretched cells, but levels of TIMP‑1, and ‑2 revealed a decrease. Mechanical stretch significantly increased the mRNA expression and protein synthesis of IL‑6 compared with unstretched cells. IL‑6 induced MMP‑1 and ‑3 expression, whereas no significant effects were observed in levels of TIMP‑1 and ‑2 compared with the untreated control groups. Additionally, the IL‑6 Ab markedly inhibited the stretch‑induced increase in MMP‑1 and ‑3 in culture supernatants in a dose‑dependent manner. No significant differences in TIMP‑1 and ‑2 protein levels were detected between stretched cells treated with IL‑6 Ab and stretched cells without IL‑6 Ab treatment. These results indicate that cyclical mechanical stretch augments IL‑6 production and MMP expression, and reduces levels of TIMP in HKCFBs. Thus, it is suggested that IL‑6 mediates the stretch‑induced MMP expression.
Collapse
Affiliation(s)
- Gen-Lai Du
- Shanxi Key Lab of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
| | - Wei-Yi Chen
- Shanxi Key Lab of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
| | - Xiao-Na Li
- Shanxi Key Lab of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
| | - Rui He
- Department of Excimer Laser, Shanxi Eye Hospital, Taiyuan, Shanxi 030002, P.R. China
| | - Peng-Fei Feng
- Shanxi Key Lab of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
34
|
Jia X, Yu J, Liao SH, Duan XC. Biomechanics of the sclera and effects on intraocular pressure. Int J Ophthalmol 2016; 9:1824-1831. [PMID: 28003987 DOI: 10.18240/ijo.2016.12.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/03/2016] [Indexed: 11/23/2022] Open
Abstract
Accumulating evidence indicates that glaucoma is a multifactorial neurodegenerative disease characterized by the loss of retinal ganglion cells (RGC), resulting in gradual and progressive permanent loss of vision. Reducing intraocular pressure (IOP) remains the only proven method for preventing and delaying the progression of glaucomatous visual impairment. However, the specific role of IOP in optic nerve injury remains controversial, and little is known about the biomechanical mechanism by which elevated IOP leads to the loss of RGC. Published studies suggest that the biomechanical properties of the sclera and scleral lamina cribrosa determine the biomechanical changes of optic nerve head, and play an important role in the pathologic process of loss of RGC and optic nerve damage. This review focuses on the current understanding of biomechanics of sclera in glaucoma and provides an overview of the possible interactions between the sclera and IOP. Treatments and interventions aimed at the sclera are also discussed.
Collapse
Affiliation(s)
- Xu Jia
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Juan Yu
- Department of Ophthalmology, the First Hospital of Hunan University of Chinese Medicine, Changsha 410011, Hunan Province, China
| | - Sheng-Hui Liao
- School of Information Science and Engineering, Central South University, Changsha 410011, Hunan Province, China
| | - Xuan-Chu Duan
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
35
|
Baldivia S, Levy A, Hegde S, Aper SJA, Merkx M, Grytz R. A Novel Organ Culture Model to Quantify Collagen Remodeling in Tree Shrew Sclera. PLoS One 2016; 11:e0166644. [PMID: 27870875 PMCID: PMC5117658 DOI: 10.1371/journal.pone.0166644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence suggests that unknown collagen remodeling mechanisms in the sclera underlie myopia development. We are proposing a novel organ culture system in combination with two-photon fluorescence imaging to quantify collagen remodeling at the tissue- and lamella-level. Tree shrew scleral shells were cultured up to 7 days in serum-free media and cellular viability was investigated under: (i) minimal tissue manipulations; (ii) removal of intraocular tissues; gluing the eye to a washer using (iii) 50 μL and (iv) 200 μL of cyanoacrylate adhesive; (v) supplementing media with Ham's F-12 Nutrient Mixture; and (vi) culturing eyes subjected to 15 mmHg intraocular pressure in our new bioreactor. Two scleral shells of normal juvenile tree shrews were fluorescently labeled using a collagen specific protein and cultured in our bioreactor. Using two-photon microscopy, grid patterns were photobleached into and across multiple scleral lamellae. These patterns were imaged daily for 3 days, and tissue-/lamella-level strains were calculated from the deformed patterns. No significant reduction in cell viability was observed under conditions (i) and (v). Compared to condition (i), cell viability was significantly reduced starting at day 0 (condition (ii)) and day 3 (conditions (iii, iv, vi)). Tissue-level strain and intralamellar shear angel increased significantly during the culture period. Some scleral lamellae elongated while others shortened. Findings suggest that tree shrew sclera can be cultured in serum-free media for 7 days with no significant reduction in cell viability. Scleral fibroblasts are sensitive to tissue manipulations and tissue gluing. However, Ham's F-12 Nutrient Mixture has a protective effect on cell viability and can offset the cytotoxic effect of cyanoacrylate adhesive. This is the first study to quantify collagen micro-deformations over a prolonged period in organ culture providing a new methodology to study scleral remodeling in myopia.
Collapse
Affiliation(s)
- Sarah Baldivia
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Alexander Levy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shylaja Hegde
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stijn J. A. Aper
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maarten Merkx
- Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rafael Grytz
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
36
|
Feng P, Li X, Chen W, Liu C, Rong S, Wang X, Du G. Combined effects of interleukin-1β and cyclic stretching on metalloproteinase expression in corneal fibroblasts in vitro. Biomed Eng Online 2016; 15:63. [PMID: 27286674 PMCID: PMC4901398 DOI: 10.1186/s12938-016-0198-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/01/2016] [Indexed: 01/26/2023] Open
Abstract
Background Corneal tensile strain increases if the cornea becomes thin or if intraocular pressure increases. However, the effects of mechanical stress on extracellular matrix (ECM) remodelling in the corneal repair process and the corneal anomalies are unknown. Methods In this study, the combined effects of interleukin-1β (IL-1β) on matrix metalloproteinases (MMPs) in corneal fibroblasts under cyclic stretching were investigated in vitro. Cultured rabbit corneal fibroblasts were subjected to 5, 10 or 15 % cyclic equibiaxial stretching at 0.1 Hz for 36 h in the presence of IL-1β. Conditioned medium was harvested for the analysis of MMP2 and MMP9 protein production using the gelatin zymography and western blot techniques. Results and conclusions Cyclic equibiaxial stretching changed the cell morphology by increasing the contractility of F-actin fibres. IL-1β alone induced the expression of MMP9 and increased the production of MMP2, and 5 % stretching alone decreased the production of MMP2, which indicates that a low stretching magnitude can reduce ECM degradation. In the presence of IL-1β, 5 and 10 % stretching increased the production of MMP2, whereas 15 % stretching increased the production of MMP9. These results indicate that MMP expression is enhanced by cyclic mechanical stimulation in the presence of IL-1β, which is expected to contribute to corneal ECM degradation, leading to the development of post-refractive surgery keratectasia.
Collapse
Affiliation(s)
- Pengfei Feng
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaona Li
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Weiyi Chen
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Chengxing Liu
- Biology Department, Taiyuan Normal University, Jinzhong, 030619, China
| | - Shuo Rong
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaojun Wang
- College of Mechanics, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Genlai Du
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
37
|
Qu J, Chen H, Zhu L, Ambalavanan N, Girkin CA, Murphy-Ullrich JE, Downs JC, Zhou Y. High-Magnitude and/or High-Frequency Mechanical Strain Promotes Peripapillary Scleral Myofibroblast Differentiation. Invest Ophthalmol Vis Sci 2016; 56:7821-30. [PMID: 26658503 DOI: 10.1167/iovs.15-17848] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To determine the effects of altered mechanical strain on human peripapillary scleral (ppSc) fibroblast-to-myofibroblast differentiation. METHODS Eight human ppSc fibroblast cultures were isolated from three paired eyes and two unilateral eyes of five donors using an explant approach. Human ppSc fibroblast isolates were subjected to 1% and 4% cyclic strain at 0.05 to 5 Hz for 24 hours. Levels of α smooth muscle actin (αSMA) mRNA and protein were determined by real-time PCR and immunoblot. Incorporation of αSMA into actin stress fibers was evaluated by confocal immunofluorescent microscopy. Myofibroblast contractility was measured by fibroblast-populated three-dimensional collagen gel contraction assay and phosphorylation of myosin light chain (MLC20). RESULTS Human ppSc fibroblasts contained 6% to 47% fully differentiated myofibroblasts before strain application; 4% cyclic strain increased αSMA mRNA and protein expression in ppSc fibroblasts compared with 1% strain applied at 5 Hz, but not at lower frequencies. Seven of eight ppSc fibroblast isolates responded to high-magnitude and high-frequency strain with increased cellular contractility and increased MLC20 phosphorylation. In addition, increasing strain frequency promoted αSMA expression in ppSc fibroblasts under both 1% and 4% strain conditions. CONCLUSIONS High-magnitude and/or high-frequency mechanical strain promotes differentiation of human ppSc fibroblasts into contractile myofibroblasts, a fibroblast phenotypic change known to be key to tissue injury-repair responses. These findings suggest that the cellular constituent of ppSc may play an important role in the regulation of optic nerve head biomechanics in response to injurious IOP fluctuations.
Collapse
Affiliation(s)
- Jing Qu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Huaping Chen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Lanyan Zhu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States 2The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Namasivayam Ambalavanan
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christopher A Girkin
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Joanne E Murphy-Ullrich
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States 5Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - J Crawford Downs
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States 6Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yong Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States 4Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama, United States 6Department of Biomedical Engineering, University of Alab
| |
Collapse
|
38
|
Gao Z, Huo L, Cui D, Yang X, Zeng J. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells. PLoS One 2016; 11:e0150831. [PMID: 26967733 PMCID: PMC4788292 DOI: 10.1371/journal.pone.0150831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Purpose All-trans retinoic acid (ATRA) plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE) cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 2 (MMP-2) and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19) cells. Methods The effects of ATRA (concentrations from 10−9 to 10−5 mol/l) on the expression of retinoic acid receptors (RARs) in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR) and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10−9 to 10−5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ. Results RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10−9 to 10−5 mol/l) with a maximum effect observed at 10−6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10−6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135. Conclusion ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated these cells to secrete BMP-2 and MMP-2.
Collapse
Affiliation(s)
- Zhenya Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-sen University, No.54 South Xianlie Road, Guangzhou, 510060, P. R. China
| | - Lijun Huo
- The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhong Shan Er Road, Guangzhou 510080, P. R. China
| | - Dongmei Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-sen University, No.54 South Xianlie Road, Guangzhou, 510060, P. R. China
| | - Xiao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-sen University, No.54 South Xianlie Road, Guangzhou, 510060, P. R. China
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-sen University, No.54 South Xianlie Road, Guangzhou, 510060, P. R. China
- * E-mail:
| |
Collapse
|
39
|
Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway. Sci Rep 2016; 6:21112. [PMID: 26880260 PMCID: PMC4754767 DOI: 10.1038/srep21112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/18/2016] [Indexed: 12/03/2022] Open
Abstract
The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway.
Collapse
|
40
|
Izumi G, Koga K, Nagai M, Urata Y, Takamura M, Harada M, Hirata T, Hirota Y, Ogawa K, Inoue S, Fujii T, Osuga Y. Cyclic Stretch Augments Production of Neutrophil Chemokines, Matrix Metalloproteinases, and Activin A in Human Endometrial Stromal Cells. Am J Reprod Immunol 2015; 73:501-6. [DOI: 10.1111/aji.12359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/02/2015] [Indexed: 12/16/2022] Open
Affiliation(s)
- Gentaro Izumi
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Kaori Koga
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Miwako Nagai
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Yoko Urata
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | | | - Miyuki Harada
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Tetsuya Hirata
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Yasushi Hirota
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Kenji Ogawa
- Chemical Genetics Laboratory; RIKEN; Saitama Japan
| | - Satoshi Inoue
- Anti-Aging Medicine; The University of Tokyo; Tokyo Japan
| | - Tomoyuki Fujii
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Yutaka Osuga
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| |
Collapse
|
41
|
Heck TAM, Wilson W, Foolen J, Cilingir AC, Ito K, van Donkelaar CC. A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction. J Biomech 2014; 48:823-31. [PMID: 25560271 DOI: 10.1016/j.jbiomech.2014.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 02/02/2023]
Abstract
Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling.
Collapse
Affiliation(s)
- T A M Heck
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W Wilson
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J Foolen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - A C Cilingir
- Mechanical Engineering Department, Sakarya University, Sakarya, Turkey
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - C C van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
42
|
Zhang Y, Lin Z, Foolen J, Schoen I, Santoro A, Zenobi-Wong M, Vogel V. Disentangling the multifactorial contributions of fibronectin, collagen and cyclic strain on MMP expression and extracellular matrix remodeling by fibroblasts. Matrix Biol 2014; 40:62-72. [PMID: 25217861 DOI: 10.1016/j.matbio.2014.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/06/2023]
Abstract
Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Zhe Lin
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jasper Foolen
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Ingmar Schoen
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Alberto Santoro
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Marcy Zenobi-Wong
- Cartilage Engineering+Regeneration, Department of Health Sciences and Technology, ETH Zurich, Otto-Stern-Weg 7, CH-8093 Zurich, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| |
Collapse
|
43
|
Zhu H, Wang J, Cui J, Fan X. Effects of extremely low frequency electromagnetic fields on human fetal scleral fibroblasts. Toxicol Ind Health 2014; 32:1042-51. [PMID: 25147305 DOI: 10.1177/0748233714545837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human fetal scleral fibroblasts (HFSFs). HFSFs were subjected to 50 Hz artificial ELF-EMFs generated by Helmholtz coils with 0.1, 0.2, 0.5, and 1.0 mT field intensities for 6 to 48 h. The viability and factors involved in scleral structuring of HFSFs were determined. The growth rate of HFSFs significantly decreased after only 24 h of exposure to ELF-EMFs (0.2 mT). The messenger RNA (mRNA) expression of collagen type I (COL1A1) decreased and expression of matrix metalloproteinase-2 (MMP-2) increased significantly. There was a decrease in tissue inhibitor of MMP-2 mRNA levels between treated and control cells only at the 1.0 mT intensity level. Transforming growth factor beta-2 mRNA increased in exposed cells, and, simultaneously, fibroblast growth factor-2 mRNA levels decreased. The protein expressions of COL1A1 and MMP-2 were also significantly altered subsequent to exposure (p < 0.05). This study shows that ELF-EMFs had biological effects on HFSFs and could cause abnormality in scleral collagen.
Collapse
Affiliation(s)
- Huang Zhu
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Liu C, Feng P, Li X, Song J, Chen W. Expression of MMP-2, MT1-MMP, and TIMP-2 by cultured rabbit corneal fibroblasts under mechanical stretch. Exp Biol Med (Maywood) 2014; 239:907-912. [PMID: 24939826 DOI: 10.1177/1535370214536650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Refractive surgery not only leads to tissue injury but also evokes mechanical stress increase of the cornea. How the mechanical stress affects the corneal matrix remodeling, specifically, matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitors of metalloproteinases; TIMPs) is not well understood. In this study, cultured rabbit corneal fibroblasts in vitro were subjected to regimen of 5%, 10%, or 15% equibiaxial stretch at 0.1 Hz for 3 or 24 h. MMP-2 protein level was measured by gelatin zymography and Western blotting. MMP-2, membrane type 1 MMP (MT1-MMP), and TIMP-2 mRNA levels were quantified by real-time quantitative PCR. Extracellular regulated protein kinase (ERK) phosphorylation protein levels were assessed by Western blotting. Our results showed that a 15% stretch resulted in increases in MMP-2 protein, MMP-2 mRNA, and MT1-MMP mRNA levels, but a decrease in TIMP-2 mRNA level. However, a 5% stretch caused decreases in MMP-2 protein and mRNA level, but an increase in TIMP-2 mRNA level, and no change in MT1-MMP mRNA level. A 15% stretch also caused a significant increase in ERK1/2 phosphorylation. Inhibition of the mitogenactivated protein kinase (MEK) pathway with PD98059 attenuated stretch-induced increase in MMP-2 production and ERK activity. These results suggest that small-magnitude stretching may promote corneal matrix synthetic events, whereas large-magnitude stretching promotes corneal matrix degradation by changing the balance between MMPs and TIMPs in corneal fibroblasts. Large-magnitude stretch-induced increase in pro-MMP-2 production was in an ERK-dependent manner.
Collapse
Affiliation(s)
- Chengxing Liu
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China Shanxi Key lab of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Pengfei Feng
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China Shanxi Key lab of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Xiaona Li
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China Shanxi Key lab of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Jie Song
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China Shanxi Key lab of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Weiyi Chen
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China Shanxi Key lab of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| |
Collapse
|
45
|
Miao D, Godovikova V, Qian X, Seshadrinathan S, Kapila YL, Fenno JC. Treponema denticola upregulates MMP-2 activation in periodontal ligament cells: interplay between epigenetics and periodontal infection. Arch Oral Biol 2014; 59:1056-64. [PMID: 24973519 DOI: 10.1016/j.archoralbio.2014.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Periodontal pathogens initiate chronic dysregulation of inflammation and tissue homeostasis that characterize periodontal disease. To better understand oral microbe-host tissue interactions, we investigated expression and activation of MMP-2 in periodontal ligament cells following Treponema denticola challenge. DESIGN Cultured PDL cells were challenged with T. denticola, and bacterial adherence, internalization and survival were assayed by immunofluorescence microscopy and antibiotic protection assays, respectively. MMP-2 activation was detected by zymography. MMP-2, MT1/MMP and TIMP-2 expression following T. denticola challenge was determined by qRT-PCR. Promoter methylation of MMP-2 and MT1/MMP was screened by methylation-sensitive restriction analysis and by bisulfite DNA sequencing. RESULTS T. denticola adhered to and was internalized by PDL cells but did not survive intracellularly beyond 24h. Importantly, while dentilisin activity in PDL culture supernatants gradually decreased following T. denticola challenge, MMP-2 activation persisted for up to 5 days, suggesting involvement of other regulatory mechanisms. Transcription and expression of MT1/MMP and TIMP-2 increased in response to T. denticola challenge. However, consistent with previously reported constitutive pro-MMP-2 expression in PDL cells, the MMP-2 promoter was hypomethylated, independent of T. denticola challenge. CONCLUSIONS MMP-2 promoter hypomethylation is consistent with constitutive pro-MMP-2 expression in PDL cells. This, coupled with T. denticola-mediated upregulation of MMP-2-related genes and chronic activation of pro-MMP-2, mimics key in vivo mechanisms of periodontal disease chronicity, in particular MMP-2-dependent matrix degradation and bone resorption. Adherence and/or internalization of T. denticola may contribute to these processes by one or more regulatory mechanisms, including contact-dependent signal transduction or other epigenetic mechanisms.
Collapse
Affiliation(s)
- Di Miao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Valentina Godovikova
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Xu Qian
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Suchithra Seshadrinathan
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Yvonne L Kapila
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
46
|
Campbell IC, Coudrillier B, Ross Ethier C. Biomechanics of the Posterior Eye: A Critical Role in Health and Disease. J Biomech Eng 2014; 136:021005. [DOI: 10.1115/1.4026286] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/19/2013] [Indexed: 01/16/2023]
Abstract
The posterior eye is a complex biomechanical structure. Delicate neural and vascular tissues of the retina, choroid, and optic nerve head that are critical for visual function are subjected to mechanical loading from intraocular pressure, intraocular and extraorbital muscles, and external forces on the eye. The surrounding sclera serves to counteract excessive deformation from these forces and thus to create a stable biomechanical environment for the ocular tissues. Additionally, the eye is a dynamic structure with connective tissue remodeling occurring as a result of aging and pathologies such as glaucoma and myopia. The material properties of these tissues and the distribution of stresses and strains in the posterior eye is an area of active research, relying on a combination of computational modeling, imaging, and biomechanical measurement approaches. Investigators are recognizing the increasing importance of the role of the collagen microstructure in these material properties and are undertaking microstructural measurements to drive microstructurally-informed models of ocular biomechanics. Here, we review notable findings and the consensus understanding on the biomechanics and microstructure of the posterior eye. Results from computational and numerical modeling studies and mechanical testing of ocular tissue are discussed. We conclude with some speculation as to future trends in this field.
Collapse
Affiliation(s)
- Ian C. Campbell
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
- Rehabilitation Research and Development Center of Excellence, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA 30032
| | - Baptiste Coudrillier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
- Rehabilitation Research and Development Center of Excellence, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA 30032
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, GA 30322
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK e-mail:
| |
Collapse
|
47
|
Park SH, Shin JW, Kang YG, Hyun JS, Oh MJ, Shin JW. Texture analyses show synergetic effects of biomechanical and biochemical stimulation on mesenchymal stem cell differentiation into early phase osteoblasts. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:219-227. [PMID: 24279928 DOI: 10.1017/s1431927613013810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We investigated the structural complexity and texture of the cytoskeleton and nucleus in human mesenchymal stem cells during early phase differentiation into osteoblasts according to the differentiation-induction method: mechanical and/or chemical stimuli. For this, fractal dimension and a number of parameters utilizing the gray-level co-occurrence matrix (GLCM) were calculated based on single-cell images after confirmation of differentiation by immunofluorescence staining. The F-actin and nuclear fractal dimensions were greater in both stimulus groups compared with the control group. The GLCM values for energy and homogeneity were lower in fibers of the F-actin cytoskeleton, indicating a dispersed F-actin arrangement during differentiation. In the nuclei of both stimulus groups, higher values for energy and homogeneity were calculated, indicating that the chromatin arrangement was chaotic during the early phase of differentiation. It was shown and confirmed that combined stimulation with mechanical and chemical factors accelerated differentiation, even in the early phase. Fractal dimension analysis and GLCM methods have the potential to provide a framework for further investigation of stem cell differentiation.
Collapse
Affiliation(s)
- So Hee Park
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, 621-749, Korea
| | - Ji Won Shin
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, 633-165, Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, 621-749, Korea
| | - Jin-Sook Hyun
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, 621-749, Korea
| | - Min Jae Oh
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, 621-749, Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, 621-749, Korea
| |
Collapse
|
48
|
Abstract
Myopia is the result of a mismatch between the optical power and the length of the eye, with the latter being too long. Driving the research in this field is the need to develop myopia treatments that can limit axial elongation. When axial elongation is excessive, as in high myopia, there is an increased risk of visual impairment and blindness due to ensuing pathologies such as retinal detachments. This article covers both clinical studies involving myopic children, and studies involving animal models for myopia. Atropine, a nonselective muscarinic antagonist, has been studied most extensively in both contexts. Because it remains the only drug used in a clinical setting, it is a major focus of the first part of this article, which also covers the many shortcomings of topical ophthalmic atropine. The second part of this article focuses on in vitro and animal-based drug studies, which encompass a range of drug targets including the retina, retinal pigment epithelium and sclera. While the latter studies have contributed to a better understanding of how eye growth is regulated, no new antimyopia drug treatments have reached the clinical setting. Less conservative approaches in research, and in particular, the exploration of new bioengineering approaches for drug delivery, are needed to advance this field.
Collapse
Affiliation(s)
- Prema Ganesan
- School of Optometry, University of California, Berkeley, CA 94720-2020, USA
| | | |
Collapse
|
49
|
Mechanical stretching induces matrix metalloproteinase-2 expression in rat retinal glial (Müller) cells. Neuroreport 2013; 24:224-8. [PMID: 23399998 DOI: 10.1097/wnr.0b013e32835eb9d1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pathological myopia, as one of the leading causes of blindness, is characterized by excessive and progressive elongation of the eyeball with concomitant degenerative changes in the posterior segment of the eye. During the progressive distension of the posterior pole, the retina, choroid, and sclera are subjected to constant mechanical force, as a result of which, tissue remodeling occurs. Active remodeling of the sclera in myopia has been studied intensively. By comparison, retinal remodeling under mechanical stretching has attracted little attention, and further research is therefore required. In this study, we showed that constant mechanical stretching of rat retinal Müller cells for 24 h led to a significant increase in the intracellular matrix metalloproteinase-2 mRNA and protein levels. The extracellular secretory matrix metalloproteinase-2 protein levels and activity were also enhanced. These results suggest a possible novel molecular mechanism that would account for retinal remodeling in many ocular diseases in which the retina is often overstretched, such as pathological myopia and proliferative vitreoretinopathy.
Collapse
|
50
|
Wang X, Fan J, Zhang M, Sun Z, Xu G. Gene expression changes under cyclic mechanical stretching in rat retinal glial (Müller) cells. PLoS One 2013; 8:e63467. [PMID: 23723984 PMCID: PMC3664568 DOI: 10.1371/journal.pone.0063467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Objective The retina is subjected to tractional forces in various conditions. As the predominant glial element in the retina, Müller cells are active players in all forms of retinal injury and disease. In this study, we aim to identify patterns of gene expression changes induced by cyclic mechanical stretching in Müller cells. Methods Rat Müller cells were seeded onto flexible bottom culture plates and subjected to a cyclic stretching regimen of 15% equibiaxial stretching for 1 and 24 h. RNA was extracted and amplified, labeled, and hybridized to rat genome microarrays. The expression profiles were analyzed using GeneSpring software, and gene ontology analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to select, annotate, and visualize genes by function and pathway. The selected genes of interest were further validated by Quantitative Real-time PCR (qPCR). Results Microarray data analysis showed that at 1 and 24 h, the expression of 532 and 991 genes in the Müller cells significantly (t-test, p<0.05) differed between the mechanically stretched and unstretched groups. Of these genes, 56 genes at 1 h and 62 genes at 24 h showed more than a twofold change in expression. Several genes related to response to stimulus (e.g., Egr2, IL6), cell proliferation (e.g., Areg, Atf3), tissue remodeling (e.g., PVR, Loxl2), and vasculogenesis (e.g., Epha2, Nrn1) were selected and validated by qPCR. KEGG pathway analysis showed significant changes in MAPK signaling at both time points. Conclusions Cyclic mechanical strain induces extensive changes in the gene expression in Müller cells through multiple molecular pathways. These results indicate the complex mechanoresponsive nature of Müller cells, and they provide novel insights into possible molecular mechanisms that would account for many retinal diseases in which the retina is often subjected to mechanical forces, such as pathological myopia and proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Jiawen Fan
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhongcui Sun
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology and Vision Sciences, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|