1
|
Brighesh B, Alsuliman N, Nimer A, Albosaad O, Alokosh B, Alnaili T, Syed A, Gardner MR. Optical properties of artificial intraocular lenses and considerations for additive manufacturing. Front Med (Lausanne) 2025; 12:1563766. [PMID: 40297158 PMCID: PMC12034678 DOI: 10.3389/fmed.2025.1563766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Cataracts, a leading cause of blindness in the world, are commonly treated by replacing the ocular lens with an artificial intraocular lens (IOL). The material and structure of the IOL are major factors in their efficacy, affecting, among other characteristics, the optics of the eye. In the recent research record, two optical properties have emerged as standardized characterization methods for IOL optics: (1) optical transmittance and (2) optical scattering. This mini review describes these two methods and collates data in such a way that comparisons may be drawn across four different IOL material types (PMMA, hydrophobic acrylic, hydrophilic acrylic, and silicone) and three IOL conditions (in-vivo, cadaver explant, and inventory control). Finally, the emerging field of additive manufacturing for IOL production is considered. Such technologies hold promise for optimizing IOLs for cataract patients. Researchers in additive manufacturing for IOL production may incorporate optical transmittance and optical scattering as standard characterization methods for 3D-printed IOLs developed by the broader IOL researcher community.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael R. Gardner
- Department of Biomedical Engineering, College of Engineering, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
2
|
Wang Y, Cao K, Guo ZX, Wan XH. Effect of lens crystallins aggregation on cataract formation. Exp Eye Res 2025; 253:110288. [PMID: 39955021 DOI: 10.1016/j.exer.2025.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Cataracts represent one of the leading causes of blindness globally. The World Health Organization's 2019World Report on Vision indicates that approximately 65.2 million individuals worldwide experience varying degrees of visual impairment or blindness attributable to cataracts. The prevalence of this condition is significantly increasing, largely due to the accelerated aging of the global population. The lens of the eye is primarily composed of crystallins, which are categorized into three families: α-, β-, and γ-crystallins. The highly ordered structure and interactions among these crystallins are crucial for maintaining lens transparency. Disruptions in the interactions within or between crystallins can compromise this delicate architecture, exposing hydrophobic surfaces that lead to crystallin aggregation and subsequent cataract formation. Currently, surgical intervention is the sole treatment for cataracts, and the cataract surgery rate in China remains considerably lower than that of developed nations. Investigating the mechanisms of crystallins interaction and aggregation is essential for understanding the molecular pathogenesis of cataract formation, which may inform the development of targeted therapies and preventative strategies. This paper reviews recent scientific advancements in the research field of lens crystallins aggregation and cataract formation.
Collapse
Affiliation(s)
- Yue Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kai Cao
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Zhao-Xing Guo
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiu-Hua Wan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Nicolas WJ, Shiriaeva A, Martynowycz MW, Grey AC, Ruma YN, Donaldson PJ, Gonen T. Structure of the lens MP20 mediated adhesive junction. Nat Commun 2025; 16:2977. [PMID: 40140346 PMCID: PMC11947226 DOI: 10.1038/s41467-025-57903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Human lens fiber membrane intrinsic protein MP20 is the second most abundant membrane protein of the human eye lens. Despite decades of effort its structure and function remained elusive. Here, we determined the MicroED structure of full-length human MP20 in lipidic-cubic phase to a resolution of 3.5 Å. MP20 forms tetramers each of which contain 4 transmembrane α-helices that are packed against one another forming a helical bundle. We find that each MP20 tetramer formed adhesive interactions with an opposing tetramer in a head-to-head fashion. Investigation of MP20 localization in human lenses indicate that in young fiber cells MP20 is initially localized to the cytoplasm in differentiating fiber cells but upon fiber cell maturation is inserted into the plasma membrane, correlating with the restriction of the diffusion of extracellular tracers into the lens. Together these results suggest that MP20 forms lens thin junctions in vivo, confirming its role as a structural protein in the human eye lens essential for its optical transparency.
Collapse
Affiliation(s)
- William J Nicolas
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael W Martynowycz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Yasmeen N Ruma
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Tamir Gonen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA.
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Muranov KO, Ostrovsky MA. Biochemistry of Eye Lens in the Norm and in Cataractogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:106-120. [PMID: 35508906 DOI: 10.1134/s0006297922020031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Abstract
The absence of cellular organelles in fiber cells and very high cytoplasmic protein concentration (up to 900 mg/ml) minimize light scattering in the lens and ensure its transparency. Low oxygen concentration, powerful defense systems (antioxidants, antioxidant enzymes, chaperone-like protein alpha-crystallin, etc.) maintain lens transparency. On the other hand, the ability of crystallins to accumulate age-associated post-translational modifications, which reduce the resistance of lens proteins to oxidative stress, is an important factor contributing to the cataract formation. Here, we suggest a mechanism of cataractogenesis common for the action of different cataractogenic factors, such as age, radiation, ultraviolet light, diabetes, etc. Exposure to these factors leads to the damage and death of lens epithelium, which allows oxygen to penetrate into the lens through the gaps in the epithelial layer and cause oxidative damage to crystallins, resulting in protein denaturation, aggregation, and formation of multilamellar bodies (the main cause of lens opacification). The review discusses various approaches to the inhibition of lens opacification (cataract development), in particular, a combined use of antioxidants and compounds enhancing the chaperone-like properties of alpha-crystallin. We also discuss the paradox of high efficiency of anti-cataract drugs in laboratory settings with the lack of their clinical effect, which might be due to the late use of the drugs at the stage, when the opacification has already formed. A probable solution to this situation will be development of new diagnostic methods that will allow to predict the emergence of cataract long before the manifestation of its clinical signs and to start early preventive treatment.
Collapse
Affiliation(s)
- Konstantin O Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
5
|
Kinoshita M, Kyo T, Matsumori N. Assembly formation of minor dihydrosphingomyelin in sphingomyelin-rich ordered membrane domains. Sci Rep 2020; 10:11794. [PMID: 32678223 PMCID: PMC7366691 DOI: 10.1038/s41598-020-68688-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
The lipidome of mammalian cells not only contain sphingomyelin (SM) but also, as a minor component, dihydrosphongomyelin (DHSM), in which the double bond at C4–C5 in the sphingosine base is reduced to a single-bond linkage. It has been indicated that DHSM forms ordered domains more effectively than SM due to its greater potential to induce intermolecular hydrogen bonds. However, direct information on partition and dynamic behaviors of DHSM in raft-like liquid-ordered (Lo) and non-raft-like liquid-disordered (Ld) phase-segregated membranes has been lacking. In the present study, we prepared fluorescent derivatives of DHSM and compared their behaviors to those of fluorescent SM and phosphatidylcholine (PC) derivatives. Fluorescence microscopy showed that DHSM is more preferentially localized to the Lo domains in the Lo/Ld phase-segregated giant unilamellar vesicles than SM and PC. Most importantly, diffusion coefficient measurements indicated that DHSM molecules form DHSM-condensed assembly inside the SM-rich Lo domain of the SM/dioleoylphosphatidylcholine/cholesterol system even when DHSM accounts for 1–3.3 mol% of total lipids. Such heterogeneous distribution of DHSM in the SM-rich Lo domains was further confirmed by inter-lipid FRET experiments. This study provides new insights into the biological functions and significance of minor component DHSM in lipid rafts.
Collapse
Affiliation(s)
- Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Takumi Kyo
- Department of Chemistry, Graduate School of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
6
|
Bagge LE. Not As Clear As It May Appear: Challenges Associated with Transparent Camouflage in the Ocean. Integr Comp Biol 2020; 59:1653-1663. [PMID: 31141119 DOI: 10.1093/icb/icz066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The "superpower" of invisibility is a reality and a necessity for many animals that live in featureless environments like the open ocean, where there is nowhere to hide. How do animals achieve invisibility? Many animals match their color patterns to their background, but this strategy is limited when the background scene is dynamic. Transparency allows organisms to match any background all the time. However, it is challenging for an organism to maintain transparency across its entire body volume. To be transparent, tissues must minimize light scattering, both at the surface and within. Until recently, it has been unclear how clear animals with complex bodies (such as many crustaceans with hard cuticles, thick muscles, and other internal organs) minimize such light scattering. This is especially challenging in an environment where light can come from many directions: reflections from downwelling sunlight and bioluminescent searchlights from predators. This review summarizes several recent discoveries of multiple unique adaptations for minimizing light scattering both on the exterior cuticle surface and throughout the body volume of transparent crustaceans, as well as the potential tradeoffs and challenges associated with transparent camouflage.
Collapse
Affiliation(s)
- Laura E Bagge
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
7
|
Heruye SH, Maffofou Nkenyi LN, Singh NU, Yalzadeh D, Ngele KK, Njie-Mbye YF, Ohia SE, Opere CA. Current Trends in the Pharmacotherapy of Cataracts. Pharmaceuticals (Basel) 2020; 13:E15. [PMID: 31963166 PMCID: PMC7168925 DOI: 10.3390/ph13010015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Cataracts, one of the leading causes of preventable blindness worldwide, refers to lens degradation that is characterized by clouding, with consequent blurry vision. As life expectancies improve, the number of people affected with cataracts is predicted to increase worldwide, especially in low-income nations with limited access to surgery. Although cataract surgery is considered safe, it is associated with some complications such as retinal detachment, warranting a search for cheap, pharmacological alternatives to the management of this ocular disease. The lens is richly endowed with a complex system of non-enzymatic and enzymatic antioxidants which scavenge reactive oxygen species to preserve lens proteins. Depletion and/or failure in this primary antioxidant defense system contributes to the damage observed in lenticular molecules and their repair mechanisms, ultimately causing cataracts. Several attempts have been made to counteract experimentally induced cataract using in vitro, ex vivo, and in vivo techniques. The majority of the anti-cataract compounds tested, including plant extracts and naturally-occurring compounds, lies in their antioxidant and/or free radical scavenging and/or anti-inflammatory propensity. In addition to providing an overview of the pathophysiology of cataracts, this review focuses on the role of various categories of natural and synthetic compounds on experimentally-induced cataracts.
Collapse
Affiliation(s)
- Segewkal H. Heruye
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Leonce N. Maffofou Nkenyi
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Neetu U. Singh
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | | | - Kalu K. Ngele
- Department of Biology/Microbiology/Biotechnology, Federal University Ndufu Alike Ikwo, Abakaliki, Nigeria
| | - Ya-Fatou Njie-Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Sunny E. Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Catherine A. Opere
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
8
|
Audette DS, Scheiblin DA, Duncan MK. The molecular mechanisms underlying lens fiber elongation. Exp Eye Res 2016; 156:41-49. [PMID: 27015931 DOI: 10.1016/j.exer.2016.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022]
Abstract
Lens fiber cells are highly elongated cells with complex membrane morphologies that are critical for the transparency of the ocular lens. Investigations into the molecular mechanisms underlying lens fiber cell elongation were first reported in the 1960s, however, our understanding of the process is still poor nearly 50 years later. This review summarizes what is currently hypothesized about the regulation of lens fiber cell elongation along with the available experimental evidence, and how this information relates to what is known about the regulation of cell shape/elongation in other cell types, particularly neurons.
Collapse
Affiliation(s)
- Dylan S Audette
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - David A Scheiblin
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
9
|
Bahrami M, Hoshino M, Pierscionek B, Yagi N, Regini J, Uesugi K. Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation. Exp Eye Res 2015; 140:19-27. [PMID: 26297613 DOI: 10.1016/j.exer.2015.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/20/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
A major structure/function relationship in the eye lens is that between the constituent proteins, the crystallins and the optical property of refractive index. Structural breakdown that leads to cataract has been investigated in a number of studies; the concomitant changes in the optics, namely increases in light attenuation have also been well documented. Specific changes in the refractive index gradient that cause such attenuation, however, are not well studied because previous methods of measuring refractive index require transparent samples. The X-ray Talbot interferometric method using synchrotron radiation allows for measurement of fine changes in refractive index through lenses with opacities. The findings of this study on older human lenses show disruptions to the refractive index gradient and in the refractive index contours. These disruptions are linked to location in the lens and occur in polar regions, along or close to the equatorial plane or in lamellar-like formations. The disruptions that are seen in the polar regions manifest branching formations that alter with progression through the lens with some similarity to lens sutures. This study shows how the refractive index gradient, which is needed to maintain image quality of the eye, may be disturbed and that this can occur in a number of distinct ways. These findings offer insight into functional changes to a major optical parameter in older lenses. Further studies are needed to elicit how these may be related to structural degenerations reported in the literature.
Collapse
Affiliation(s)
- Mehdi Bahrami
- Faculty of Science, Engineering and Computing, Kingston University London, Kingston-upon-Thames, KT1 2EE, United Kingdom
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (SPring-8), Sayo, Hyogo, Japan
| | - Barbara Pierscionek
- Faculty of Science, Engineering and Computing, Kingston University London, Kingston-upon-Thames, KT1 2EE, United Kingdom.
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (SPring-8), Sayo, Hyogo, Japan
| | - Justyn Regini
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (SPring-8), Sayo, Hyogo, Japan
| |
Collapse
|
10
|
Torres-Bernal BE, Torres-Bernal LF, Gutiérrez-Campos RR, Stalnikowitz DDK, Barba-Gallardo LF, Chayet AA, Ventura-Juárez J. Unfolded protein response activation in cataracts. J Cataract Refract Surg 2014; 40:1697-705. [DOI: 10.1016/j.jcrs.2014.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/10/2014] [Accepted: 02/22/2014] [Indexed: 10/24/2022]
|
11
|
Optical properties of the lens: an explanation for the zones of discontinuity. Exp Eye Res 2014; 124:93-9. [PMID: 24880144 DOI: 10.1016/j.exer.2014.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 11/23/2022]
Abstract
The structural basis of zones of discontinuity in the living human eye lens has not been elucidated, and there is no conclusive explanation for what relevance they may have to the structure and function of the lens. Newly developed synchrotron radiation based X-ray Talbot interferometry has enabled the detection of subtle fluctuations in the human eye lens which, when used in mathematical modelling to simulate reflected and scattered light, can recreate the image of the lens seen in the living human eye. The results of this study show that the zones of discontinuity may be caused by subtle fluctuations in the refractive index gradient as well as from random scattering in the central regions. As the refractive index contours are created by cell layers with progressively varying protein concentrations, the zones are linked to growth and will contain information about ageing and development. The index gradient is important for image quality and fluctuations in this gradient may add to quality optimisation and serve as models for designs of new generation implant lenses.
Collapse
|
12
|
Intact and N- or C-terminal end truncated AQP0 function as open water channels and cell-to-cell adhesion proteins: end truncation could be a prelude for adjusting the refractive index of the lens to prevent spherical aberration. Biochim Biophys Acta Gen Subj 2014; 1840:2862-77. [PMID: 24821012 DOI: 10.1016/j.bbagen.2014.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Investigate the impact of natural N- or C-terminal post-translational truncations of lens mature fiber cell Aquaporin 0 (AQP0) on water permeability (Pw) and cell-to-cell adhesion (CTCA) functions. METHODS The following deletions/truncations were created by site-directed mutagenesis (designations in parentheses): Amino acid residues (AA) 2-6 (AQP0-N-del-2-6), AA235-263 (AQP0-1-234), AA239-263 (AQP0-1-238), AA244-263 (AQP0-1-243), AA247-263 (AQP0-1-246), AA250-263 (AQP0-1-249) and AA260-263 (AQP0-1-259). Protein expression was studied using immunostaining, fluorescent tags and organelle-specific markers. Pw was tested by expressing the respective complementary ribonucleic acid (cRNA) in Xenopus oocytes and conducting osmotic swelling assay. CTCA was assessed by transfecting intact or mutant AQP0 into adhesion-deficient L-cells and performing cell aggregation and adhesion assays. RESULTS AQP0-1-234 and AQP0-1-238 did not traffic to the plasma membrane. Trafficking of AQP0-N-del-2-6 and AQP0-1-243 was reduced causing decreased membrane Pw and CTCA. AQP0-1-246, AQP0-1-249 and AQP0-1-259 mutants trafficked properly and functioned normally. Pw and CTCA functions of the mutants were directly proportional to the respective amount of AQP0 expressed at the plasma membrane and remained comparable to those of intact AQP0 (AQP0-1-263). CONCLUSIONS Post-translational truncation of N- or C-terminal end amino acids does not alter the basal water permeability of AQP0 or its adhesive functions. AQP0 may play a role in adjusting the refractive index to prevent spherical aberration in the constantly growing lens. GENERAL SIGNIFICANCE Similar studies can be extended to other lens proteins which undergo post-translational truncations to find out how they assist the lens to maintain transparency and homeostasis for proper focusing of objects on to the retina.
Collapse
|
13
|
Mohamed A, Gilliland KO, Metlapally S, Johnsen S, Costello MJ. Simple fixation and storage protocol for preserving the internal structure of intact human donor lenses and extracted human nuclear cataract specimens. Mol Vis 2013; 19:2352-9. [PMID: 24319329 PMCID: PMC3850983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/19/2013] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Increased use of phacoemulsification procedures for cataract surgeries has resulted in a dramatic decrease in the availability of cataractous nuclear specimens for basic research into the mechanism of human cataract formation. To overcome such difficulties, a fixation protocol was developed to provide good initial fixation of human donor lenses and extracted nuclei, when available, and is suitable for storing or shipping cataracts to laboratories where structural studies could be completed. METHODS Cataractous lens nuclei (n=19, ages 12 to 74 years) were obtained from operating suites after extracapsular extraction. Transparent human donor lenses (n=27, ages 22 to 92 years) were obtained from the Ramayamma International Eye Bank. After the dimensions were measured with a digital caliper, samples were preserved in 10% formalin (neutral buffered) for 24 h and followed by fixation in 4% paraformaldehyde (pH 7.2) for 48 h. Samples were stored cold (4 °C) in buffer until shipped. Samples were photographed and measured before further processing for transmission electron microscopy. RESULTS The dimensions of the samples varied slightly after short fixation followed by 1 to 5 months' storage before transmission electron microscopy processing. The mean change in the axial thickness of the donor lenses was 0.15±0.21 mm or 3.0±5.4%, while that of the extracted nuclei was 0.05±0.24 mm or 1.8±7.6%. Because the initial concern was whether the nuclear core was preserved, thin sections were examined from the embryonic and fetal nuclear regions. All cellular structures were preserved, including the cytoplasm, complex edge processes, membranes, and junctions. The preservation quality was excellent and nearly equivalent to preservation of fresh lenses even for the lens cortex. Cell damage characteristic of specific nuclear cataract types was easily recognized. CONCLUSIONS The novel fixation protocol appears effective in preserving whole donor lenses and cataractous nuclei over a wide age range. Dimensions varied only 2%-3%, and fiber cell damage correlated well with standard fixation. These methods enable researchers and clinicians in remote settings to preserve donor lenses and rare examples of extracapsular extractions for detailed examination at later times.
Collapse
Affiliation(s)
- Ashik Mohamed
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Kurt O. Gilliland
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - Sangeetha Metlapally
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | | | - M. Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
14
|
Costello MJ, Mohamed A, Gilliland KO, Fowler WC, Johnsen S. Ultrastructural analysis of the human lens fiber cell remodeling zone and the initiation of cellular compaction. Exp Eye Res 2013; 116:411-8. [PMID: 24183661 DOI: 10.1016/j.exer.2013.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
The purpose is to determine the nature of the cellular rearrangements occurring through the remodeling zone (RZ) in human donor lenses, identified previously by confocal microscopy to be about 100 μm from the capsule. Human donor lenses were fixed with 10% formalin followed by 4% paraformaldehyde prior to processing for transmission electron microscopy. Of 27 fixed lenses, ages 22, 55 and 92 years were examined in detail. Overview electron micrographs confirmed the loss of cellular organization present in the outer cortex (80 μm thick) as the cells transitioned into the RZ. The transition occurred within a few cell layers and fiber cells in the RZ completely lost their classical hexagonal cross-sectional appearance. Cell interfaces became unusually interdigitated and irregular even though the radial cell columns were retained. Gap junctions appeared to be unaffected. After the RZ (40 μm thick), the cells were still irregular but more recognizable as fiber cells with typical interdigitations and the appearance of undulating membranes. Cell thickness was irregular after the RZ with some cells compacted, while others were not, up to the zone of full compaction in the adult nucleus. Similar dramatic cellular changes were observed within the RZ for each lens regardless of age. Because the cytoskeleton controls cell shape, dramatic cellular rearrangements that occur in the RZ most likely are due to alterations in the associations of crystallins to the lens-specific cytoskeletal beaded intermediate filaments. It is also likely that cytoskeletal attachments to membranes are altered to allow undulating membranes to develop.
Collapse
Affiliation(s)
- M Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
15
|
Costello MJ, Brennan LA, Basu S, Chauss D, Mohamed A, Gilliland KO, Johnsen S, Menko S, Kantorow M. Autophagy and mitophagy participate in ocular lens organelle degradation. Exp Eye Res 2013; 116:141-50. [PMID: 24012988 DOI: 10.1016/j.exer.2013.08.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 01/08/2023]
Abstract
The eye lens consists of a layer of epithelial cells that overlay a series of differentiating fiber cells that upon maturation lose their mitochondria, nuclei and other organelles. Lens transparency relies on the metabolic function of mitochondria contained in the lens epithelial cells and in the immature fiber cells and the programmed degradation of mitochondria and other organelles occurring upon lens fiber cell maturation. Loss of lens mitochondrial function in the epithelium or failure to degrade mitochondria and other organelles in lens fiber cells results in lens cataract formation. To date, the mechanisms that govern the maintenance of mitochondria in the lens and the degradation of mitochondria during programmed lens fiber cell maturation have not been fully elucidated. Here, we demonstrate using electron microscopy and dual-label confocal imaging the presence of autophagic vesicles containing mitochondria in lens epithelial cells, immature lens fiber cells and during early stages of lens fiber cell differentiation. We also show that mitophagy is induced in primary lens epithelial cells upon serum starvation. These data provide evidence that autophagy occurs throughout the lens and that mitophagy functions in the lens to remove damaged mitochondria from the lens epithelium and to degrade mitochondria in the differentiating lens fiber cells for lens development. The results provide a novel mechanism for how mitochondria are maintained to preserve lens metabolic function and how mitochondria are degraded upon lens fiber cell maturation.
Collapse
Affiliation(s)
- M Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - Lisa A Brennan
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL
| | - Subharsee Basu
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University
| | - Daniel Chauss
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL
| | - Ashik Mohamed
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Kurt O Gilliland
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | | | - Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University
| | - Marc Kantorow
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL
| |
Collapse
|
16
|
Costello MJ, Burette A, Weber M, Metlapally S, Gilliland KO, Fowler WC, Mohamed A, Johnsen S. Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts. Exp Eye Res 2012; 101:72-81. [PMID: 22728317 DOI: 10.1016/j.exer.2012.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 01/29/2023]
Abstract
Human nuclear cataract formation is a multi-factorial disease with contributions to light scattering from many cellular sources that change their scattering properties over decades. The aging process produces aggregation of cytoplasmic crystallin proteins, which alters the protein packing and texture of the cytoplasm. Previous studies of the cytoplasmic texture quantified increases in density fluctuations in protein packing and theoretically predicted the corresponding scattering. Multilamellar bodies (MLBs) are large particles with a core of crystallin cytoplasm that have been suggested to be major sources of scattering in human nuclei. The core has been shown to condense over time such that the refractive index increases compared to the adjacent aged and textured cytoplasm. Electron tomography is used here to visualize the 3D arrangement of protein aggregates in aged and cataractous lens nuclear cytoplasm compared to the dense protein packing in the cores of MLBs. Thin sections, 70 nm thick, were prepared from epoxy-embedded human transparent donor lenses and nuclear cataracts. Tilt series were collected on an FEI T20 transmission electron microscope (TEM) operated at 200 kV using 15 nm gold particles as fiducial markers. Images were aligned and corrected with FEI software and reconstructed with IMOD and other software packages to produce animated tilt series and stereo anaglyphs. The 3D views of protein density showed the relatively uniform packing of proteins in aged transparent lens nuclear cytoplasm and less dense packing of aged cataractous cytoplasm where many low-density regions can be appreciated in the absence of the TEM projection artifacts. In contrast the cores of the MLBs showed a dense packing of protein with minimal density fluctuations. These observations support the conclusion that, during the nuclear cataract formation, alterations in protein packing are extensive and can result in pronounced density fluctuations. Aging causes the MLB cores to become increasingly different in their protein packing from the adjacent cytoplasm. These results support the hypothesis that the MLBs increase their scattering with age and nuclear cataract formation.
Collapse
Affiliation(s)
- M Joseph Costello
- Department of Cell and Developmental Biology, CB 7090, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Michael R, Bron AJ. The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci 2011; 366:1278-92. [PMID: 21402586 DOI: 10.1098/rstb.2010.0300] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cataract is a visible opacity in the lens substance, which, when located on the visual axis, leads to visual loss. Age-related cataract is a cause of blindness on a global scale involving genetic and environmental influences. With ageing, lens proteins undergo non-enzymatic, post-translational modification and the accumulation of fluorescent chromophores, increasing susceptibility to oxidation and cross-linking and increased light-scatter. Because the human lens grows throughout life, the lens core is exposed for a longer period to such influences and the risk of oxidative damage increases in the fourth decade when a barrier to the transport of glutathione forms around the lens nucleus. Consequently, as the lens ages, its transparency falls and the nucleus becomes more rigid, resisting the change in shape necessary for accommodation. This is the basis of presbyopia. In some individuals, the steady accumulation of chromophores and complex, insoluble crystallin aggregates in the lens nucleus leads to the formation of a brown nuclear cataract. The process is homogeneous and the affected lens fibres retain their gross morphology. Cortical opacities are due to changes in membrane permeability and enzyme function and shear-stress damage to lens fibres with continued accommodative effort. Unlike nuclear cataract, progression is intermittent, stepwise and non-uniform.
Collapse
Affiliation(s)
- R Michael
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Laforja 88, 08021 Barcelona, Spain.
| | | |
Collapse
|
18
|
Costello MJ, Johnsen S, Metlapally S, Gilliland KO, Frame L, Balasubramanian D. Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts. Exp Eye Res 2010; 91:881-9. [PMID: 20888812 PMCID: PMC2993780 DOI: 10.1016/j.exer.2010.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/04/2010] [Accepted: 09/17/2010] [Indexed: 11/23/2022]
Abstract
The goal of this project was to determine the relative refractive index (RI) of the interior of multilamellar bodies (MLBs) compared to the adjacent cytoplasm within human nuclear fiber cells. MLBs have been characterized previously as 1-4 μm diameter spherical particles covered by multiple lipid bilayers surrounding a cytoplasmic core of variable density. Age-related nuclear cataracts have more MLBs than transparent donor lenses and were predicted to have high forward scattering according to Mie scattering theory, assuming different RIs for the MLB and cytoplasm. In this study quantitative values of relative RI were determined from specific MLBs in electron micrographs of thin sections and used to calculate new Mie scattering plots. Fresh lenses were Vibratome sectioned, immersion fixed and en bloc stained with osmium tetroxide and uranyl acetate, or uranyl acetate alone, prior to dehydration and embedding in epoxy or acrylic resins. Thin sections 70 nm thick were cut on a diamond knife and imaged without grid stains at 60 kV using a CCD camera on a transmission electron microscope (TEM). Integrated intensities in digital electron micrographs were related directly to protein density, which is linearly related to RI for a given substance. The RI of the MLB interior was calculated assuming an RI value of 1.42 for the cytoplasm from the literature. Calculated RI values for MLBs ranged from 1.35 to 1.53. Thus, some MLBs appeared to have interior protein densities similar to or less than the adjacent cytoplasm whereas others had significantly higher densities. The higher density MLBs occurred preferentially in older and more advanced cataracts suggesting a maturation process. The bilayer coats were more often observed in MLBs from transparent donors and early stage cataracts indicating that bilayer loss was part of the MLB maturation, producing large low-density spaces around dense MLB cores. These spaces were frequently observed in advanced cataracts from India as large low-density crescents and annular rings. Predicted scattering from Mie plots using particles with dense cores and low-density rims was higher than reported previously, although the most important factor was the relative RI, not the MLB coat or lack thereof. In conclusion, the measurements confirm the high protein density and RI of some MLB interiors compared to adjacent cytoplasm. This high RI ratio used in the Mie calculations suggests that for 2000 MLBs/mm³, about half that reported for early stage nuclear cataracts from the US, the forward scattering could be more than 30% of the incident light. Therefore, the extent of forward scattering and its influence on macular visual acuity could be important components of ophthalmological evaluations of cataract patients.
Collapse
Affiliation(s)
- M Joseph Costello
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Borchman D, Yappert MC. Lipids and the ocular lens. J Lipid Res 2010; 51:2473-88. [PMID: 20407021 PMCID: PMC2918433 DOI: 10.1194/jlr.r004119] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/29/2010] [Indexed: 11/20/2022] Open
Abstract
The unusually high levels of saturation and thus order contribute to the uniqueness of human lens membranes. In addition, and unlike in most biomembranes, most of the lens lipids are associated with proteins, thus reducing their mobility. The major phospholipid of the human lens is dihydrosphingomyelin. Found in significant quantities only in primate lenses, particularly human ones, this lipid is so extremely stable that it was reported to be the only lipid remaining in a frozen mammoth 40,000 years after its death. Unusually high levels of cholesterol add peculiarity to the composition of lens membranes. Beyond the lateral segregation of lipids into dynamic domains known as rafts, the high abundance of cholesterol in the human lens leads to the formation of patches of pure cholesterol. Changes in human lens lipid composition with age and disease as well as differences among species are greater than those observed for any other biomembrane. The relationships among lens membrane composition, structure, and lipid conformation reviewed in this article are unique to the mammalian lens and offer exciting insights into lens membrane function. This review focuses on findings reported over the last two decades that demonstrate the uniqueness of mammalian lens membranes regarding their morphology and composition. Because the membranes of human lenses do undergo the most dramatic changes with age and cataractogenesis, the final sections of this review address our current knowledge of the unusual composition and organization of adult human lens membranes with and without opacification. Finally, the questions that still remain to be answered are presented.
Collapse
Affiliation(s)
- Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA.
| | | |
Collapse
|
20
|
Zhu X, Gaus K, Lu Y, Magenau A, Truscott RJW, Mitchell TW. α- and β-crystallins modulate the head group order of human lens membranes during aging. Invest Ophthalmol Vis Sci 2010; 51:5162-7. [PMID: 20484582 DOI: 10.1167/iovs.09-4947] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine the physical properties of human lens cell membranes as a function of age. METHODS The environment of the phospholipid head groups in fiber cell membranes from human lenses, aged 22 to 83 years, was assessed with Laurdan and two-photon confocal microscopy. The effect of mild thermal stress on head group order was studied with lens pairs in which one intact lens was incubated at 50 °C. Dihydrosphingomyelin vesicles were preloaded with Laurdan, α-, β-, or γ-crystallin was added, and surface fluidity was determined. RESULTS The membrane head group environment became more fluid with age as indicated by increased water penetration. Furthermore, these changes could be replicated simply by exposing intact human lenses to mild thermal stress; conditions which decreased the concentration of soluble α- and β-crystallins. Vesicle binding experiments showed that α- and β-, but not γ-, crystallins markedly affected head group order. CONCLUSIONS The physical properties of cell membranes in the lens nucleus change substantially with age, and α- and β-crystallins may modulate this effect. β-Crystallins may therefore play a role in lens cells, and cells of other tissues, apart from being simple structural proteins. Age-dependent loss of these crystallins may affect membrane integrity and contribute to the dysfunction of lenses in older people.
Collapse
Affiliation(s)
- Xiangjia Zhu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
21
|
Metlapally S, Costello MJ, Gilliland KO, Ramamurthy B, Krishna PV, Balasubramanian D, Johnsen S. Analysis of nuclear fiber cell cytoplasmic texture in advanced cataractous lenses from Indian subjects using Debye-Bueche theory. Exp Eye Res 2008; 86:434-44. [PMID: 18191834 PMCID: PMC2366113 DOI: 10.1016/j.exer.2007.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/20/2007] [Accepted: 11/28/2007] [Indexed: 12/13/2022]
Abstract
Alterations in ultrastructural features of the lens fiber cells lead to scattering and opacity typical of cataracts. The organelle-free cytoplasm of the lens nuclear fiber cell is one such component that contains vital information about the packing and organization of crystallins critical to lens transparency. The current work has extended analysis of the cytoplasmic texture to transparent and advanced cataractous lenses from India and related the extent of texturing to the nuclear scattering observed using the Debye-Bueche theory for inhomogeneous materials. Advanced age-related nuclear cataracts (age-range 38-75 years) and transparent lenses (age-range 48-78 years) were obtained following extracapsular cataract removal or from the eye bank, at the L.V. Prasad Eye Institute. Lens nuclei were Vibratome-sectioned, fixed and prepared for transmission electron microscopy using established techniques. Electron micrographs of the unstained thin sections of the cytoplasm were acquired at 6500x and percent scattering for wavelengths 400-700 nm was calculated using the Debye-Bueche theory. Electron micrographs from comparable areas in an oxidative-damage sensitive (OXYS) rat model and normal rat lenses preserved from an earlier study were used, as they have extremely textured and smooth cytoplasms, respectively. The Debye-Bueche theoretical approach produces plots that vary smoothly with wavelength and are sensitive to spatial fluctuations in density. The central lens fiber cells from advanced cataractous lenses from India and the OXYS rat, representing opaque lens nuclei, produced the greatest texture and scattering. The transparent human lenses from India had a smoother texture and less predicted scattering, similar to early cataracts from previous studies. The normal rat lens had a homogeneous cytoplasm and little scattering. The data indicate that this method allowed easy comparison of small variations in cytoplasmic texture and robustly detected differences between transparent and advanced cataractous human lenses. This may relate directly to the proportion of opacification contributed by the packing of crystallins. The percent scattering calculated using this method may thus be used to generate a range of curves with which to compare and quantify the relative contribution of the packing of crystallins to the loss of transparency and scattering observed.
Collapse
Affiliation(s)
- S. Metlapally
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC
| | - M. J. Costello
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC
| | - K. O. Gilliland
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC
| | | | | | | | - S. Johnsen
- Department of Biology, Duke University, Durham, NC
| |
Collapse
|